P-MBE法生长ZnMgO合金薄膜及其异质结构的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO作为一种直接禁带半导体材料,具有3.37eV的禁带宽度以及60meV的激子束缚能,在短波长光电器件中具有非常大的应用潜力。ZnO基光电器件应用的一个关键问题是实现能带裁剪从而制备量子阱结构,即能带工程。ZnMgO合金薄膜禁带宽度可以大范围调节,且其晶格常数变化不大,因此是开展ZnO能带工程的首选材料之一。为了实现ZnMgO合金在光电器件和量子阱中的应用,首先要制备优质的ZnMgO单晶薄膜和ZnO/ZnMgO多量子阱结构。同时,异质结是构成量子阱和超晶格的基础,要实现高效的载流子注入和限域作用,异质结界面能带结构的测定和设计至关重要。
     鉴于上述情况,我们开展了高晶体质量、低缺陷密度的ZnMgO单晶薄膜生长研究;在此基础上,研究Mg组分和生长取向对ZnMgO/ZnO异质结界面能带偏移的影响;最后采用P-MBE法制备了ZnO/ZnMgO量子阱结构,通过光致发光谱研究其光学性能。本文的主要研究内容和结论为:
     1.采用射频等离子体辅助分子束外延(P-MBE)技术在c面蓝宝石衬底上生长了优质的ZnMgO单晶薄膜。通过引入MgO缓冲层技术,ZnMgO合金薄膜室温电子迁移率达到了66cm2V-1s-1,高分辨XRD摇摆曲线(002)面半峰宽仅47arcsec,螺型位错密度降低至4×106cm-2,显著提高了其晶体质量。
     2.采用光电子能谱法测定了Zn1-xMgxO/ZnO异质结的能带带阶。Zn1-xMgxO/ZnO异质结的界面能带排列为type-I型结构,其导带带阶和价带带阶比值AEc/ΔEv分别为1.5(x=0.1),1.8(x=0.15),2.0(x=0.2)。这说明Zn1-xMgxO/ZnO异质结中能带带阶的偏移量和比值与Mg组分密切相关。
     3.采用脉冲激光沉积法在c面和r面蓝宝石衬底上制备了极性和非极性取向的Na掺杂ZnMgO薄膜。Hall测试显示a面非极性取向的ZnMgO:Na薄膜呈现p型导电信号,空穴浓度为3.5×1016cm-3,而c面极性取向薄膜的导电类型为补偿型导电。为了探索p型导电机理,我们研究了不同生长取向ZnMgO/ZnO异质结的能带结构。极性和非极性异质结的价带偏移量分别为0.07eV和0.02eV,能带结构均为type-I型,极性ZnMgO/ZnO异质结中的自发极化效应是造成两种异质结能带带阶值差别的主要原因。我们认为,非极性ZnMgO相对于极性价带下移量更小,导致Nazn受主能级变浅,且导带上移量更大引起施主能级变深,这两者的综合作用是非极性ZnMgO:Na薄膜中p型导电的来源。
     4.采用P-MBE技术在蓝宝石衬底上制备了一系列5个周期的ZnO/ZnMgO多量子阱结构。高分辨XRD测试结果表明这些量子阱具有良好的周期性结构。通过PL测试分析,量子阱在低温下可以分辨出局域激子发光峰(LE),自由激子发光峰(FE)以及LE的多个声子伴线,同时LE的半峰宽均小于10meV,表明了这些量子阱具有非常好的质量。随着势阱层的厚度减小或者势垒组分增加,LE发射峰不断蓝移,量子约束效应增强。
     5.通过比较不同Mg组分的ZnO/Zn1-xMgxO多量子阱结构变温PL谱发现,高组分势垒层的多量子阱结构(MQWs)中局域激子发光峰位随温度升高呈现S型变化,而低组分中LE则随温度升高单调红移。S型变化是由于高组分势垒中激子的局域化效应引起的,随着温度升高,激子逐渐去局域化转为自由激子。通过分析变温PL变化规律,不同势垒组分量子阱中的激子束缚能分别为64meV (x=0.1)和76meV(x=0.2),证明了激子束缚能随势垒组分增大而增强。
ZnO has been extensively studied for potential applications in optoelectronic devices owing to its unique properties, including high electron mobility, wide direct band gap (3.37eV at room temperature), and large exciton binding energy (60meV). One of the important capabilities involved in constructing optical and electrical confinement structures is band gap engineering. The ternary alloy semiconductor, Zn1-xMgxO, is considered as one of the best candidates for increasing the band gap energy of ZnO because of its large band gap and small lattice-mismatch with ZnO. In order to develop ZnO-based heterostructures and deep ultraviolet devices, the most important issues are to fabricate high quality Zn1-xMgxO films and ZnO/Zn1-xMgxO multiple quantum wells (MQWs).
     It is well known that heterojunctions consisting of the fundamental quantum wells and superlattice structures have been playing an important role in fabricating optoelectronic devices because of the carrier confinement effect and high carrier injection ratio properties. Furthermore, the valence band maximum (VBM) strongly influences the capability of p-type doping in Zn1_-MgxO films. Therefore, it is necessary to design the ideal valence and conduction band offsets of Zn1-xMgxO/ZnO heterojunctions.
     In this work, we focus on the growth and characterization of high quality ZnMgO thin films using intervening epitaxial MgO buffer layers; on the basis of this, we investigate the Mg composition and polarity orientation dependent band offsets of Zn1-xMgxO/ZnO heterojunctions, in an attempt to reveal the p-type doing mechanism. After that, ZnO/Zn1-xMgxO MQWs were fabricated and the relative optical properties were analyzed by photoluminesence (PL) spectra. The work includes:
     1. High quality epitaxial Zn1-xMgxO films were fabricated on c-plane sapphire substrates using MgO buffer layer by plasma-assisted molecular beam epitaxy. The quality of the Zn1-xMgxO epilayers is manifested by a Hall mobility of more than60cmV-1S-1at room temperature, and x-ray diffraction rocking curve full-width at half-maximum of47arcsec. A screw dislocation density of4x10cm-2is estimated by x-ray diffraction.
     2. The valence band offsets (AEv) of Zn1-xMgxO/ZnO heterojunctions grown by plasma-assisted molecular beam epitaxy were measured by photoelectron spectroscopy. From the directly obtained AEv values, the related conduction band offsets (ΔEC) were deduced. All the Zn1-xMgxO/ZnO heterojunctions exhibit a type-Ⅰ band alignment with the ΔEC/ΔEV estimated to be1.5,1.8,2.0for x=0.10,0.15and0.20, respectively. The band offsets of Zn1-xMgxO/ZnO heterojunctions depend on Mg composition.
     3. Polar and non-polar ZnMgO:Na films that were fabricated on c-plane and r-plane sapphire substrates using intervened ZnO layers by pulsed laser deposition. Hall-effect measurements indicate that the a-plane ZnMgO:Na film exhibits p-type conductivity with a carrier concentration of about3.5×1016cm-3, while the polar film shows a compensatory conductivity. Meanwhile, the dependence of the band alignment on the orientation of the ZnMgO/ZnO heterojunctions has been investigated using photoelectron spectroscopy. The heterojunctions form in the type-Ⅰ straddling alignment with valence band offsets of0.07(0.02) eV for the (non-)polar heterojunction. The difference in valence band offsets is primarily attributed to the spontaneous polarization effect. We propose that the smaller valence band offsets and larger conduction band offsets would reduce the NaZn acceptor level and enhance the relative intrinsic donor levels. Such effects consequently lead to p-type conductivity in non-polar ZnMgO:Na films.
     4. A series of5-period ZnO/Zn0.9Mg0.1O multiple quantum wells (MQWs) with different well layer thicknesses in the range of3-10nm have been fabricated on (0001) sapphire substrates by plasma-assisted molecular beam epitaxy (MBE) with combined MgO and low-temperature ZnO thin film as buffer layers. The good quality of ZnO/Zn0.9Mg0.1O MQWs is evidenced by the observation of readily resolved Pendellosung fringes and the small full-width at half-maximum (FWHM) value of exciton emission as low as8.3meV, as well as the observation of high order phonon replicas. The dominated photoluminescence (PL) peak in the MQWs shows a systematic blueshift with decreasing well width, which is consistent with a quantum confinement effect.
     5. In addition, we investigaed the temperature-dependent photoluminescence (PL) measurements of ZnO/Zn1-xMgxO MQWs with different barrier compositions. The PL band in the well layers is dominated by localized excitons (LEs), free excitons (FEs), and two longitudinal optical (LO) phonon replicas of the LE emission. The LE emission of higher Mg compositional barrier exhibits a significant blue shift of about70meV with respect to the lower one. The mechanisms of carrier dynamics and localization are investigated within the temperature range14-300K. As the temperature increases, luminescence from the excitons localized in the well layers shows an'S-shaped'shift in the high-barrier MQWs, whereas a monotonic red shift is observed in the low-barrier MQWs. The'S-shaped'shift behavior is associated with delocalization of the excitons in the potential minima induced by interface fluctuations or alloy disorder. Large exciton binding energies of64meV and76meV were deduced, demonstrating efficient quantum confinement in the ZnO/ZnMgO MQWs.
引文
[1]U. Ozgiir, Y. l. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, H. Motko9. A comprehensive review of ZnO materials and devices. Journal of Applied Physics,2005,98(4):041301.
    [2]C. H. Bates, R. Roy, W. B. White. New High-Pressure Polymorph of Zinc Oxide. Science, 1962,137(3534):993.
    [3]A. B. M. A. Ashrafi, A. Ueta, A. Avramescu, H. Kumano, I. Suemune, Y. W. Ok, T. Y. Seong. Growth and characterization of hypothetical zinc-blende ZnO films on GaAs(001) substrates with ZnS buffer layers. Applied Physics Letters,2000,76(5):550-552.
    [4]S. K. Kim, S. Y. Jeong, C. R. Cho. Structural reconstruction of hexagonal to cubic ZnO films on Pt/Ti/SiO2/Si substrate by annealing. Applied Physics Letters,2003,82(4): 562-564.
    [5]B. K. Meyer, H. Alves, D. M. Hofinann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. StraBburg, M. Dworzak, U. Haboeck, A. V. Rodina. Bound exciton and donor-acceptor pair recombinations in ZnO. Physica Status Solidi B-Basic Solid State Physics,2004,241(2):231-260.
    [6]J. D. Albrecht, P. P. Ruden, S. Limpijumnong, W. R. L. Lambrecht, K. F. Brennan. High field electron transport properties of bulk ZnO. Journal of Applied Physics,1999,86(12): 6864-6867.
    [7]C. G. Van de Walle. Hydrogen as a cause of doping in zinc oxide. Physical Review Letters, 2000,85(5):1012-1015.
    [8]D. C. Look, J. W. Hemsky, J. R. Sizelove. Residual native shallow donor in ZnO. Physical Review Letters,1999,82(12):2552-2555.
    [9]V. Avrutin, G. Cantwell, J. Z. Zhang, J. J. Song, D. J. Silversmith, H. Morkoc. Bulk ZnO: Current Status, Challenges, and Prospects. Proceedings of the leee,2010,98(7):1339-1350.
    [10]S. Chu, M. Morshed, L. Li, J. Huang, J. L. Liu. Smooth surface, low electron concentration, and high mobility ZnO films on c-plane sapphire. Journal of Crystal Growth,2011,325(1): 36-40.
    [11]Y. Yan, S. H. Wei. Doping asymmetry in wide-bandgap semiconductors:Origins and solutions. Physica Status Solidi B-Basic Solid State Physics,2008,245(4):641-652.
    [12]C. H. Park, S. B. Zhang, S. H. Wei. Origin of p-type doping difficulty in ZnO:The impurity perspective. Physical Review B,2002,66(7):073202.
    [13]J. Li, S. H. Wei, S. S. Li, J. B. Xia. Design of shallow acceptors in ZnO:First-principles band-structure calculations. Physical Review B,2006,74(8):081201.
    [14]Y. Q. Gai, J. B. Li, S. S. Li, J. B. Xia, Y. F. Yan, S. H. Wei. Design of shallow acceptors in ZnO through compensated donor-acceptor complexes:A density functional calculation. Physical Review B,2009,80(15):153201.
    [15]X. M. Duan, C. Stampfi, M. M. M. Bilek, D. R. McKenzie, S. H. Wei. Design of shallow acceptors in ZnO through early transition metals codoped with N acceptors. Physical Review B,2011,83(8):085202.
    [16]V. Avrutin, D. J. Silversmith, H. Morkoc. Doping Asymmetry Problem in ZnO:Current Status and Outlook. Proceedings of the Ieee,2010,98(7):1269-1280.
    [17]D. C. Look, B. Claftin. P-type doping and devices based on ZnO. Physica Status Solidi B-Basic Solid State Physics,2004,241(3):624-630.
    [18]R. Vidya, P. Ravindran, H. Fjellvag. Ab-initio studies on Li doping, Li-pairs, and complexes between Li and intrinsic defects in ZnO. Journal of Applied Physics,2012,111(12): 123713.
    [19]Y. J. Zeng, Z. Z. Ye, W. Z. Xu, D. Y. Li, J. G. Lu, L. P. Zhu, B. H. Zhao. Dopant source choice for formation of p-type ZnO:Li acceptor. Applied Physics Letters,2006,88(6): 062107.
    [20]S. S. Lin, J. G. Lu, Z. Z. Ye, H. P. He, X. Q. Gu, L. X. Chen, J. Y. Huang, B. H. Zhao, p-type behavior in Na-doped ZnO films and ZnO homojunction light-emitting diodes. Solid State Communications,2008,148(1-2):25-28.
    [21]S. S. Lin, Z. Z. Ye, J. G. Lu, H. P. He, L. X. Chen, X. Q. Gu, J. Y. Huang, L. P. Zhu, B. H. Zhao. Na doping concentration tuned conductivity of ZnO films via pulsed laser deposition and electroluminescence from ZnO homojunction on silicon substrate. Journal of Physics D: Applied Physics,2008,41(15):155114.
    [22]C. H. Park, S. B. Zhang, S. H. Wei. Origin of p-type doping difficulty in ZnO:The impurity perspective. Physical Review B,2002,66(7):073202.
    [23]Y. F. Yan, M. M. Al-Jassim, S. H. Wei. Doping of ZnO by group-IB elements. Applied Physics Letters,2006,89(18):1819112.
    [24]S. M. Chung, J. H. Shin, J. M. Lee, M. K. Ryu, W. S. Cheong, S. H. K. Park, C. S. Hwang, K. I. Cho. Structural and Optical Properties of Cu Doped ZnO Thin Films by Co-Sputtering. Journal of Nanoscience and Nanotechnology,2011,11(1):782-786.
    [25]B. Marí, M. Sahal, M. A. Mollar, F. M. Cerqueira, A. P. Samantilleke. p-Type behaviour of electrodeposited ZnO:Cu films. Journal of Solid State Electrochemistry,2012,16(6): 2261-2265.
    [26]H. L. Pan, B. Yao, T. Yang, Y. Xu, B. Y. Zhang, W. W. Liu, D. Z. Shen. Electrical properties and stability of p-type ZnO film enhanced by alloying with S and heavy doping of Cu. Applied Physics Letters,2010,97(14):142101.
    [27]J. B. Kim, D. Byun, S. Y. le, D. H. Park, W. K. Choi, J. W. Choi, B. Angadi. Cu-doped ZnO-based p-n hetero-junction light emitting diode. Semiconductor Science and Technology,2008,23(9):095004.
    [28]H. S. Kang, B. D. Ahn, J. H. Kim, G. H. Kim, S. H. Lim, H. W. Chang, S. Y. Lee. Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant. Applied Physics Letters,2006,88(20):202108.
    [29]L. Duan, W. Gao, R. Chen, Z. Fu. Influence of post-annealing conditions on properties of ZnO:Ag films. Solid State Communications,2008,145(9-10):479-481.
    [30]L. Cao, L. P. Zhu, J. Jiang, Y. Li, Y. Z. Zhang, Z. Z. Ye. Preparation and properties of p-type Ag-doped ZnMgO thin films by pulsed laser deposition. Journal of Alloys and Compounds,2012,516:157-160.
    [31]曹铃.脉冲激光沉积法生长掺杂ZnO基薄膜及其相关器件研究[博士学位论文]杭州,浙江大学材料系,2012:98-100.
    [32]Y. F. Yan, S. B. Zhang, S. T. Pantelides. Control of doping by impurity chemical potentials: Predictions for p-type ZnO. Physical Review Letters,2001,86(25):5723-5726.
    [33]Z. Z. Ye, J. G. Lu, H. H. Chen, Y. Z. Zhang, L. Wang, B. H. Zhao, J. Y. Huang. Preparation and characteristics of p-type ZnO films by DC reactive magnetron sputtering. Journal of Crystal Growth,2003,253(1-4):258-264.
    [34]C. C. Lin, S. Y. Chen, S. Y. Cheng, H. Y. Lee. Properties of nitrogen-implanted p-type ZnO films grown on Si3N4/Si by radio-frequency magnetron sputtering. Applied Physics Letters, 2004,84(24):5040-5042.
    [35]J. G. Lu, Y. Z. Zhang, Z. Z. Ye, L. Wang, B. H. Zhao, J. Y. Huang, p-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations. Materials Letters,2003,57(22-23):3311-3314.
    [36]S. V. Ivanov, A. El-Shafr, M. Al-Suleiman, A. Bakin, A. Waag, O. G. Lyublinskaya, N. M. Shmidt, S. B. Listoshin, R. N. Kyutt, V. V. Ratnikov, A. Y. Terentyev, B. Y. Ber, T. A. Komissarova, L. I. Ryabova, D. R. Khokhlov. Studies of N-Doped p-ZnO Layers Grown on c-Sappbire by Radical Source Molecular Beam Epitaxy. Journal of the Korean Physical Society,2008,53(5):3016-3020.
    [37]E. C. Lee, Y. S. Kim, Y. G. Jin, K. J. Chang. Compensation mechanism for N acceptors in ZnO. Physical Review B,2001,6408(8):085120.
    [38]T. Yamamoto, H. Katayama-Yoshida. Solution using a codoping method to unipolarity for the fabrication of p-type ZnO. Japanese Journal of Applied Physics Part 2-Letters,1999, 38(2B):L166-L169.
    [39]T. Yamamoto, H. Katayama-Yoshida. Unipolarity of ZnO with a wide-band gap and its solution using codoping method. Journal of Crystal Growth,2000,214-215:552-555.
    [40]T. Yamamoto. Codoping for the fabrication of p-type ZnO. Thin Solid Films,2002,420: 100-106.
    [41]Z. Z. Ye, Z. G. Fei, J. G. Lu, Z. H. Zhang, L. P. Zhu, B. H. Zhao, J. Y. Huang. Preparation of p-type ZnO films by Al plus N-codoping method. Journal of Crystal Growth,2004, 265(1-2):127-132.
    [42]Z. W. Liu, S. W. Yeo, C. K. Ong. Achieve p-type conduction in N-doped and (Al,N)-codoped ZnO thin films by oxidative annealing zinc nitride precursors. Journal of Materials Research,2007,22(10):2668-2675.
    [43]M. Kumar, T. H. Kim, S. S. Kim, B. T. Lee. Growth of epitaxial p-type ZnO thin films by codoping of Ga and N. Applied Physics Letters,2006,89(11):112103.
    [44]L. L. Chen, J. G. Lu, Z. Z. Ye, Y. M. Lin, B. H. Zhao, Y. M. Ye, J. S. Li, L. P. Zhu. p-type behavior in In-N codoped ZnO thin films. Applied Physics Letters,2005,87(25):252106.
    [45]L. Gong, Z. Z. Ye, J. G. Lu. In-N codoped p-type ZnMgO thin films with bandgap engineering. Vacuum,2010,85(3):365-367.
    [46]J. G. Lu, Y. Z. Zhang, Z. Z. Ye, L. P. Zhu, L. Wang, B. H. Zhao, Q. L. Liang. Low-resistivity, stable p-type ZnO thin films realized using a Li-N dual-acceptor doping method. Applied Physics Letters,2006,88(22):222114.
    [47]B. Y. Zhang, B. Yao, Y. F. Li, Z. Z. Zhang, B. H. Li, C. X. Shan, D. X. Zhao, D. Z. Shen. Investigation on the formation mechanism of p-type Li-N dual-doped ZnO. Applied Physics Letters,2010,97(22):222101.
    [48]J. S. Liu, C. X. Shan, B. H. Li, Z. Z. Zhang, K. W. Liu, D. Z. Shen. MgZnO p-n heterostructure light-emitting devices. Optics Letters,2013,38(12):2113-2115.
    [49]J. S. Liu, C. X. Shan, H. Shen, B. H. Li, Z. Z. Zhang, L. Liu, L. G. Zhang, D. Z. Shen. ZnO light-emitting devices with a lifetime of 6.8 hours. Applied Physics Letters,2012,101(1): 011106.
    [50]W. Z. Xu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, B. H. Zhao, L. Jiang, J. G. Lu, H. P. He, S. B. Zhang. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition. Applied Physics Letters,2006,88(17):173506.
    [51]S. H. Lim, J. W. Kim, H. S. Kang, G. H. Kim, H. W. Chang, S. Y. Lee. Characterizations of phosphorus doped ZnO multi-layer thin films to control carrier concentration. Superlattices and Microstructures,2005,38(4-6):377-384.
    [52]C. C. Lin, S. Y. Chen, S. Y. Cheng. Physical characteristics and photoluminescence properties of phosphorous-implanted ZnO thin films. Applied Surface Science,2004, 238(1-4):405-409.
    [53]Y. W. Heo, Y. W. Kwon, Y. Li, S. J. Pearton, D. P. Norton. Properties of phosphorus-doped (Zn,Mg)0 thin films and device structures. Journal of Electronic Materials,2005,34(4): 409-415.
    [54]F. Chen, Z. Ye, W. Xu, B. Zhao, L. Zhu, J. Lv. Fabrication of p-type ZnO thin films via MOCVD method by using phosphorus as dopant source. Journal of Crystal Growth,2005, 281(2-4):458-462.
    [55]V. Vaithianathan, B. T. Lee, S. S. Kim. Pulsed-laser-deposited p-type ZnO films with phosphorus doping. Journal of Applied Physics,2005,98(4):043519.
    [56]D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, Y. S. Park. Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering. Applied Physics Letters,2005,86(15): 151917.
    [57]S. H. Kang, D. K. Hwang, S. J. Park. Low-resistance and highly transparent Ni/indium-tin oxide ohmic contacts to phosphorous-doped p-type ZnO. Applied Physics Letters,2005, 86(21):211902.
    [58]D. C. Look, G. M. Renlund, R. H. Burgener, J. R. Sizelove. As-doped p-type ZnO produced by an evaporation/sputtering process. Applied Physics Letters,2004,85(22):5269-5271.
    [59]V. Vaithianathan, B. T. Lee, S. S. Kim. Preparation of As-doped p-type ZnO films using a Zn3As2/ZnO target with pulsed laser deposition. Applied Physics Letters,2005,86(6): 062101.
    [60]U. Wahl, E. Rita, J. Correia, A. Marques, E. Alves, J. Soares. Direct Evidence for As as a Zn-Site Impurity in ZnO. Physical Review Letters,2005,95(21):215503.
    [61]T. S. Jeong, M. S. Han, J. H. Kim, C. J. Youn, Y. R. Ryu, H. W. White. Crystallinity-damage recovery and optical property of As-implanted Zno crystals by post-implantation annealing. Journal of Crystal Growth,2005,275(3-4):541-547.
    [62]S. J. So, C. B. Park. Diffusion of phosphorus and arsenic using ampoule-tube method on undoped ZnO thin films and electrical and optical properties of p-type ZnO thin films. Journal of Crystal Growth,2005,285(4):606-612.
    [63]T. Aoki, Y. Shimizu, A. Miyake, A. Nakamura, Y. Nakanishi, Y. Hatanaka. p-type ZnO layer formation by excimer laser doping. Physica Status Solidi B-Basic Research,2002, 229(2):911-914.
    [64]F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu, W. P. Beyermann. High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy. Applied Physics Letters, 2005,87(15):152101.
    [65]F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu. Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy. Applied Physics Letters,2005, 87(25):252102.
    [66]S. Limpijumnong, S. Zhang, S. H. Wei, C. Park. Doping by Large-Size-Mismatched Impurities:The Microscopic Origin of Arsenic-or Antimony-Doped p-Type Zinc Oxide. Physical Review Letters,2004,92(15):155504.
    [67]U. Wahl, E. Rita, J. G. Correia, A. C. Marques, E. Alves, J. C. Soares, I. Collaboration. Direct evidence for As as a Zn-site impurity in ZnO. Physical Review Letters,2005,95(21): 215503.
    [68]U. Wahl, J. G. Correia, T. Mendonca, S. Decoster. Direct evidence for Sb as a Zn site impurity in ZnO. Applied Physics Letters,2009,94(26):261901.
    [69]潘新花.Sb掺杂制备p-ZnO及Si衬底Zn(1-x)MgxO外延薄膜和ZnMgO/ZnO量子阱的研究[博士学位论文].杭州,浙江大学材料系,2010:69.
    [70]Y. R. Ryu, T. S. Lee, J. A. Lubguban, A. B. Corman, H. W. White, J. H. Leem, M. S. Han, Y. S. Park, C. J. Youn, W. J. Kim. Wide-band gap oxide alloy:BeZnO. Applied Physics Letters,2006,88(5):052103.
    [71]W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, T. Venkatesan, R. D. Vispute, H. Shen. Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors. Applied Physics Letters,2003,82(20):3424-3426.
    [72]A. Seko, F. Oba, A. Kuwabara, I. Tanaka. Pressure-induced phase transition in ZnO and ZnO-MgO pseudobinary system:A first-principles lattice dynamics study. Physical Review B,2005,72(2):024107.
    [73]A. Ohtomo, M. Kawasaki, T. Koida, K Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, Y. Segawa. MgxZn1-xO as a II-VI widegap semiconductor alloy. Applied Physics Letters,1998,72(19):2466-2468.
    [74]W. Yang, R. D. Vispute, S. Choopun, R. P. Sharma, T. Venkatesan, H. Shen. Ultraviolet photoconductive detector based on epitaxial Mgo.34Zno.66O thin films. Applied Physics Letters,2001,78(18):2787-2789.
    [75]T. Takagi, H. Tanaka, S. Fujita, S. Fujita. Molecular beam epitaxy of high magnesium content single-phase wurzite MgxZn1-xO alloys (x similar or equal to 0.5) and their application to solar-blind region photodetectors. Japanese Journal of Applied Physics Part 2-Letters & Express Letters,2003,42(4B):L401-L403.
    [76]X. L. Du, Z. X. Mei, Z. L. Liu, Y. Guo, T. C. Zhang, Y. N. Hou, Z. Zhang, Q. K. Xue, A. Y. Kuznetsov. Controlled Growth of High-Quality ZnO-Based Films and Fabrication of Visible-Blind and Solar-Blind Ultra-Violet Detectors. Advanced Materials,2009,21(45): 4625-4630.
    [77]Y. N. Hou, Z. X. Mei, Z. L. Liu, T. C. Zhang, X. L. Du. Mgo.55Zno.45O solar-blind ultraviolet detector with high photoresponse performance and large internal gain. Applied Physics Letters,2011,98(10):103506.
    [78]T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, H. Koinuma. Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films. Applied Physics Letters,2001,78(9):1237-1239.
    [79]Z. Z. Ye, D. W. Ma, J. H. He, J. Y. Huang, B. H. Zhao, X. D. Luo, Z. Y. Xu. Structural and photoluminescent properties of ternary Zn1-xCdxO crystal films grown on Si(111) substrates. Journal of Crystal Growth,2003,256(1-2):78-82.
    [80]D. W. Ma, Z. Z. Ye, H. M. Lu, J. Y. Huang, B. H. Zhao, L. P. Zhu, H. J. Zhang, P. M. He. Sputtering deposited ternary Zn1-xCdxO crystal films on Si(111) substrates. Thin Solid Films, 2004,461(2):250-255.
    [81]D. W. Ma, Z. Z. Ye, L. L. Chen. Dependence of structural and optical properties of Zn1-xCdxO films on the Cd composition. Physica Status Solidi a-Applied Research,2004, 201(13):2929-2933.
    [82]S. F. Ding, G. H. Fan, S. T. Li, K. Chen, B. Xiao. Theoretical study of BexZn1-xO alloys. Physica B-Condensed Matter,2007,394(1):127-131.
    [83]C. Yang, X. M. Li, Y. F. Gu, W. D. Yu, X. D. Gao, Y. W. Zhang. ZnO based oxide system with continuous bandgap modulation from 3.7 to 4.9 eV. Applied Physics Letters,2008, 93(11):112114.
    [84]C. Yang, X. M. Li, W. D. Yu, X. D. Gao, X. Cao, Y. Z. Li. Zero-biased solar-blind photodetector based on ZnBeMgO/Si heterojunction. Journal of Physics D-Applied Physics, 2009,42(15):152002.
    [85]L. X. Su, Y. Zhu, Q. L. Zhang, M. M. Chen, X. Ji, T. Z. Wu, X. C. Gui, B. C. Pan, R. Xiang, Z. K. Tang. Solar-blind wurtzite MgZnO alloy films stabilized by Be doping. Journal of Physics D-AppUed Physics,2013,46(24):245103.
    [86]L. Esaki, R. Tsu. Superlattice and Negative Differential Conductivity in Semiconductors. Ibm Journal of Research and Development,1970,14(1):61-65.
    [87]刘恩科,朱秉升,罗晋生.半导体物理学.第7版.北京:电子工业出版社,2009:305.
    [88]M. Fox, R. Ispasoiu. Quantum Wells, Superlattices, and Band-Gap Engineering. Springer Handbook of Electronic and Photonic Materials. Springer US.2007:1021-1040.
    [89]R. Dingle, W. Wiegmann, C. H. Henry. Quantum States of Confined Carriers in Very Thin AlxGa1-xAs-GaAs-AlxGa1-xAs Heterostructures. Physical Review Letters,1974,33(14): 827-830.
    [90]虞丽生.半导体异质结物理.第二版.北京:科学出版社,2006:115.
    [91]A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda, Y. Segawa. Structure and optical properties of ZnO/Mg0.2Zn0.8O superlattices. Applied Physics Letters,1999,75(7): 980.
    [92]P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K. H. Ploog. Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature,2000,406(6798):865-868.
    [93]T. Makino, A. Ohtomo, C. H. Chia, Y. Segawa, H. Koinuma, M. Kawasaki. Internal electric field effect on luminescence properties of ZnO/(Mg,Zn)O quantum wells. Physica E: Low-dimensional Systems and Nanostructures,2004,21(2-4):671-675.
    [94]C. Morhain, T. Bretagnon, P. Lefebvre, X. Tang, P. Valvin, T. Guillet, B. Gil, T. Taliercio, M. Teisseire-Doninelli, B. Vinter, C. Deparis. Internal electric field in wurtzite ZnQZno.78Mg0.22O quantum wells. Physical Review B,2005,72(24):241305(R).
    [95]S. H. Park, D. Ahn. Spontaneous and piezoelectric polarization effects in wurtzite ZnO/MgZnO quantum well lasers. Applied Physics Letters,2005,87(25):253509.
    [96]B. P. Zhang, B. L. Liu, J. Z. Yu, Q. M. Wang, C. Y. Liu, Y. C. Liu, Y. Segawa. Photoluminescence and built-in electric field in ZnO/Mg0.1Zn0.9O quantum wells. Applied Physics Letters,2007,90(13):132113.
    [97]叶志镇,吕建国,吕斌,张银珠.半导体薄膜技术与物理.杭州:浙江大学出版社,2008:150.
    [98]A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nature Materials,2005,4(1):42-46.
    [99]J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, S. J. Park. UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering. Advanced Materials,2006,18(20):2720-2724.
    [100]S. Chu, J. H. Lim, L. J. Mandalapu, Z. Yang, L. Li, J. L. Liu. Sb-doped p-ZnO/Ga-doped n-ZnO homojunction ultraviolet light emitting diodes. Applied Physics Letters,2008,92(15): 152103.
    [101]W. Z. Xu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, B. H. Zhao, L. Jiang, J. G. Lu, H. P. He, S. B. Zhang. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition. Applied Physics Letters,2009,94(16):173506.
    [102]W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, S. M. Liu, X. Zhou, R. Zhang, Y. Shi, Y. D. Zheng, Y. Hang, C. L. Zhang. Blue-yellow ZnO homostructural light-emitting diode realized by metalorganic chemical vapor deposition technique. Applied Physics Letters,2006,88(9): 092101.
    [103]J. C. Sun, J. Z. Zhao, H. W. Liang, J. M. Bian, L. Z. Hu, H. Q. Zhang, X. P. Liang, W. F. Liu, G. T. Du. Realization of ultraviolet electroluminescence from ZnO homojunction with n-ZnO/p-ZnO:As/GaAs structure. Applied Physics Letters,2007,90(12):121128.
    [104]F. Sun, C. X. Shan, B. H. Li, Z. Z. Zhang, D. Z. Shen, Z. Y. Zhang, D. Fan. A reproducible route to p-ZnO films and their application in light-emitting devices. Optics Letters,2011, 36(4):499-501.
    [105]Y. R. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, B. J. Kim, Y. S. Park, C. J. Youn. Next generation of oxide photonic devices:ZnO-based ultraviolet light emitting diodes. Applied Physics Letters,2006,88(24):241108.
    [106]H. S. Kim, F. Lugo, S. J. Pearton, D. P. Norton, Y. L. Wang, F. Ren. Phosphorus doped ZnO light emitting diodes fabricated via pulsed laser deposition. Applied Physics Letters, 2008,92(11):112108.
    [107]Y. S. Choi, J. W. Kang, B. H. Kim, S. J. Park. Enhanced ultraviolet emission of MgZnO/ZnO multiple quantum wells light-emitting diode by p-type MgZnO electron blocking layer. Optics Express,2013,21(25):31560-31566.
    [108]Y. R. Ryu, J. A. Lubguban, T. S. Lee, H. W. White, T. S. Jeong, C. J. Youn, B. J. Kim. Excitonic ultraviolet lasing in ZnO-based light emitting devices. Applied Physics Letters, 2007,90(13):131115.
    [109]S. Sadofev, S. Kalusniak, J. Puls, P. Schafer, S. Blumstengel, F. Henneberger. Visible-wavelength laser action of ZnCdO/(Zn, Mg)O multiple quantum well structures. Applied Physics Letters,2007,91(23):231103.
    [110]S. Chu, M. Olmedo, Z. Yang, J. Y. Kong, J. L. Liu. Electrically pumped ultraviolet ZnO diode lasers on Si. Applied Physics Letters,2008,93(18):181106.
    [111]X. Q. Gu, L. P. Zhu, Z. Z. Ye, H. P. He, Y. Z. Zhang, F. Huang, M. X. Qiu, Y. J. Zeng, F. Liu, W. Jaeger. Room-temperature photoluminescence from ZnO/ZnMgO multiple quantum wells grown on Si(111) substrates. Applied Physics Letters,2007,91(2):022103.
    [112]X. Q. Gu, H. P. He, L. P. Zhu, Z. Z. Ye, K. F. Huo, P. K. Chu. Dependence of photoluminescence of ZnO/Zn0.85Mg0.15O multi-quantum wells on barrier width. Physics Letters A,2009,373(36):3281-3284.
    [113]叶志镇,林时胜,何海平,顾修全,陈凌翔,吕建国,黄靖云,朱丽萍,汪雷,张银珠,李先杭.Na掺杂P型ZnO和ZnO/ZnMgO多量子阱结构基LED的制备与室温电注入发射紫蓝光.半导体学报,2008,29(8):1433-1435.
    [114]M. W. Cho, A. Setiawan, H. J. Ko, S. K. Hong, T. Yao. ZnO epitaxial layers grown on c-sapphire substrate with MgO buiter by plasma-assisted molecular beam epitaxy (P-MBE). Semiconductor Science and Technology,2005,20(4):S13-S21.
    [115]T. A. Wassner, B. Laumer, S. Maier, A. Laufer, B. K. Meyer, M. Stutzmann, M. Eickhoff. Optical properties and structural characteristics of ZnMgO grown by plasma assisted molecular beam epitaxy. Journal of Applied Physics,2009,105(2):023505.
    [116]A. Setiawan, H. J. Ko, T. Yao. Effects of annealing of MgO buffer layer on structural quality of ZnO layers grown by P-MBE on c-sapphire. Materials Science in Semiconductor Processing,2003,6(5-6):371-374.
    [117]A. Setiawan, H. J. Ko, S. K. Hong, Y. F. Chen, T. F. Yao. Study on MgO buffer in ZnO layers grown by plasma-assisted molecular beam epitaxy on Al2O3 (0001). Thin Solid Films, 2003,445(2):213-218.
    [118]K. Miyamoto, M. Sano, H. Kato, T. Yao. High-electron-mobility ZnO epilayers grown by plasma-assisted molecular beam epitaxy. Journal of Crystal Growth,2004,265(1-2):34-40.
    [119]J. G. Kim, S. K. Han, D. S. Kang, S. M. Yang, S. K. Hong, J. W. Lee, J. Y. Lee, J. H. Song, T. Yao. Plasma-assisted molecular-beam epitaxy of ZnO films on (0001) Al2O3:Effects of the MgO buffer layer thickness. Journal of the Korean Physical Society,2008,53(1): 271-275.
    [120]H. Kato, K. Miyamoto, M. Sano, T. Yao. Polarity control of ZnO on sapphire by varying the MgO buffer layer thickness. Applied Physics Letters,2004,84(22):4562-4564.
    [121]A. Setiawan, T. Yao. Effect of MgO Buffer Layer on The Quality of ZnO Films Grown on C-Sapphire by Plasma-assisted MBE Method. Jurnal ILMU DASAR,2011,12(2):114-122.
    [122]杨晓东.L-MBE法生长ZnO薄膜的p型掺杂及分析表征[博士学位论文].西安,中国科学院西安光学精密机械研究所,2006:25-26.
    [123]I. Ohkubo, A. Ohtomo, T. Ohnishi, Y. Mastumoto, H. Koinuma, M. Kawasaki. In-plane and polar orientations of ZnO thin films grown on atomically flat sapphire. Surface Science, 1999,443(1-2):L1043-L1048.
    [124]H. Kato, M. Sano, K. Miyamoto, T. Yao. High-quality ZnO epilayers grown on Zn-face ZnO substrates by plasma-assisted molecular beam epitaxy. Journal of Crystal Growth, 2004,265(3-4):375-381.
    [125]T. Metzger, R. Hopler, E. Born, O. Ambacher, M. Stutzmann, R. Stommer, M. Schuster, H. Gobel, S. Christiansen, M. Albrecht, H. P. Strunk. Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis X-ray diffractometry. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties,1998,77(4):1013-1025.
    [126]X. H. Pan, W. Guo, Z. Z. Ye, B. Liu, Y. Che, W. Tian, D. G. Schlom, X. Q. Pan. Temperature-dependent Hall and photoluminescence evidence for conduction-band edge shift induced by alloying ZnO with magnesium. Applied Physics Letters,2009,95(15): 152105.
    [127]X. H. Pan, W. Guo, Z. Z. Ye, B. Liu, Y. Che, C. T. Nelson, Y. Zhang, W. Tian. D. G. Schlom, X. Q. Pan. Epitaxial Zn1-xMgxO films grown on (111) Si by pulsed laser deposition. Chemical Physics Letters,2010,485(4-6):363-366.
    [128]N. Ashkenov, B. N. Mbenkum, C. Bundesmann, V. Riede, M. Lorenz, D. Spemann, E. M. Kaidashev, A. Kasic, M. Schubert, M. Grundmann, G. Wagner, H. Neumann, V. Darakchieva, H. Arwin, B. Monemar. Infrared dielectric functions and phonon modes of high-quality ZnO films. Journal of Applied Physics,2003,93(1):126-133.
    [129]V. A. Fonoberov, K. A. Alim, A. A. Balandin, F. X. Xiu, J. L. Liu. Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals. Physical Review B,2006,73(16):165317.
    [130]D. I. Florescu, J. C. Ramer, D. S. Lee, E. A. Armour. InGaN/GaN single-quantum-well light-emitting diodes optical output efficiency dependence on the properties of the barrier layer separating the active and p-layer regions. Applied Physics Letters,2004,84(25): 5252-5254.
    [131]F. Z. Wang, H. P. He, Z. Z. Ye, L. P. Zhu. Photoluminescence properties of quasialigned ZnCdO nanorods. Journal of Applied Physics,2005,98(8):084301.
    [132]G. Coli, K. K. Bajaj. Excitonic transitions in ZnO/MgZnO quantum well heterostructures. Applied Physics Letters,2001,78(19):2861-2863.
    [133]Y. F. Li, B. Yao, Y. M. Lu, Z. P. Wei, Y. Q. Gai, C. J. Zheng, Z. Z. Zhang, B. H. Li, D. Z. Shen, X. W. Fan, Z. K. Tang. Realization of p-type conduction in undoped MgxZn1-xO thin films by controlling Mg content. Applied Physics Letters,2007,91(23):232115.
    [134]E. Gur, G. Tabares, A. Arehart, J. M. Chauveau, A. Hierro., S. A. Ringel. Deep levels in a-plane, high Mg-content MgxZn1-xO epitaxial layers grown by molecular beam epitaxy. Journal of Applied Physics,2012,112(12):123709.
    [135]A. Hierro, G. Tabares, J. M. Ulloa, E. Munoz, A. Nakamura, T. Hayashi, J. Temmyo. Carrier compensation by deep levels in Zn1-xMgxO/sapphire. Applied Physics Letters,2009, 94(23):232101.
    [136]S. K. Mohanta, A. Nakamura, J. Temmyo. Nitrogen and copper doping in MgxZn1-xO films and their impact on p-type conductivity. Journal of Applied Physics,2011,110(1):013524.
    [137]S. K. Mohanta, A. Nakamura, J. Temmyo. Synthesis and characterization of N, In co-doped MgZnO films using remote-plasma-enhanced metalorganic chemical vapor deposition. Journal of Crystal Growth,2013,375:1-5.
    [138]S. J. Pearton, F. Ren. p-type doping of ZnO films and growth of tenary ZnMgO and ZnCdO: application to light emitting diodes and laser diodes. International Materials Reviews,2014, 59(2):61-83.
    [139]邓蕊.ZnO基光电薄膜的物性研究及光电器件的设计与制备[博士学位论文].长春,吉林大学凝聚态物理系,2011:71.
    [140]S. H. Wei, A. Zunger. Calculated natural band offsets of all II-VI and Ⅲ-V semiconductors: Chemical trends and the role of cation d orbitals. Applied Physics Letters,1998,72(16): 2011-2013.
    [141]J. R. Waldrop, R. W. Grant. Measurement of AIN/GaN (0001) heterojunction band offsets by x-ray photoemission spectroscopy. Applied Physics Letters,1996,68(20):2879-2881.
    [142]P. D. C. King, T. D. Veal, P. H. Jefferson, C. F. McConville, T. Wang, P. J. Parbrook, H. Lu, W. J. Schaff. Valence band offset of InN/AIN heterojunctions measured by x-ray photoelectron spectroscopy. Applied Physics Letters,2007,90(13):132105.
    [143]C. Coluzza, E. Tuncel, J. L. Staehli, P. A. Baudat, G. Margaritondo, J. T. Mckinley, A. Ueda, A. V. Barnes, R. G. Albridge, N. H. Tolk, D. Martin, F. Moriergenoud, C. Dupuy, A. Rudra, M. Ilegems. Interface Measurements of Heterojunction Band Lineups with the Vanderbilt Free-Electron Laser. Physical Review B,1992,46(19):12834-12836.
    [144]S. D. Singh, R. S. Ajimsha, V. Sahu, R. Kumar, P. Misra, D. M. Phase, S. M. Oak, L. M. Kukreja, T. Ganguli, S. K. Deb. Band alignment and interfacial structure of ZnO/Ge heterojunction investigated by photoelectron spectroscopy. Applied Physics Letters,2012, 101(21):212109.
    [145]Z. G. Yang, L. P. Zhu, Y. M. Guo, W. Tian, Z. Z. Ye, B. H. Zhao. Valence-band offset of p-NiO/n-ZnO heterojunction measured by X-ray photoelectron spectroscopy. Physics Letters A,2011,375(16):1760-1763.
    [146]S. H. Park, T. Hanada, D. C. Oh, T. Minegishi, H. Goto, G. Fujimoto, J. S. Park, I. H. Im, J. H. Chang, M. W. Cho, T. Yao, K. Inaba. Lattice relaxation mechanism of ZnO thin films grown on C-Al2O3 substrates by plasma-assisted molecular-beam epitaxy. Applied Physics Letters,2007,91(23):231904.
    [147]K. Zitouni, A. Kadri. Effects of lattice-mismatch induced built-in strain on the valence band properties of wurtzite ZnO/Zn1-xMgxO quantum well heterostructures. physica status solidi (c),2007,4(1):208-211.
    [148]Y. F. Li, B. Yao, Y. M. Lu, C. X. Cong, Z. Z. Zhang, Y. Q. Gai, C. J. Zheng, B. H. Li, Z. P. Wei, D. Z. Shen, X. W. Fan, L. Xiao, S. C. Xu, Y. Liu. Characterization of biaxial stress and its effect on optical properties of ZnO thin films. Applied Physics Letters,2007,91(2): 021915.
    [149]A. Janotti, C. G. Van de Walle. Absolute deformation potentials and band alignment of wurtzite ZnO, MgO, and CdO. Physical Review B,2007,75(12):121201(R).
    [150]S. C. Su, Y. M. Lu, Z. Z. Zhang, C. X. Shan, B. H. Li, D. Z. Shen, B. Yao, J. Y. Zhang, D. X. Zhao, X. W. Fan. Valence band offset of ZnO/Zn0.8SMg0.15O heterojunction measured by x-ray photoelectron spectroscopy. Applied Physics Letters,2008,93(8):082108.
    [151]J. M. Chauveau, M. Teisseire, H. Kim-Chauveau, C. Deparis, C. Morhain, B. Vinter. Benefits of homoepitaxy on the properties of nonpolar (Zn,Mg)O/ZnO quantum wells on a-plane ZnO substrates. Applied Physics Letters,2010,97(8):081903.
    [152]R. T. Senger, K. K. Bajaj. Binding energies of excitons in polar quantum well heterostructures. Physical Review B,2003,68(20):205314.
    [153]S. H. Park, D. Ann. Spontaneous and piezoelectric polarization effects in wurtzite ZnO/MgZnO quantum well lasers. Applied Physics Letters,2005,87(25):253509.
    [154]B. P. Zhang, B. L. Liu, J. Z. Yu, Q. M. Wang, C. Y. Liu, Y. C. Liu, Y. Segawa. Photoluminescence and built-in electric field in ZnO/Mg0.1Zn0.9O quantum wells. Applied Physics Letters,2007,90(13):132113.
    [155]S. Gangil, A. Nakamura, M. Shimomura, J. Temmyo. Nonpolar (11(2)over-bar0) p-rype nitrogen-doped ZnO by remote-plasma-enhanced metalorganic chemical vapor deposition. Japanese Journal of Applied Physics Part 2-Letters & Express Letters,2007,46(20-24): L549-L551.
    [156]M. A. Myers, J. H. Lee, H. Wang. Highly stable non-polar p-type Ag-doped ZnO thin films grown on r-cut sapphire. Materials Letters,2013,100:78-81.
    [157]P. Ding, X. H. Pan, Z. Z. Ye, J. Y. Huang, H. H. Zhang, W. Chen, C. Y. Zhu. Realization of p-type non-polar a-plane ZnO films via doping of Na acceptor. Solid State Communications, 2013,156:8-11.
    [158]Y. Li, Y. Z. Zhang, H. P. He, Z. Z. Ye, J. Jiang, L. Cao. Growth of Na doped p-type non-polar a-plane ZnO films by pulsed laser deposition. Materials Letters,2012,76:81-83.
    [159]P. Ding, X. H. Pan, J. Y. Huang, H. P. He, B. Lu, H. H. Zhang, Z. Z. Ye. p-type non-polar m-plane ZnO films grown by plasma-assisted molecular beam epitaxy. Journal of Crystal Growth,2011,331(1):15-17.
    [160]P. Ding, X. H. Pan, J. Y. Huang, B. Lu, H. H. Zhang, W. Chen, Z. Z. Ye. Growth of p-type a-plane ZnO thin films on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy. Materials Letters,2012,71:18-20.
    [161]D. Tainoff, M. Al-Khalfioui, C. Deparis, B. Vinter, M. Teisseire, C. Morhain, J. M. Chauveau. Residual and nitrogen doping of homoepitaxial nonpolar m-plane ZnO films grown by molecular beam epitaxy. Applied Physics Letters,2011,98(13):131915.
    [162]A. L. Yang, H. P. Song, H. Y. Wei, X. L. Liu, J. Wang, X. Q. Lv, P. Jin, S. Y. Yang, Q. S. Zhu, Z. G. Wang. Measurement of polar C-plane and nonpolar A-plane InN/ZnO heterojunctions band offsets by x-ray photoelectron spectroscopy. Applied Physics Letters, 2009,94(16):163301.
    [163]T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, H. Koinuma. Temperature quenching of exciton luminescence intensity in ZnO/(Mg,Zn)O multiple quantum wells. Journal of Applied Physics,2003,93(10):5929.
    [164]T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, H. Koinuma. Radiative recombination of electron-hole pairs spatially separated due to quantum-confined Stark and Franz-Keldish effects in ZnO/Mg0.27Zn0.73O quantum wells. Applied Physics Letters,2002,81(13):2355.
    [165]T. Makino, Y. Segawa, M. Kawasaki, H. Koinuma. Optical properties of excitons in ZnO-based quantum well heterostructures. Semiconductor Science and Technology,2005, 20(4):S78-S91.
    [166]S. Sadofev, S. Blumstengel, J. Cui, J. Puls, S. Rogaschewski, P. Schafer, Y. G. Sadofyev, F. Henneberger. Growth of high-quality ZnMgO epilayers and ZnO/ZnMgO quantum well structures by radical-source molecular-beam epitaxy on sapphire. Applied Physics Letters, 2005,87(9):091903.
    [167]M. Al-Suleiman, A. El-Shaer, A. Bakin, H. H. Wehmann, A. Waag. Optical investigations and exciton localization in high quality Zn1-xMgxO-ZnO single quantum wells. Applied Physics Letters,2007,91(8):081911.
    [168]H. D. Sun, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma. Phonon replicas in ZnO/ZnMgO multiquantum wells. Journal of Applied Physics,2002,91(10):6457.
    [169]J. Krustok, H. Collan, K. Hjelt. Does the low-temperature Arrhenius plot of the photoluminescence intensity in CdTe point towards an erroneous activation energy? Journal of Applied Physics,1997,81(3):1442-1445.
    [170]T. S. Ko, T. C. Lu, L. F. Zhuo, W. L. Wang, M. H. Liang, H. C. Kuo, S. C. Wang, L. Chang, D. Y. Lin. Optical characteristics of a-plane ZnO/Zn0.8Mg0.2O multiple quantum wells grown by pulsed laser deposition. Journal of Applied Physics,2010,108(7):073504.
    [171]J. Zhu, A. Y. Kuznetsov, M. S. Han, Y. S. Park, H. K. Ahn, J. W. Ju, I. H. Lee. Structural and optical properties of ZnO/Mg0.1Zn0.9O multiple quantum wells grown on ZnO substrates. Applied Physics Letters,2007,90(21):211909.
    [172]H. P. He, Y. Z. Zhang, Z. Z. Ye, H. H. Huang, X. Q. Gu, L. P. Zhu, B. H. Zhao. Photoluminescence properties of ZnO/Zn0.9Mg0.1O multi-quantum wells with different well widths. Journal of Physics D-Applied Physics,2007,40(17):5039-5043.
    [173]C. Wetzel, M. Zhu, J. Senawiratne, T. Detchprohm, P. D. Persans, L. Liu, E. A. Preble, D. Hanser. Light-emitting diode development on polar and non-polar GaN substrates. Journal of Crystal Growth,2008,310(17):3987-3991.
    [174]T. Makino, Y. Segawa, A. Tsukazaki, A. Ohtomo, M. Kawasaki. Photoexcitation screening of the built-in electric field in ZnO single quantum wells. Applied Physics Letters,2008, 93(12):121907.
    [175]J. G. Lu, Y. Z. Zhang, Z. Z. Ye, L. P. Zhu, L. Wang, B. H. Zhao, Q. L. Liang. Low-resistivity, stable p-type ZnO thin films realized using a Li-N dual-acceptor doping method. Applied Physics Letters,2006,88(22):222114.
    [176]V. A. Coleman, C. Jagadish. Chapter 1-Basic Properties and Applications of ZnO. Zinc Oxide Bulk, Thin Films and Nanostrctures. Oxford; Elsevier Science Ltd.2006:1-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700