N掺杂p型Mg_xZn_(1-x)O薄膜的制备及相关问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤锌矿结构的MgxZn(1-x)O具有与ZnO相似的结构和光学特性,并且其带隙在一定范围内连续可调,近年来被看作是ZnO基LED的合适垒层材料。目前,人们已经能够制备出达到光电子器件要求的n型MgZnO合金薄膜。然而,p型MgZnO制备的研究进展却十分缓慢。在所有掺杂元素中,N被看作是ZnO或MgZnO比较适宜的p型掺杂元素。近十几年来,人们利用各种N源、掺杂方法和生长技术开展了N掺杂p型MgznO的研究工作,并取得了一定的成绩。但,仍存在着电阻率高、空穴载流子浓度低、迁移率低、稳定性差等问题。这主要是因为N的p型掺杂效率很低,通常N源在掺杂时会形成No受主,同时也会形成(N_2)0施主,对N受主进行自补偿,使电学性能下降,另一方面使薄膜晶体质量变差。可见,减少N_2,增加激活N原子的掺杂,即提高N的有效p型掺杂,对提高p型MgZnO的电学性能至关重要。然而N的含量和化学状态在样品中很难表征,另外Mg的加入是否能提高N的掺杂浓度也一直是人们关心的问题。本论文针对目前MgZnO研究中的热点,展开了一系列工作,取得的成果如下:
     (1)采用磁控溅射技术,选用高纯的N_2和Ar作为溅射气体,通过改变氮流量比调节生长条件,在石英衬底上制备N掺杂p型ZnO薄膜。通过对薄膜性能的研究表明,随着氮流量比的增加,薄膜中No与(N_2)o的掺杂浓度在变大。当氮流量比为20%时,得到电学性质最好的N掺杂p型ZnO薄膜,电阻率为20.54f2cm,迁移率为5.69cm~2v~(-1)s~(-1),空穴载流子浓度为5.49×10~(16) cm~(-3)。同时我们发现,随着薄膜中N含量的增加,吸收边在红移。
     (2)利用射频磁控溅射技术,用高纯的N_2和Ar作为溅射气体,通过改变氮流量比改变薄膜的生长条件,结果在氮流量比为20%时,经600℃真空退火30分钟,在石英衬底上制备出电阻率为21.47Ωcm,hall迁移率为3.45 cm2/Vs,载流子浓度为8.38×1016cm~(-3)p型Mg0.07Zn0.93O薄膜。在n型Si上沉积一层该薄膜制成异质结,异质结的Ⅰ-Ⅴ特性曲线表明该异质结具有良好的p-n结整流特性。
     通过研究退火温度对氮流量比为20%条件下的N_2/Ar混合气氛溅射制备的N掺杂MgZnO薄膜性能的影响,发现随着退火温度的升高,晶体质量不断提高;薄膜的导电性从n型变p型,最后又转变成弱p型,在中间退火温度600℃时,表现最好的p型导电性质。
     (3)采用磁控溅射技术,以高纯的N_2和Ar为溅射气体,分别用ZnO、Mg0.04Zn0.96O、Mg0.08Zn0.92O陶瓷靶,在石英衬底上生长N掺杂MgxZn(1-x)O薄膜。通过对薄膜性能的研究发现:在N掺杂的过程中,Mg的合金化对N的掺杂浓度和状态有一定的影响。随着Mg含量的增加,No的固溶度在降低,在N和O的化学势相同的条件下,Mg含量对No的固溶度起决定作用。同时,在相同的制备过程中,在N和O的化学势相同的条件下,Mg含量可以影响N的化学状态,在低Mg含量时,薄膜中可能会有No与(N_2)o同时存在,在高Mg含量时,薄膜中只存在(N_2)o一种形式。
     (4)研究了N掺杂ZnO和N掺杂MgxZn(1-x)O的Raman光谱,发现除ZnO的Raman振动模外有位于272、642cm-1的振动峰出现,并且随着氮流量比的增加,这两个峰以及位于580cm-1的振动峰峰强会增强。在相同氮流量比的条件下制备不同Mg含量的MgxZn(1-x)O:N薄膜,当Mg含量增加时,Raman光谱中位于272、642、580cm-1的振动峰峰强会减弱,同时XPS测试表明:No的含量在减少。通过对Raman和XPS的测试结果分析,可以推断位于272cm-1左右的这些新的振动模式只与No有关,与(N_2)0无关。
Since the structure and optoelectronic properties of MgxZn(1-x)O alloy with wurtzite structure are very similar to ZnO and the band gap of MgxZn(1-x)O can be tuned, Mg-Zn-O alloy was proposed as a ZnO barrier layer. Now, n-type MgZnO with high crystal quality can readily be prepared, but fabrication of p-type MgZnO with good stability and electrical properties is still a difficult task. Some research groups have made many efforts to prepare p-type MgZnO by using N as acceptor dopant. However, it is hard to fabricate reproducibly N-doped p-type MgZnO with low resistivity, high carrier concentration and high mobility, due to low solubility of N in MgZnO and self-compensation of (N_2)o and other native donors for No acceptors. Obviously, it is very important to increase the solubility of No and decrease the self-compensation of (N_2)o for obtaining N-doped p-type MgZnO. Therefore, it is interesting to characterize chemical state and solubility of N in N-doped MgZnO correctly and simply and understand effect of Mg on the chemical state and solubility. In this thesis, a detailed investigation according to the present research difficulties on MgZnO has been carried out, and the following results are obtained:
     (1) N doped ZnO films were prepared on quartz substrates by r.f. magnetron sputtering method using ZnO target, with mixture of nitrogen and argon as sputtering gas. The effects of change of the flux ratio of N_2/(N_2+Ar) of sputtering gases on structure and properties of ZnO alloy thin films were investigated. when the flux ratio of N_2/(N_2+Ar) is 20%,the film of best p-type conductivity property has resistivity of 20.54Ωcm, Hall mobility of 5.69cm2/Vs and carrier concentration of 5.49x 1016 cm~(-3). With the flux ratio of N_2/(N_2+Ar) increasing, the band-gap width occurs red shift.
     (2) N doped MgZnO films were prepared on quartz substrates using Mgo.04Zno.96O target, with mixture of nitrogen and argon as sputtering gas. The film of best p-type conductivity property has resistivity of 21.47 Qcm, Hall mobility of 3.45cm2/Vs and carrier concentration of 8.38×1016cm~(-3), when the nitrogen partial pressure ratio is 20%. The p-type behavior of the film was confirmed by p-MgZnO/n-Si heterojunction which showed a clear p-n diode characteristic.
     The effects of annealing temperature on the structure and properties of MgZnO:N films were studied. We found that with the increasing annealing temperature, the crystallinity is improved, the conductivity of the film changed dramatically from n-type to p-type, and finally changed to weak p-type.At an intermediate annealing temperature 600℃, the N doped MgZnO film behaves the best p-type conductivity property.
     (3) N doped MgxZn(1-x)O films were prepared on quartz substrates using ZnO, Mg0.04Zn0.96O and Mgo.08Zno.92O targets, respectively, with mixture of nitrogen and argon as sputtering gas. The solubility and chemical state of N in these films were studied. The solubility of No decreases with increasing Mg concentration. The chemical state of N in the MgZnO:N films is affected by Mg concentration.It can be changed from coexistence of No and (N_2)o in the MgZnO:N with low Mg concentration to only (N_2)o in the MgZnO:N with high Mg concentration.
     (4) The Raman spectra of ZnO:N and MgZnO:N were studied. The additional Raman peaks are observed at about 272 and 642 cm-1 in the ZnO:N films Raman spectra and the intensity of the additional peaks and 580 cm-1 peak increases with increasing the flux ratio of N_2/(N_2+Ar). Raman spectra of the N-doped ZnO and MgxZn(1-x)O produced by the mixed gas with a fixed flux ratio indicate that the intensity of 272,642 and 580 cm-1 peaks decreases with increasing Mg concentration,and the XPS spectra of Nls of these films indicate No solubility decreases with increasing Mg concentration. So,the characteristic Raman peaks related to N doping observed in the N-doped ZnO and MgxZn(1-x)O at 272,642 and 580 cm-1, respectively, are demonstrated to be only related to No but not to
引文
[1]A.B.M. Almamun Ashrafi, A. Ueta, A. Avramescu, H. KUMANO, I. Suemune, Y.W. Ok, T.Y. Seong. Growth and characterization of hypothetical zinc-blende ZnO films on GaAs (001) substrates with ZnS buffer layers. [J]. Appl Phys.Lett.2000,76: 550
    [2]宋词,杭寅,徐军.氧化锌晶体的研究进展[J].人工晶体学报,2004,33:81-87
    [3]Akiko Kobayashi, Otto F. Sankey, Stephen M. Volz, and John D. Dow. Semiempirical tight-binding band structures of wurtzite semiconductors:AlN, CdS, CdSe, ZnS, and ZnO. Phys. Rev. B [J].1983,28:935-945
    [4]Vanheusden K, Warren W L, Seager C H, et al. Mechanisms behind green photo luminescence in ZnO phosphor powders[J]. J Appl Phys,1996,79:7983-7990.
    [5]KOHAN F, CEDER G, MORGAN D, CHRIS G. Van de Walle, First-principles study of native point defects in ZnO [J]. Phys. Rev. B,2000,61:15019-15021.
    [6]ZHANG S B, WEI S H, ZUNGER A. Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO [J]. Phys. Rev. B,2001,63:075205-075211.
    [7]Jiao S J, Zhang Z Z, Lu Y M, et al. ZnO p-n junction light-emitting diodes fabricated on sapphire substrates [J]. Appl Phys Lett 2006,88:031911-0319113.
    [8]T Minami, H Sato, H Nanto, et al. Group III Impurity Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering [J]. Jpn J Appl Phys,1985, Part 2, 24:L781.
    [9]X L Guo, J H Choi, H Tabata, et al. Fabrication and optoelectronic properties of a transparent ZnO homostructural light-emitting diode [J]. Jpn J Appl Phys,2001, 40:L177-L180.
    [10]M Kawasaki. A homostructural ZnO p-i-n light emitting diode[R]. The 3rd international workshop on ZnO and related materials, October 5-8,2004, Sendai, Japan
    [11]K I Hagemark. Defect structure of Zn-doped ZnO [J]. J Solid State Chem, 1976,16:293-299.
    [12]SERVICE R. F. Will UV laser beat the blues? [J]. Science,1997,276:895.
    [13]叶志镇,吕建国,张银珠,何海平等.《氧化锌半导体材料掺杂技术与应用》[M].浙江:浙江大学出版社,p4
    [14]Park C H, Zhang S B, Wei S H. Origin of the impurity perspective p-type doping difficulty in ZnO [J]. Phys Rev B,2002,66:073202-07204.
    [15]Look D C, Reynolds D C, Litton C W, et al. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy [J]. Appl Phys Lett, 2002,81:1830-1832.
    [16]LU J G, ZHANG Y Z, YE Z Z, ZENG Y J, HE H P, ZHU L P, HUANG J Y, WANG L, YUAN J, ZHAO B H, LI X H. Control of p-and n-type conductivities in Li-doped ZnO thin films [J]. Appl. Phys. Lett,2006,89:112113-112115;
    [17]Fons P, Yamada A, Iwata K, et al. An EXAFS and XANES study of MBE grown Cu-doped ZnO [J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2003,199:190.
    [18]Xu J, Zhang Z Y, Zhang Y, et al. Effect of Ag doping on optical and electrical properties of ZnO thin films [J]. Chin Phys Lett,2005,22(8):2031-2034.
    [19]Kobayashi A, Sankey O F, Dow J D. Deep energy levels of defects in the wurtzite semiconductors AIN, CdS, CdSe, ZnS, and ZnO [J]. Phys Rev B,1983, 28:946.
    [20]K Minegishi, Y Koiwai, Y Kikuchi, et al. Growth of p-type zinc oxide films by chemical vapor deposition [J]. Jpn J Appl Phys,1997,36:L1453-L1455.
    [21]Iwata K, Fons P, Yamada A, et al. Nitrogen-induced defects in ZnO:N grown on sapphire substrate by gas source MBE [J]. J Crystal Growth,2000,209:526.
    [22]Guo X, Tabata H, Kawai T.p-Type conduction in transparent semiconductor ZnO thin films induced by electron cyclotron resonance N2O plasma [J]. Optical Material,2002,19:229-233.
    [23]Li X, An Y, Gessert T A, et al. Chemical vapor deposition-formed p-type ZnO thin films [J]. J Vac Sci Technol,2003, A21:1342-1346.
    [24]Ji Z G, Yang C X, Liu K, et al. Fabrication and characterization of p-type ZnO films by pyrolysis of zinc-acetate-ammonia solution [J]. J Cryst Growth,2003, 253:239.
    [25]Lu J G, Zhang Y Z, Ye Z Z, et al. p-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations [J]. Materials Letters,2003, 57:3311-3314.
    [26]Xu W Z, Ye Z Z, Zhou T, et al. Low-pressure MOCVD growth of p-type ZnO thin films by using NO as the dopant source [J]. J Crys Growth,2004,265:133.
    [27]Jiao S J, Lu Y M, et al. p-type ZnO Thin Films Prepared by Plasma-assisted M olecular Beam Epitaxy [J]. Chin J Lumin,2004,25:460-462.
    [28]LEE E C, KIM Y S, JIN Y G, CHANG K J. Compensation mechanism for N acceptors in ZnO [J]. Phys. Rev. B,2001,64:085120-085124.
    [29]YAN Y, ZHANG S B. Control of Doping by Impurity Chemical Potentials: Predictions for p-Type ZnO [J]. Phys. Rev. Lett,2001,86:5723-5726.
    [30]LIANG H W, LU Y M, SHEN D Z, JIAO S J, LI B H, ZHANG J Y, LIU Y C, FAN X W. P-type ZnO thin films Prepared by plasma-molecular beam epitaxy using radical NO [J]. Phys. Statu.Solidi,2005,202:1060-1065.
    [31]RYU Y R, LEE T S, WHITE H W. Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition [J]. Appl. Phys. Lett,2003,83:87-89.
    [32]Y R Ryu, J A Lubguban, T S Lee, et al. Excitonic ultraviolet lasing in ZnO-based light emitting devices [J]. Appl Phys Lett,2007,90:131115-131117.
    [33]Kim K K, Kim H S, Hwang D K, et al. Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant [J]. Appl Phys Lett,2003, 83:63-65.
    [34]Bang K H, Hwang D K, Park M C, et al. Formation of p-type ZnO film on InP substrate by phosphor doping [J]. Applied Surface Science,2003,210:177.
    [35]KO Y D, JUNG J, BANG K H, PARK M C, HUH K S, MYOUNG J M, YUN I. Characteristics of ZnO/Si prepared by Zn3P2 diffusion [J]. Applied Surface Science,2002,202:266-271.
    [36]XIU F X, YANG Z, MANDALAPU L J, ZHAO D T, LIU J L, BEYERMANN W P. High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy [J]. Appl. Phys. Lett,2005,87:152101-152103.
    [37]Yamamoto T. Codoping for the fabrication of p-type ZnO [J]. Thin Solid Films,2002,420-421:100-106.
    [38]Sui Y R, Yao B, Hua Z, Xing G Z, Huang X M, Yang T, Gao L L, Zhao T T, Pan H L, Zhu H, Liu W W, and Wu T.Fabrication and properties of B-N codoped p-type ZnO film[J]J. Phys. D:Appl. Phys.2009,42(6):065101.
    [39]J. G. Lu, Y. Z. Zhang, Z. Z. Ye, L. P. Zhu, L. Wang, and B. H. Zhao, Q. L. Liang. Low-resistivity, stable p-type ZnO thin films realized using a Li-N dual-acceptor doping method. Appl. Phys. Lett. [J].2006,88:222114-222116.
    [40]X. H. Wang,B.Yao, Z. P. Wei, D. Z. Shen, Z. Z. Zhang, B. H. Li, Y. M. Lu, D. X. Zhao, J. Y. Zhang, X. W. Fan, L. X. Guan and C. X. Cong. Acceptor formation mechanisms determination from electrical and optical properties of p-type ZnO doped with lithium and nitrogen. J. Phys. D:Appl. Phys.[J].2006,39:4568-4571.
    [41]Aoki T, Hatanaka Y, Look D C, ZnO diode fabricated by excimer-laser doping[J], Appl Phys Lett,2000,76:3257-3259.
    [42]Atsushi Tsukazaki, Akira Ohtomo, Takeyoshi Onuma et al, Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO [J]. Nature Materials,2005,4:42-46.
    [43]Liu W, Gu S L, Ye J D, et al. Blue-yellow ZnO homostructural light-emitting diode realized by metalorganic chemical vapor deposition technique [J], Appl Phys Lett,2006,88:092101-092103.
    [44]Xu W Z, Ye Z Z, Zeng Y J, et al. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition[J].Appl Phys Lett,2006, 88:173506-173508
    [45]S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, and H. Shen, Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films, Appl. Phys. Lett.2002,80:1529
    [46]T. Takagi, T. Tanaka, H. Fujita, and S. Fujita, Molecular Beam Epitaxy of High Magnesium Content Single-Phase Wurzite MgxZn1-xO Alloys, Jpn. J. Appl. Phys. 2003,42:401
    [47]D. J. Cohen, K. C. Ruthe, and S. A. Barnett, Transparent conducting Zn1-xMgxO:(Al,In) thin films, J. Appl. Phys.2004,96:459.
    [48]Y. W. Heo, Y. W. Kwon, Y. Li, S. J. Pearton, and D. P. Norton, p-type behavior in phosphorus-doped.Zn,Mg.O device structures, Appl. Phys. Lett.2004, 84:3474.
    [49]Kelly Ip, Yuanjie Li, D. P. Norton, S. J. Pearton, and F. Ren, Low-resistance Au and Au/Ni/Au ohmic contacts to p-ZnMgO, Appl. Phys. Lett.2005,87:071906.
    [50]Z. P. Wei, B.Yao, Z. Z. Zhang, Y.M.Lu, D.Z.Shen, B.H.Li, X.H.Wang, J.Y.Zhang, D.X.Zhao, X.W.Fan and Z.K.Tang, Formation of p-type MgZnO by nitrogen doping, Appl.Phys.Lett.2006,89:102104.
    [51]Peng Wang, Nuofu Chen, Zhigang Yin, Ruixuan Dai, and Yiming Bai, p-type Znl-xMgxO films with Sb doping by radio-frequency magnetron sputtering, Appl. Phys. Lett.2006,89:202102.
    [52]X. Zhang, X. M. Li, T. L. Chen, C. Y. Zhang, and W. D. Yu, p-type conduction in wide-gap Znl-xMgxO films grown by ultrasonic spray pyrolysis, Appl. Phys. Lett.2005,87:092101.
    [53]M. X. Qiu, Z. Z. Ye, H. P. He, Y. Z. Zhang, X. Q. Gu, L. P. Zhu, and B. H. Zhao.Effect of Mg content on structural, electrical, and optical properties of Li-doped Zn1-xMgxO thin films. Appl. Phys. Lett.2007,90:182116.
    [54]叶志镇,林时胜,何海平等.Na掺杂p型ZnO和ZnO/ZnMgO多量子阱结构基LED的制备与室温电注入发射紫蓝光[J].半导体学报,2008,29(8):1433-1435
    [55]从春晓.MgZnO合金薄膜的制备、结构及性能研究[D].吉林:吉林大学物理学院,2007.
    [56]魏志鹏.ZnO基材料p型掺杂及结型器件制备[D].长春:中国科学院长 春光学精密机械与物理研究所,2008.
    [57]Y F Li, B Yao, R Deng et al, Ultraviolet photodiode based on p-Mg0.2Zn0.8 0/n-ZnO heterojunction with wide response range, J. Phys. D:Appl. Phys.2009, 42:105102
    [58]Y. F. Li, B. Yao, Y. M. Lu et al, Realization of p-type conduction in undoped MgxZnl-xO thin films by controlling Mg content, Appl. Phys. Lett.2007,91:232115
    [59]K. Nakahara,S. Akasaka,H. Yuji,K. Tamura,T. Fujii,Y. Nishimoto,D. Takamizu, A. Sasaki,T. Tanabe,H. Takasu,H. Amaike,T. Onuma,S. F. Chichibu,A. Tsukazaki, A. Ohtomo,and M. Kawasaki. Nitrogen doped MgxZnl-xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates [J]. Appl. Phys. Lett.2010,97:013501
    [60]A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda, Y. Segawa, Structure and optical properties of ZnO/Mg0.2Zn0.8O superlattices, Appl. Phys. Lett. 1999,75:980.
    [61]T. Makino, C. H. Chia, Nguen T. Tuan, H. D. Sun, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, Room-temperature luminescence of excitons in ZnO.Mg,Zn.O multiple quantum wells on lattice-matched substrates, Appl. Phys. Lett.2000,77:975.
    [62]X. Q. Gu, L. P. Zhu, Z. Z. Ye, H. P. He, Y. Z. Zhang, F. Huang, M. X. Qiu, Y. J. Zeng, F. Liu, and W. Jaeger. Room-temperature photoluminescence from ZnO/ZnMgO multiple quantum wells grown on Si(111) substrates.Appl. Phys. Lett. 2007,91:022103.
    [1]SYUICHI T. Relation between optical property and crystallinity of ZnO thin films prepared by rf magnetron sputtering [J]. J. Appl. Phys.1993,73:4739.
    [2]KUKLA R, KRUG T, LUDWIG R, WILMES K. A highest rate self-s pttering magnetron source [J]. Vacuum.1990,41:1968-1970.
    [3]丛秋滋.多晶二维X射线衍射[M].北京:科学出版社,1997.
    [4]陈治明,王建农,《半导体器件的材料物理学基础》[M].科学出版社,第五章,p263.
    [5]杨德仁.半导体材料测试与分析[M].科学出版,2010.
    [6]方容川.固体光谱学[M].中国科学技术大学出版社,2003.
    [1]Y. W. Heo, Y. W. Kwon, Y. Li, S. J. Pearton, and D. P. Norton.p-type behavior in phosphorus-doped ZnMgO device structures [J]. Appl. Phys. Lett,2004,84:3474.
    [2]Kelly Ip, Yuanjie Li, D. P. Norton, S. J. Pearton, and F. Ren. Low-resistance Au and Au/Ni/Au ohmic contacts to p-ZnMgO[J]. Appl. Phys. Lett,2005,87:071906.
    [3]K. Nakahara,S. Akasaka,H. Yuji,K. Tamura,T. Fujii,Y. Nishimoto,D. Takamizu, A. Sasaki,T. Tanabe,H. Takasu,H. Amaike,T. Onuma,S. F. Chichibu,A. Tsukazaki, A. Ohtomo,and M. Kawasaki. Nitrogen doped MgxZnl-xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates [J]. Appl. Phys. Lett.2010,97:013501
    [4]Peng Wang, Nuofu Chen, Zhigang Yin, Ruixuan Dai, and Yiming Bai. p-type Znl-xMgxO films with Sb doping by radio-frequency magnetron sputtering[J], Appl. Phys. Lett.2006,89:202102.
    [5]C. H. Park, S. B. Zhang, and Su-Huai Wei, Origin of p-type doping difficulty in ZnO:The impurity perspective, [J]. Phys Rev B,2002,66:073202-07204.
    [6]从春晓MgZnO合金薄膜的制备、结构及性能研究[D].吉林:吉林大学物理学院,2007.
    [7]魏志鹏.ZnO基材料p型掺杂及结型器件制备[D].长春:中国科学院长春光学精密机械与物理研究所,2008.
    [8]Y F Li, B Yao, R Deng et al. Ultraviolet photodiode based on p-Mg0.2 Zno.g O/n-ZnO heterojunction with wide response range[J], J. Phys. D:Appl. Phys. 2009,42:105102
    [9]Z. P. Wei, B. Yao, Z. Z. Zhang, Y. M. Lu, D. Z. Shen, B. H. Li, X. H. Wang, J. Y. Zhang,D. X. Zhao, X. W. Fan,and Z. K. Tang.Formation of p-type MgZnO by nitrogen doping[J].Appl. Phys. Lett.2006,89:102104.
    [10]Barnes T M,Olson K,Wolden C A.On the formation and stability of p-type nitrogen-doped zinc oxide[J].Appl Phys Lett,2005,86:112112-112114.
    [11]Craig L. Perkins, Se-Hee Lee, Xiaonan Li, Sally E. Asher, and Timothy J.Coutts.Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy [J]J. Appl. Phys.2005,97:034907.
    [12]Yan,Yanfa; Ahn, K.-S.; Shet, S.; Deutsch, T.; Huda, M.; Wei, S. H.; Turner, J.; Al-Jassim, M. M.Band gap reduction of ZnO for photoelectrochemical splitting of water, Solar Hydrogen and Nanotechnology Ⅱ. Edited by Guo, Jinghua. Proceedings of the SPIE,2007,Volume 6650:66500H,.
    [13]Xing GZ, Yao B, Cong CX, et al. Effect of annealing on conductivity behavior of undoped zinc oxide prepared by rf magnetron sputtering [J], JOURNAL OF ALLOYS AND COMPOUNDS,2008,457:36-41.
    [14]Fang Rongchuan. Spectra in Solid State[M].1st Ed. Hefei:University of Science and Technology of China Press,2003.
    [15]ZU P, TANG Z K, WONG K L, KAWASAKI M, OHTOMO A, SEGAWA Y Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature [J]. Solid State Commun,1997,103:459-463.
    [16]刘洁,蒋毅坚,ZnO晶体的偏振拉曼散射的深入研究,[J]光散射学报.2007Vol19:331-336
    [17]Ozgur,U.; Alivov, Ya. I.; Liu, C.; Teke,A.; Reshchikov, M. A.; Dogan, S.; Avrutin, V.; Cho, S.-J.; Morkoc, H. A comprehensive review of ZnO materials and devices[J]J.Appl.Phys.2005,98:041301
    [18]CALLEJA J M, CARDONA M. Resonant Raman scattering in ZnO [J]. Phys. Rev. B,1977,16:3753-3761.
    [19]Xiaming Zhu, HuizhenWu, Zijian Yuan, Jinfang Kong and Wenzhong Shen.Multiphonon resonant Raman scattering in N-doped ZnO[J] J. Raman Spectrosc. 2009,40:2155-2161
    [20]A. Kaschner, U. Haboeck, Martin. Strassburg, Matthias. Strassburg, G. Kaczmarczyk,A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, Nitrogen-related local vibrational modes in ZnO:N[J]Appl. Phys. Lett.2002,80:1909-1911.
    [21]J. Sann, J. Stehr, A. Hofstaetter, D. M. Hofmann, A. Neumann, M. Lerch,U. Haboeck, A. Hoffmann, and C. Thomsen. Zn interstitial related donors in ammonia-treated ZnO powders[J].Phys. Rev. B,2007,76:195203
    [22]J. B. Wang, H. M. Zhong, Z. F. Li, and W. Lu. Raman study of N+-implanted ZnO[J].Appl. Phys. Lett.2006,88:101913.
    [23]F. Friedrich and N. H. Nickel. Resonant Raman scattering in hydrogen and nitrogen doped ZnO[J]. Appl. Phys. Lett.2007,91:111903.
    [24]L. Artus, R. Cusco, E. Alarcon-Llado, G. Gonzalez-Diaz, I. Martil, J.Jimenez, B. Wang, and M. Callahan. Isotopic study of the nitrogen-related modes in N+-implanted ZnO[J].Appl. Phys. Lett.2007,90:181911.
    [25]Felice Friedrich,M. A. Gluba,and N. H. Nickel. Identification of nitrogen and zinc related vibrational modes in ZnO[J].Appl. Phys. Lett.2009,95:141903
    [26]BUNDESMANN C, ASHKENOV N, SCHUBERT M, SPEMANN D, BUTZ T, KAIDASHEV E M, LORENZ M, GRUNDMANN M. Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li [J]. Appl. Phys. Lett,2003,83: 1974-1976.
    [27]Felice Friedrich,M. A. Gluba,and N. H. Nickel, Identification of nitrogen and zinc related vibrational modes in ZnO[J]. Appl. Phys. Lett.2009,95:141903.
    [1]从春晓MgZnO合金薄膜的制备、结构及性能研究[D].吉林:吉林大学物理学院,2007.
    [2]Barnes T M,Olson K,Wolden C A,On the formation and stability of p-type nitrogen-doped zinc oxide[J].Appl Phys Lett,2005,86:112112-112114.
    [3]Y. F. Li, B. Yao, Y. M. Lu, et al. Realization of p-type conduction in undoped MgxZnl-xO thin films by controlling Mg content [J]. Appl. Phys. Lett.,2001,91: 232115.
    [4]X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan, X. G. Kong, Temperature dependence of excitonic luminescence from nanocrystalline ZnO films,[J] Journal of Lumin.2002,99:149.
    [5]D. C. Look, and B. Clafin, P-type doping and devices based on ZnO[J] Phys. Stat. Sol. (b),2004,241:624
    [6]Dae-Kue Hwang, Hyun-Sik Kim, Jae-Hong Lim, Jin-Yong Oh, Jin-Ho Yang, Seong-Ju Park, Kyoung-Kook Kim, D. C. Look, and Y. S. Park, Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering [J]Appl. Phys. Lett.2005,86:151917
    [7]魏志鹏.ZnO基材料p型掺杂及结型器件制备[D].长春:中国科学院长春光学精密机械与物理研究所,2008.
    [8]Xing GZ, Yao B, Cong CX, et al. Effect of annealing on conductivity behavior of undoped zinc oxide prepared by rf magnetron sputtering[J], JOURNAL OF ALLOYS AND COMPOUNDS,2008,457:36-41.
    [9]Z. P. Wei, B.Yao, Z. Z. Zhang, Y.M.Lu, D.Z.Shen, B.H.Li, X.H.Wang, J.Y.Zhang, D.X.Zhao, X.W.Fan and Z.K.Tang, Formation of p-type MgZnO by nitrogen doping, Appl.Phys.Lett.2006,89:102104.
    [10]Zhiyan Xiao, Yichun Liu, Jiying Zhang, Dongxu Zhao,Youming Lu, Dezhen Shen and Xiwu Fan. Electrical and structural properties of p-type ZnO:N thin films prepared by plasma enhanced chemical vapour deposition. Semicond. Sci. Technol. 2005,20:796-800
    [11]张源涛.ZnO薄膜和MgZnO合金薄膜的生长及其特性研究[D]吉林大学博士论文
    [12]Y. F. Li, B. Yao, Y. M. Lu et al, Characterization of biaxial stress and its effect on optical properties of ZnO thin films, Appl. Phys. Lett.2007,91:021915
    [13]Decremps F, Pellicer-Porres J, Saitta A M, et al. High-pressure Raman spectroscopy study of wurtzite ZnO[J]. Phys Rev B,2002,65:092101.
    [14]ZU P, TANG Z K, WONG K L, KAWASAKI M, OHTOMO A, SEGAWA Y. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature [J]. Solid State Commun,1997,103:459-463.
    [15]K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade Mechanisms behind green photoluminescence in ZnO phosphor powders[J]. J.Appl.Phys.1996,79:7983
    [1]Y. F. Li, B. Yao, Y. M. Lu, et al. Realization of p-type conduction in undoped MgxZnl-xO thin films by controlling Mg content [J]. Appl. Phys. Lett.,2007,91: 232115.
    [2]王伟娜,方庆清等.制备工艺对MgxZn 1-xO薄膜结构及光学性能的影响[J].物理学报,2009,58(05):3461-3467
    [3]A. K. Sharma, J. Narayan, J. F. Muth,et al.,Optical and structural properties of eitaxial MgxZnl-xO alloys [J]. Appl. Phys. Lett.,1999,75(21):3327.
    [4]S.1. Cho, J. Ma, Y. K. Kim et al. Photoluminescence and ultraviolet lasing of Polycrystalline Zno thin films PrePared by the oxidation of the metallic Zn [J]. Appl. Phys. Lett.1999,75:2761.
    [5]D. C. Reynolds, D. C. Look, B. Jogni, Similarities in the Bandege and Deep-center Photoluminescence of ZnO and GaN [J]. Solid State Commun.1997,101: 643.
    [6]K. Vanheusden, W. L. Warren, C. H. Seager, Mechanisms behind green photoluminescence in ZnO phosphor powders [J]. J. Appl. Phys.1996,79:7983.
    [7]E. G. Bylander, Surface effects on the low-energy cathodoluminescence of zinc Oxide [J]. J. Appl. Phys.1978,49:1188.
    [8]CALLEJA J M, CARDONA M. Resonant Raman scattering in ZnO [J]. Phys. Rev. B,1977,16:3753-3761.
    [9]A. Kaschner, U. Haboeck, Martin. Strassburg, Matthias. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, Nitrogen-related local vibrational modes in ZnO:N[J]Appl. Phys. Lett.2002,80:1909.
    [10]J. Sann, J. Stehr, A. Hofstaetter, D. M. Hofmann, A. Neumann, M. Lerch,U. Haboeck, A. Hoffmann, and C. Thomsen. Zn interstitial related donors in ammonia-treated ZnO powders [J].Phys. Rev. B,2007,76:195203
    [11]J. B. Wang, H. M. Zhong, Z. F. Li, and W. Lu. Raman study of N+-implanted ZnO[J].Appl. Phys. Lett.2006,88:101913.
    [12]F. Friedrich and N. H. Nickel. Resonant Raman scattering in hydrogen and nitrogen doped ZnO[J]. Appl. Phys. Lett.2007,91:111903.
    [13]L. Artus, R. Cusco, E. Alarcon-Llado, G. Gonzalez-Diaz, I. Martil, J.Jimenez, B. Wang, and M. Callahan. Isotopic study of the nitrogen-related modes in N+-implanted ZnO[J].Appl. Phys. Lett.2007,90:181911.
    [14]Felice Friedrich,M. A. Gluba,and N. H. Nickel. Identification of nitrogen and zinc related vibrational modes in ZnO[J].Appl. Phys. Lett.2009,95:141903
    [15]BUNDESMANN C, ASHKENOV N, SCHUBERT M, SPEMANN D, BUTZ T, KAIDASHEV E M, LORENZ M, GRUNDMANN M. Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li [J]. Appl. Phys. Lett,2003,83: 1974-1976.
    [16]Felice Friedrich,M. A. Gluba,and N. H. Nickel, Identification of nitrogen and zinc related vibrational modes in ZnO[J]. Appl. Phys. Lett.2009,95:141903.
    [17]C. L. Perkins, S. H. Lee, X. N. Li, S. Asher, and T. J. Coutts, Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy [J]. J. Appl. Phys.2005,97:034907-031913.
    [18]Y. Q. Gai, B. Yao, Z. P. Wei, Y. F. Li, Y. M. Lu, D. Z. Shen, J. Y. Zhang, D. X. Zhao, X. W. Fan, J. B. Li, and J. B. Xia, Effect on nitrogen acceptor as Mg is alloyed into ZnO [J]. Appl. Phys. Lett.2008,92:062110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700