锂氮共掺杂ρ型氧化锌基薄膜制备及其发光器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是直接带隙II-VI族化合物,具有宽的禁带宽度,高的激子结合能,环境友好,原料丰富等优势,作为一种新型的光电半导体材料而备受关注。自从ZnO的室温光泵浦紫外受激发射被发现后,ZnO在紫外发光器件、低阈值激光器件、紫外探测器件等方面展现出巨大的应用潜力。然而p型掺杂是制约ZnO在光电领域应用面临的瓶颈问题,也是一个国际性难题。本论文针对制约ZnO发展的瓶颈性问题展开研究,取得的主要成果如下:
     1.利用等离子体辅助分子束外延技术,在蓝宝石衬底上采用高温缓冲层的方法,制备了背景电子浓度约为1.5×10~(16)cm~(-3)的高质量的非故意掺杂ZnO薄膜,其比直接生长在蓝宝石上的ZnO薄膜降低了两个量级以上,与国际上报道的最好的结果(1×10~(16)cm~(-3))相差无几。
     2.在获得高质量非故意掺杂ZnO薄膜的基础上,通过光刻工艺构建了MSM插指结构的紫外探测器件,在8V偏压下此器件的响应度达到26000A/W,增益达到9×10~4,这是ZnO基紫外探测器目前已报道的最大的响应度和增益之一。
     3.通过Li-N双受主共掺杂的方法,制备了p-MgZnO:(Li,N)薄膜,并构建了p-MgZnO:(Li,N)/n-ZnO单异质结结构的发光器件,实现了可持续工作的ZnO基发光器件,目前器件的连续工作时间已达97小时,这是ZnO基发光器件连续工作的首次报道,说明获得的p型ZnO具有良好的稳定性。
     4.为了获得更短波长的发光器件,制备了p-Mg_(0.35)Zn_(0.65)O:(Li,N)/n-Mg_(0.20)Zn_(0.80)的MgZnO基异质结发光器件,实现了室温下的位于355nm的电致发光,据知这是首次报道MgZnO异质结发光器件及ZnO基发光器件的最短波长之一。
Zinc oxide (ZnO) has recently been considered as a potential candidate forshort-wavelength optoelectronic devices such as light-emitting devices (LEDs) andlaser diodes (LDs) for its large band gap of3.37eV and large exciton binding energyof60meV. However, the ZnO-based optoelectronic devices applications aredrastically hindered by the difficulties in realizing reliable and reproducible p-typeZnO. This work foucs on the aforementioned problems, the main results wereobtained as follows:
     1. Obtaining high quality ZnO films with relatively low residual electronconcentration is a fundamental step towards efficient p-type doping and futureapplications in optoelectronic devices of ZnO. A route to high quality ZnO filmswith low electron concentration has been obtained by introducing a thin hightemperature ZnO buffer layer in a plasma-assissted molecular beam epitaxy(MBE). The residual electron concentration in the films is about1.5×10~(16)cm~(-3),which is comparable with the best value reported (1×10~(16)cm~(-3)).
     2. High responsivity ultraviolet photodetector has been demonstrated based onZnO film. A responsivity of26000A/W has been achieved at8V bias, which isthe highest responsivity ever reported in a semiconductor based UV photodetector. The high responsivity has been attributed to the carrier-trappingprocess at the metal/semiconductor interface, which has been confirmed by theasymmetric barrier height at the two sides of the Au/ZnO interdigital electrodes.
     3. Based on realization of high quality ZnO films with low electron concetration,Li-N condoping has been employed as the dual-acceptor dopant for the p-typedoping of MgZnO, and p-MgZnO:(Li,N)/n-ZnO single heterostructures have beenconstructed. Obvious near-band-edge (NBE) excitonic emissions coming fromZnO have been observed from the structures at room temperature, and the devicescan work continuously for about6.8h in air ambient under the injection of acontinuous current of20mA. By optimizing the structure, the LEDs can workcontinuously for about97hours, revealing the good reliability of the p-typeZnO-based films obtained by using the Li-N codoping method.
     4. MgZnO-based heterostructured LEDs have been realized fromp-Mg_(0.35)Zn_(0.65)O:(Li,N)/n-Mg_(0.20)Zn_(0.80)O structure. Obvious emission peaked ataround355nm has been observed from the heterostructure, which can beattributed to the near-band-edge emission of the n-type Mg_(0.20)Zn_(0.80)O layer. Theresults reported in this paper may promise short UV or even deep ultravioletLEDs from MgZnO-based materials.
引文
[1] C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, et al.65years of ZnO research-old and very recent results [J]. physica status solidi (b).2010,247(6):1424-47.
    [2] D. C. Look. Recent advances in ZnO materials and devices [J]. Materials Scienceand Engineering B.2001,80:383–7.
    [3] H. Morko, ü. zgür. Zinc Oxide Fundamentals, Materials and DeviceTechnology [M]. Weinheim: WILEY-VCH Verlag GmbH&Co. KGaA;2009.
    [4] S. Pearton. Recent progress in processing and properties of ZnO [J]. Progress inMaterials Science.2005,50(3):293-340.
    [5] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, et al. Acomprehensive review of ZnO materials and devices [J]. Journal of Applied Physics.2005,98(4).
    [6] C. Klingshirn. ZnO: Material, Physics and Applications [J]. Chem Phys Chem.2007,8(6):782-803.
    [7] G. E. Jellison, L. A. Boatner. Optical functions of uniaxial ZnO determined bygeneralized ellipsometry [J]. Physical Review B.1998,58(7):3586-9.
    [8] H. Cao. Review on latest developments in random lasers with coherent feedback[J]. Journal of Physics A: Mathematical and General.2005,38(49):10497-535.
    [9] Y. Sun, J. B. Ketterson, G. K. L. Wong. Excitonic gain and stimulated ultravioletemission in nanocrystalline zinc-oxide powder [J]. Applied Physics Letters.2000,77(15):2322.
    [10] Y. Chen, N. T. Tuan, Y. Segawa, H.-j. Ko, S.-k. Hong, T. Yao. Stimulatedemission and optical gain in ZnO epilayers grown by plasma-assistedmolecular-beam epitaxy with buffers [J]. Applied Physics Letters.2001,78(11):1469.
    [11] Y. Zhu, G. Chen, H. Ye, A. Walsh, C. Moon, S.-H. Wei. Electronic structure andphase stability of MgO, ZnO, CdO, and related ternary alloys [J]. Physical Review B.2008,77(24).
    [12] T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, et al.Band gap engineering based on MgxZn1xO and CdyZn1yO ternary alloy films [J].Applied Physics Letters.2001,78(9):1237.
    [13] A. Ohtomo, T. K. M. Kawasaki, K. Masubuchi, and H. Koinuma,Y. Sakurai andY. Yoshida,T. Yasuda and Y. Segawa. MgxZn1-xO as a II–VI widegap semiconductoralloy [J]. Applied Physics Letters.1998,72:2466.
    [14] S. Zhang, S. H. Wei, A. Zunger. Intrinsic n-type versus p-type dopingasymmetry and the defect physics of ZnO [J]. Physical Review B.2001,63(7).
    [15] F. Oba, S. R. Nishitani, S. Isotani, H. Adachi, I. Tanaka. Energetics of nativedefects in ZnO [J]. Journal of Applied Physics.2001,90(2):824.
    [16] A. Janotti, C. G. Van de Walle. New insights into the role of native point defectsin ZnO [J]. Journal of Crystal Growth.2006,287(1):58-65.
    [17] A. F. Kohan, G. Ceder, D. Morgan, C. G. V. d. Walle. First-principles study ofnative point defects in ZnO [J]. Physical Review B.2000,61(22):15019.
    [18] D. C. Look, C. Co kun, B. Claflin, G. C. Farlow. Electrical and opticalproperties of defects and impurities in ZnO [J]. Physica B: Condensed Matter.2003,340-342:32-8.
    [19] Y. Q. Gai, B. Yao, Y. F. Li, Y. M. Lu, D. Z. Shen, J. Y. Zhang, et al. Influence ofhydrostatic pressure on the native point defects in wurtzite ZnO: Ab initiocalculation [J]. Physics Letters A.2008,372(30):5077-82.
    [20] M.A.L. Johnson, SHIZUO Fujita, W.H. Rowland, W. C. H. JR., J.W. Cook, J. F.Schetzina. MBE Growth and Properties of ZnO on Sapphire and SiC Substrates [J].Journal of Electronic Materials.1996,25(5):855.
    [21] Y. Liu, C.R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, et al. UltravioletDetectors Based on Epitaxial ZnO films grown by mocvd [J]. Journal of ElectronicMaterials.2000,29(1):69.
    [22] B.J. Jin, S.H. Bae, S.Y. Lee, S. Imc. Effects of native defects on optical andelectrical properties of ZnO prepared by pulsed laser deposition [J]. MaterialsScience and Engineering B.2000,71:301-5.
    [23] M. K. Ryu, S. H. Lee, M. S. Jang, G. N. Panin, T. W. Kang. Postgrowthannealing effect on structural and optical properties of ZnO films grown on GaAssubstrates by the radio frequency magnetron sputtering technique [J]. Journal ofApplied Physics.2002,92(1):154.
    [24] S.K. Hong, Y. Chen, H.J. Ko, H. Wenisch, T. Hanada, T. Yao. ZnO and relatedmaterials plasma assisted MBE growth characterization and application [J]. Journalof Electronic Materials.2001,30:647.
    [25] D.M. Bagnall, Y.F. Chen, M.Y.Shen, Z.Zhu, T.Goto, T.Yao. Room temperatureexcitonic stimulated emission from Zic oxide epilayers grown by MBE [J]. Journalof Crystal Growth1998,184/185:605-9.
    [26] Yefan Chen, D. M. Bagnall, Hang-jun Koh, Ki-tae Park, Kenji Hiraga, ZiqiangZhu, et al. Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphireGrowth and characterization [J]. Journal of Applied Physics.1998,84(7):3912.
    [27] A. Ohtomo, K. Tamura, K. Saikusa, K. Takahashi, T. Makino, Y. Segawa, et al.Single crystalline ZnO films grown on lattice-matched ScAlMgO4(0001) substrates[J]. Applied Physics Letters.1999,75:2635.
    [28] Y. Segawa, A. Ohtomo, M. Kawasaki, H. Koinuma, Z. K. Tang, P. Yu, et al.Growth of ZnO Thin Film by Laser MBE:Lasing of Exciton at Room Temperature[J]. phys stat sol (b).1997,202:669.
    [29] I. Ohkubo, Y. Matsumoto, A. Ohtomo, T. Ohnishi, A. Tsukazaki, M. Lippmaa,et al. Investigation of ZnO/sapphire interface and formation of ZnO nanocrystallineby laser MBE [J]. Applied Surface Science2000,159-160:514-9.
    [30] Yefan Chen, Hang-Ju Ko, Soon-Ku Hong, T. Yao. Layer-by-layer growth ofZnO epilayer on Al2O3(0001) by using a MgO buffer layer [J]. Applied PhysicsLetters.2000,76:559.
    [31] H. Kato, K. Miyamoto, M. Sano, T. Yao. Polarity control of ZnO on sapphire byvarying the MgO buffer layer thickness [J]. Applied Physics Letters.2004,84(22):4562.
    [32] S. Kyu Han, J.-H. Kim, S.-K. Hong, J.-H. Song, J.-H. Song, J. Wook Lee, et al.Investigation of nonpolar (112ˉ0) a-plane ZnO films grown under various Zn/Oratios by plasma-assisted molecular beam epitaxy [J]. Journal of Crystal Growth.2010,312(15):2196-200.
    [33] P. Fons, K. Iwata, S. Niki, A. Yamada, K. Matsubara, M. Watanabe. Uniaxiallocked growth of high-quality epitaxial ZnO films on (11-20) alpha-Al2O3[J].Journal of Crystal Growth.2000,209(2-3):532-6.
    [34] F. Takali, A. Njeh, H. Fuess, M. H. Ben Ghozlen. X-ray diffractionmeasurement of residual stress in epitaxial ZnO/α-Al2O3thin film [J]. MechanicsResearch Communications.2011,38(3):186-91.
    [35] C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback, et al.Structural, optical, and surface acoustic wave properties of epitaxial ZnO filmsgrown on (011ˉ2) sapphire by metalorganic chemical [J]. Journal of AppliedPhysics.1999,85:2595.
    [36] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, et al.Repeated temperature modulation epitaxy for p-type doping and light-emitting diodebased on ZnO [J]. Nature Materials.2004,4(1):42-6.
    [37] A. Tsukazaki, A. Ohtomo, S. Yoshida, M. Kawasaki, C. H. Chia, T. Makino, etal. Layer-by-layer growth of high-optical-quality ZnO film on atomically smoothand lattice relaxed ZnO buffer layer [J]. Applied Physics Letters.2003,83(14):2784.
    [38] H. Shibata, H. Tampo, K. Matsubara, A. Yamada, K. Sakurai, S. Ishizuka, et al.Photoluminescence characterization of Zn1xMgxO epitaxial thin films grown onZnO by radical source molecular beam epitaxy [J]. Applied Physics Letters.2007,90(12):124104.
    [39] Y. Nishimoto, K. Nakahara, D. Takamizu, A. Sasaki, K. Tamura, S. Akasaka, etal. Plasma-assisted Molecular Beam Epitaxy of High Optical Quality MgZnO Filmson Zn-polar ZnO Substrates [J]. Applied Physics Express.2008,1:091202.
    [40] Z. Vashaei, T. Minegishi, H. Suzuki, T. Hanada, M. W. Cho, T. Yao, et al.Structural variation of cubic and hexagonal MgxZn1xO layers grown on MgO(111)∕c-sapphire [J]. Journal ofApplied Physics.2005,98(5):054911.
    [41] S. Fujita, T. Takagi, H. Tanaka, S. Fujita. Molecular beam epitaxy of MgxZn1xOlayers without wurzite-rocksalt phase mixing from x=0to1as an effect of ZnObuffer layer [J]. physica status solidi (b).2004,241(3):599-602.
    [42] H. Tanaka, S. Fujita, S. Fujita. Fabrication of wide-band-gap MgxZn1xOquasi-ternary alloys by molecular-beam epitaxy [J]. Applied Physics Letters.2005,86(19):192911.
    [43] S. H. Park, T. Minegishi, M. Ito, J. S. Park, I. H. Im, J. H. Chang, et al. Theeffect of growth temperature on nitrogen incorporation into ZnO film grown onAl2O3substrate [J]. Journal of Crystal Growth.2009,311(3):466-9.
    [44] R. M. Park, M. B. Troffer, C. M. Rouleau, J. M. Depuydt, M. A. Haase. P-typeZnSe by nitrogen atom beam doping during molecular beam epitaxial-growth [J].Applied Physics Letters.1990,57(20):2127-9.
    [45] A. Kobayashi, O. F. Sankey, J. D. Dow. Deep energy levels of defects in thewurtzite semiconductors AlN, CdS, CdSe,ZnS and ZnO [J]. Physical Review B.1983,28(2):946-56.
    [46] K. Iwata, P. Fons, A. Yamada, K. Matsubara, S. Niki. Nitrogen-induced defectsin ZnO: N grown on sapphire substrate by gas source MBE [J]. Journal of CrystalGrowth.2000,209(2-3):526-31.
    [47] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, G. Cantwell.Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy [J].Applied Physics Letters.2002,81(10):1830.
    [48] Z. P. Wei, Y. M. Lu, D. Z. Shen, Z. Z. Zhang, B. Yao, B. H. Li, et al. Roomtemperature p-n ZnO blue-violet light-emitting diodes [J]. Applied Physics Letters.2007,90(4):042113.
    [49] A. B. M. A. Ashrafi, I. Suemune, H. Kumano, S. Tanaka. Nitrogen-Dopedp-Type ZnO Layers Prepared with H2O Vapor-Assisted MetalorganicMolecular-Beam Epitaxy [J]. Japanese Journal of Applied Physics.2002,41(Part2,No.11B): L1281-L4.
    [50] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, A. Shimizu. Growthof p-type zinc oxide films by chemical vapor deposition [J]. Jpn J Appl Phys2.1997,36(11A): L1453-L5.
    [51] K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, et al.Nitrogen doped MgxZn1xO/ZnO single heterostructure ultraviolet light-emittingdiodes on ZnO substrates [J]. Applied Physics Letters.2010,97(1):013501.
    [52] X. L. Guo, H. Tabata, T. Kawai. p-type conduction in transparent semiconductorZnO thin films induced by electron cyclotron resonance N2O plasma [J]. OpticalMaterials.2002,19(1):229-33.
    [53] Y. Yan, S. Zhang, S. Pantelides. Control of Doping by Impurity ChemicalPotentials: Predictions for p-Type ZnO [J]. Physical Review Letters.2001,86(25):5723-6.
    [54] S. J. Jiao, Z. Z. Zhang, Y. M. Lu, D. Z. Shen, B. Yao, J. Y. Zhang, et al. ZnO p-njunction light-emitting diodes fabricated on sapphire substrates [J]. Applied PhysicsLetters.2006,88(3):031911.
    [55] D. C. Look, G. M. Renlund, R. H. Burgener, J. R. Sizelove. As-doped p-typeZnO produced by an evaporation∕sputtering process [J]. Applied Physics Letters.2004,85(22):5269.
    [56] D. C. Look, B. Claflin. P-type doping and devices based on ZnO [J]. physicastatus solidi (b).2004,241(3):624-30.
    [57] C. Yuen, S. F. Yu, E. S. P. Leong, S. P. Lau, K. Pita, H. Y. Yang, et al. Roomtemperature deposition of p-type arsenic doped ZnO polycrystalline films bylaser-assist filtered cathodic vacuum arc technique [J]. Journal of Applied Physics.2007,101(9):094905.
    [58] Y. R. Ryu, T. S. Lee, H. W. White. Properties of arsenic-doped p-type ZnOgrown by hybrid beam deposition [J]. Applied Physics Letters.2003,83(1):87.
    [59] G. T. Du, W. F. Liu, J. M. Bian, L. Z. Hu, H. W. Liang, X. S. Wang, et al. Roomtemperature defect related electroluminescence from ZnO homojunctions grown byultrasonic spray pyrolysis [J]. Applied Physics Letters.2006,89(5):052113.
    [60] H. Tampo, H. Shibata, P. Fons, A. Yamada, K. Matsubara, K. Iwata, et al. Theeffects of thermal treatments on the electrical properties of phosphorus doped ZnOlayers grown by MBE [J]. Journal of Crystal Growth.2005,278(1-4):268-72.
    [61] D.-K. Hwang, H.-S. Kim, J.-H. Lim, J.-Y. Oh, J.-H. Yang, S.-J. Park, et al.Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grownby radio-frequency magnetron sputtering [J]. Applied Physics Letters.2005,86(15):151917.
    [62] C. X. Shan, Z. Liu, S. K. Hark. Temperature dependent photoluminescencestudy on phosphorus doped ZnO nanowires [J]. Applied Physics Letters.2008,92(7):073103.
    [63] F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu, W. P. Beyermann.High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy [J]. AppliedPhysics Letters.2005,87(15):152101.
    [64] S. Chu, J. H. Lim, L. J. Mandalapu, Z. Yang, L. Li, J. L. Liu. Sb-doped p-ZnO∕Ga-doped n-ZnO homojunction ultraviolet light emitting diodes [J]. AppliedPhysics Letters.2008,92(15):152103.
    [65] S. Limpijumnong, S. Zhang, S.-H. Wei, C. Park. Doping byLarge-Size-Mismatched Impurities: The Microscopic Origin of Arsenic-orAntimony-Doped p-Type Zinc Oxide [J]. Physical Review Letters.2004,92(15).
    [66] C. H. Park, S. B. Zhang, S. H. Wei. Origin of p-type doping difficulty in ZnO:The impurity perspective [J]. Physical Review B.2002,66(7).
    [67] B. Xiao, Z. Z. Ye, Y. Z. Zhang, Y. J. Zeng, L. P. Zhu, B. H. Zhao. Fabrication ofp-type Li-doped ZnO films by pulsed laser deposition [J]. Applied Surface Science.2006,253(2):895-7.
    [68] G. A. Mohamed, A. B. Abd El-Moiz, M. Rashad. Li-doping effects on theelectrical properties of ZnO films prepared by the chemical-bath deposition method[J]. Physica B.2005,370(1-4):158-67.
    [69] J. R. Duclere, M. Novotny, A. Meaney, R. O'Haire, E. McGlynn, M. O. Henry,et al. Properties of Li-, P-and N-doped ZnO thin films prepared by pulsed laserdeposition [J]. Superlattices and Microstructures.2005,38(4-6):397-405.
    [70] M. G. Wardle, J. P. Goss, P. R. Briddon. Theory of Li in ZnO: A limitation forLi-based p-type doping [J]. Physical Review B.2005,71(15).
    [71] P. T. Neuvonen, L. Vines, V. Venkatachalapathy, A. Zubiaga, F. Tuomisto, A.Hallén, et al. Defect evolution and impurity migration in Na-implanted ZnO [J].Physical Review B.2011,84(20).
    [72] T. Yamamoto. Codoping Method for Solutions of Doping Problems in wideband gap semiconductors [J]. phys stat sol (a).2002,193(3):423-33.
    [73] H. Katayama-Yoshida, T. Yamamoto. Materials Design of the Codoping for theFabricationof Low-Resistivity p-Type ZnSe and GaNby ab-initio Electronic Structure Calculation [J]. phys stat sol (b).1997,202:763.
    [74] T. Yamamoto. codoping for the fabrication of p-Type ZnO [J]. Thin Solid Films2002,420-421:100-6.
    [75] M. Kumar, T.-H. Kim, S.-S. Kim, B.-T. Lee. Growth of epitaxial p-type ZnOthin films by codoping of Ga and N [J]. Applied Physics Letters.2006,89(11):112103.
    [76] A. V. Singh, R. M. Mehra, A. Wakahara, A. Yoshida. p-type conduction incodoped ZnO thin films [J]. Journal of Applied Physics.2003,93(1):396-9.
    [77] X. Duan, C. Stampfl, M. Bilek, D. McKenzie. Codoping of aluminum andgallium with nitrogen in ZnO: A comparative first-principles investigation [J].Physical Review B.2009,79(23).
    [78] A. Krtschil, A. Dadgar, N. Oleynik, J. Blasing, A. Diez, A. Krost. Local p-typeconductivity in zinc oxide dual-doped with nitrogen and arsenic [J]. Applied PhysicsLetters.2005,87(26).
    [79] T. H. Vlasenflin, M. Tanaka. p-type conduction in ZnO dual-acceptor-dopedwith nitrogen and phosphorus [J]. Solid State Communications.2007,142(5):292-4.
    [80] B. Y. Zhang, B. Yao, Y. F. Li, Z. Z. Zhang, B. H. Li, C. X. Shan, et al.Investigation on the formation mechanism of p-type Li–N dual-doped ZnO [J].Applied Physics Letters.2010,97(22):222101.
    [81] F. Sun, C. X. Shan, B. H. Li, Z. Z. Zhang, D. Z. Shen, Z. Y. Zhang, et al. Areproducible route to p-ZnO films and their application in light-emitting devices [J].Optical Letters.2011,36:499.
    [82] T. Aoki, Y. Hatanaka, D. C. Look. ZnO diode fabricated by excimer-laserdoping [J]. Applied Physics Letters.2000,76(22):3257.
    [83] J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, S. J. Park. UVElectroluminescence Emission from ZnO Light-Emitting Diodes Grown byHigh-Temperature Radiofrequency Sputtering [J]. Advanced Materials.2006,18(20):2720-4.
    [84] Y. Ryu, T.-S. Lee, J. A. Lubguban, H. W. White, B.-J. Kim, Y.-S. Park, et al.Next generation of oxide photonic devices: ZnO-based ultraviolet light emittingdiodes [J]. Applied Physics Letters.2006,88(24):241108.
    [85] Y. R. Ryu, J. A. Lubguban, T. S. Lee, H. W. White, T. S. Jeong, C. J. Youn, et al.Excitonic ultraviolet lasing in ZnO-based light emitting devices [J]. Applied PhysicsLetters.2007,90(13):131115.
    [86] S. Chu, M. Olmedo, Z. Yang, J. Kong, J. Liu. Electrically pumped ultravioletZnO diode lasers on Si [J]. Applied Physics Letters.2008,93(18):181106.
    [87]王恩哥.薄膜生长中的表面动力学[J].物理学进展.2003,23(1):1.
    [88] D. W. Hamby, D. A. Lucca, M. J. Klopfstein, G. Cantwell. Temperaturedependent exciton photoluminescence of bulk ZnO [J]. Journal of Applied Physics.2003,93(6):3214.
    [89] L. Wang, N. C. Giles. Temperature dependence of the free-exciton transitionenergy in zinc oxide by photoluminescence excitation spectroscopy [J]. Journal ofApplied Physics.2003,94(2):973.
    [90] H. Alves, D. Pfisterer, A. Zeuner, T. Riemann, J. Christen, D. M. Hofmann, et al.Optical investigations on excitons bound to impurities and dislocations in ZnO [J].Optical Materials.2003,23(1-2):33-7.
    [91] B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, etal. Bound exciton and donor–acceptor pair recombinations in ZnO [J]. physica statussolidi (b).2004,241(2):231-60.
    [92] O. Katz, V. Garber, B. Meyler, G. Bahir, J. Salzman. Gain mechanism in GaNSchottky ultraviolet detectors [J]. Applied Physics Letters.2001,79(10):1417.
    [93] J A Garrido, E Monroy, I. I. a. E. Mu noz. Photoconductive gain modelling ofGaN photodetectors [J]. Semicond Sci Technol1998,13:563-8.
    [94] L. A. Kosyachenko, G. V. Lashkarev, V. M. Sklyarchuk, A. I. Ievtushenko, O. F.Sklyarchuk, V. I. Lazorenko, et al. ZnO-based photodetector with internalphotocurrent gain [J]. physica status solidi (a).2010,207(8):1972-7.
    [95] G. Konstantatos, E. H. Sargent. Nanostructured materials for photon detection[J]. nature Photonics.2010,5:391.
    [96] S. M. Sze, K. K. Ng. Physics of Semiconductor Devices [M]. Hoboken NewJersey: John Wiley&Sons;2007.
    [97] T. Makino, Y. Segawa, A. Tsukazaki, A. Ohtomo, M. Kawasaki. Electrontransport in ZnO thin films [J]. Applied Physics Letters.2005,87(2):022101.
    [98] A. Teke, ü. zgür, S. Do an, X. Gu, H. Morko, B. Nemeth, et al. Excitonicfine structure and recombination dynamics in single-crystalline ZnO [J]. PhysicalReview B.2004,70(19).
    [99] A. Kaschner, A. Hoffmann, C. Thomsen. Resonant Raman scattering on freeand bound excitons in GaN [J]. Physical Review B.2001,64(16).
    [100]何波,史衍丽,徐静. C-V法测量pn结杂质浓度分布的基本原理和应用[J].红外.2006,27:5.
    [101] S.-H. Jeong, B.-S. Kim, B.-T. Lee. Photoluminescence dependence of ZnOfilms grown on Si(100) by radio-frequency magnetron sputtering on the growthambient [J]. Applied Physics Letters.2003,82(16):2625.
    [102] X. J. Wang, L. S. Vlasenko, S. J. Pearton, W. M. Chen, I. A. Buyanova.Oxygen and zinc vacancies in as-grown ZnO single crystals [J]. Journal of Physics D:Applied Physics.2009,42(17):175411.
    [103] T. Schmidt, K. Lischka, W. Zulehner. Excitation-power dependence of thenear-band-edge photoluminescence of semiconductors [J]. Physical Review B.1992,45(16):8989-94.
    [104] T. Makino, N. Tokuda, H. Kato, S. Kanno, S. Yamasaki, H. Okushi. Electricaland light-emitting properties of homoepitaxial diamond p-i-n junction [J]. physicastatus solidi (a).2008,205(9):2200-6.
    [105] S. Kim, S. Kim, K. Hwang, H. Jeon, H. J. Kim. Operation of Photonic CrystalLaser in Continuous-Wave Mode for18Hours [J]. Applied Physics Express.2011,4(12):122101.
    [106] W. Yang, R. D. Vispute, S. Choopun, R. P. Sharma, T. Venkatesan, H. Shen.Ultraviolet photoconductive detector based on epitaxial Mg0.34Zn0.66Othin films [J].Applied Physics Letters.2001,78(18):2787.
    [107] I. Takeuchi, W. Yang, K. S. Chang, M. A. Aronova, T. Venkatesan, R. D.Vispute, et al. Monolithic multichannel ultraviolet detector arrays and continuousphase evolution in MgxZn1-xO composition spreads [J]. Journal of Applied Physics.2003,94(11):7336-40.
    [108] Z. G. Ju, C. X. Shan, D. Y. Jiang, J. Y. Zhang, B. Yao, D. X. Zhao, et al.MgxZn1xO-based photodetectors covering the whole solar-blind spectrum range [J].Applied Physics Letters.2008,93(17):173505.
    [109] W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, T.Venkatesan, et al. Compositionally-tuned epitaxial cubic MgxZn1xO on Si(100) fordeep ultraviolet photodetectors [J]. Applied Physics Letters.2003,82(20):3424.
    [110] C. Harada, H.-J. Ko, H. Makino, T. Yao. Phase separation in Ga-doped MgZnOlayers grown by plasma-assisted molecular-beam epitaxy [J]. Materials Science inSemiconductor Processing.2003,6(5-6):539-41.
    [111] K.-P. Hsueh, Y.-C. Cheng, W.-Y. Lin, H.-C. Chiu, Y.-P. Huang, G.-C. Chi, et al.Physical properties of Al-doped MgZnO film grown by RF magnetron sputteringusing ZnO/MgO/Al [J]. Proc of SPIE.2011,8110:81100X-1.
    [112] N. F. Mott. Metal-Insulator Transition [J]. Reviews of Modern Physics.1968,40(4):677-83.
    [113] T. Hirai, Y. Harada, S. Hashimoto, T. Itoh, N. Ohno. Luminescence of excitonsin mesoscopic ZnO particles [J]. Journal of Luminescence.2005,112(1-4):196-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700