脉冲激光沉积法生长ZnMgO合金薄膜和Li-N共掺p型ZnO薄膜及紫外探测器的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是一种直接带隙宽禁带Ⅱ-Ⅵ族化合物半导体材料,其晶体结构、晶格常数和禁带宽度都与GaN非常接近。ZnO最大的优势在于它的激子束缚能很大,约为60meV,是GaN激子束缚能的两倍多,可以在室温或更高温度下实现激子受激发光。因此,ZnO在短波长光电器件领域有着巨大的应用潜力。
     本文利用自行设计建立的脉冲激光沉积(PLD)系统,进行了Zn_(1-x)Mg_xO合金薄膜和ZnO/Zn_(1-x)Mg_xO多层异质结构的生长、p型Zn_(1-x)Mg_xO薄膜的初步探索以及p型ZnO薄膜的掺杂研究,并研制了一个硅基ZnO光电导型紫外探测器。研究硅基ZnO/Zn_(1-x)Mg_xO多层异质结构和量子阱结构的结晶质量和发光特性,为ZnO光电器件的研发奠定基础。而Zn_(1-x)Mg_xO薄膜p型转变的成功能为ZnO异质p-n结器件做好材料准备。本文采用一种新的共掺技术——Li-N双受主共掺,成功制备了低电阻率的p-ZnO薄膜。
     1.硅基Zn_(1-x)Mg_xO合金薄膜及ZnO/Zn_(1-x)Mg_xO异质结和量子阱结构
     利用自制PLD系统在p-Si(100)上生长Zn_(1-x)Mg_xO合金薄膜。从生长参数对薄膜的结构、形貌和光学性能的对比研究中,找到可适用于硅基ZnO/Zn_(1-x)Mg_xO异质结构生长的合金薄膜的优化工艺参数。优化条件下制得的薄膜晶体质量良好,均具有高度c轴择优取向性,其晶体结构与ZnO的一致,表面粗糙度约为1nm,与ZnO的晶格失配度仅为-0.35%。
     首次采用PLD技术在Si(100)和ZnO/Si(100)上生长Zn_(1-x)Mg_xO/ZnO/Zn_(1-x)Mg_xO双异质结,得到了具有完全c轴择优取向的晶粒致密的多层异质结构。其室温PL谱中均可以观察到异质结中ZnO层位于~3.3eV的近带边发光,无明显的深能级缺陷发光,表明多层异质结构的结晶质量较高。在ZnO/Si(100)上还尝试生长了ZnO/Zn_(1-x)Mg_xO多量子阱结构,所得的是多层纳米结构。
     首次以Li为受主掺杂元素,实现了Zn_(1-x)Mg_xO薄膜的p型转变,电阻率为10.1Ωcm,载流子浓度为2.45x10~(18)cm~(-3),迁移率为0.251cm~2/Vs。这项工作还在继续系统研究中。
ZnO is a Ⅱ-Ⅵ compound semiconductor with a direct wide band gap of 3.3 eV. Its crystal structure, lattice parameter and band gap are quite close to those of GaN. The most significant advantage of ZnO lies in its extremely large exciton binding energy, about 60 meV, over double than that of GaN, which allows stimulated excitonic emission at room temperature or even higher temperature. Therefore, ZnO is a potential candidate for applications in short-wave optoelectronic devices, such as bule/violet light emitting diodes and laser diodes.Zn_(1-x)Mg_xO alloy thin films and ZnO/Zn_(1-x)Mg_xO heterostructures on silicon, as well as p-type Zn_(1-x)Mg_xO and ZnO thin films, were prepared by home-made pulsed laser deposition (PLD). In addition, a photoconductive ultraviolet detector based on ZnO films grown by PLD was fabricated on silicon. The crystalline quality and photoluminescent properties of the ZnO/Zn_(1-x)Mg_xO heterostructures on silicon were investigated for exploiting ZnO-based optoelectronic devices. In this work, low resistivity p-type ZnO thin films were realized via a new kind of co-doping method, Li-N co-doping. 1. Zn_(1-x)Mg_xO alloy thin films and ZnO/Zn_(1-x)Mg_xO heterostructures on siliconHigh-quality Zn_(1-x)Mg_xO alloy thin films with c-axis preferred orientation were grown on p-Si(100) by PLD. The alloy thin films had the same crystal structure with ZnO. The film prepared under optimized condition was highly crystalline, with a surface roughness of ~1 run and a small lattice mismatch with ZnO of -0.35%.ZnO/Zn_(1-x)Mg_xO double heterostructures (DHs) were firstly fabricated on Si(lOO) and ZnO/Si(100) by PLD, respectively. The near band emission (-3.29 eV) from the ZnO layer in DHs was observed in the room-temperature photoluminescence sprectum. The deep level emission was quite weak, indicating high crystalline quality of the DHs. ZnO/Zn_(1-x)Mg_xO multi-quantum wells (MQWs) with ten period were also firstly attempted to grow on ZnO/Si(100).p-type Zn_(1-x)Mg_xO thin films were firstly realized by PLD via Li mono-doping.
    The lowest resistivity was 10.1 Qcm, with a high hole concentration of 2.45xl018cm"3, and a Hall mobility of 0.251 cm2/Vs.2. Li* N double-acceptor codoping p-type ZnO thin filmsLow-resistivity p-type ZnO thin films were successfully fabricated by Li-N dual-acceptor doping method employing PLD. ZnO:Li ceramics with different Li content were used as Li agent and high-voltage ionized N2O was used as N source.Process parameters were optimized for Li-N codoping p-type ZnO thin films. The lowest resistivity of p-ZnO:(Li,N) thin films was 3.99 Qcm, with a high hole concentration of 9.12xl018cm3, and a Hall mobility of 0.172 cm2/Vs. The film was prepared at 450 °C with a pulsed laser fluence of 300 mJ, and a N2O pressure of 15 Pa with an ionizing power of 3.5 W. Li content in the target was 0.1 at%.There were four emission bands in 10 K PL spectrum of p-ZnO:(Li,N) thin film. The bands located at 3.374 eV, 3.318 eV, 3.215 eV and 3.154 eV, respectively, which were probably due to neutral acceptor bound exciton (A°X) and three donor-acceptor (DAP) transitions. The corresponding related acceptor levels of the three (DAP) transition were calculated to be -120 meV, -222 meV, and -283 meV, respectively. The levels located at -120 meV and -222 meV were assigned to Li acceptor and N acceptor respectively.Furthermore, physical mechanism of Li-N dual-acceptor doping was discussed and a co-doping model was proposed.3. ZnO photoconductive UV detector on siliconHigh-resistivity ZnO thin film with completely c-axis orientation was grown on Si(lll) by PLD. A photoconductive ultraviolet detector was fabricated based on this ZnO film with an M-S-M structure. Al was used as planar interdigital metal electrodes. The cutoff wavelength of Al-ZnO-Al ultraviolet detector was 370 nm, and its photoresponsivity was 0.5 A/W at 5 V bias.
引文
[1] J. E. Jaffe, and A. C. Hess, Hartree-Fock study of phase changes in ZnO at high pressure, Phys. Rev. B1993, 48(11-15): 7903-7909.
    [2] S. L King, J. G. E. Gardeniers, and I. W. Boyd, Pulsed-laser deposited ZnO for device applications, Appl. Surf. Sci. 1996, 96-98: 811-814.
    [3] H. Maki, N. Ichinose, N. Ohashi, H. Haneda, and J. Tanaka, Lattice relaxation of a ZnO(0001) surface accompanied by a decrease in antibonding feature, J. Cryst. Growth 2001, 229(1-4): 114-118.
    [4] C.H. Bates, W.B. White, and R. Roy, New high-pressure polymorph of zinc oxide, Science 1962, 137: 993.
    [5] D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, and W.C. Harsch, Electrical properties of bulk ZnO, Solid State Commun. 1998, 105(6): 399-401.
    [6] Z.K. Tang, G.K.L.Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films, Appl. Phys. Lett. 1998, 72(25): 3270-3272.
    [7] C.C. Chang and Y.E. Chen, Fabrication of high sensitivity ZnO thin film ultrasonic devices by electrochemical etch techniques, IEEE Transactions on Ultrasonic Ferroelectdcs and Frequency Control 1997, 44(3): 624-628.
    [8] Q.X. Su, P.B. Kirby, and E. Komuro, Edge supported ZaO thin film bulk acoustic wave resonators and filter design, 2000 IEEE/EIA International Frequency Control Symposium and Exhibition, 2000, P434-440.
    [9] H. Ieki and M. Kadota, ZnO thin films for high frequency SAW devices, 1999 IEEE Ultrasonic Symp. 1999, P281-289.
    [10] E. Bonnotte, C. Gorecki, H. Toshiyoshi, H. Kawakatsu, H. Fujita, K. Worhoff, and K. Hashimoto, Guided-wave acoustooptic interaction with phase modulation in a ZnO thin-film transducer on an Si-based integrated Mach-Zehnder interferometer, J. Lightwave Techn. 1999, 17: 35-42.
    [11] D.L. Devoe, Piezoelectric thin film inicromechanical beam resonators, Sensors & Actuators A 2001, 88: 263-272.
    [12] R. Groenen, J.L Linden, H.R.M. van Lierop, D.C.Schram, A.D. Kuypers, and M.C.M. van de Sanden, An expanding thermal plasma for deposition of surface textured ZnO: Al with focus on thin film solar cell applications, Appl. Surf. Sci. 2001, 173(1-2): 40-43.
    [13] E.B.Yousfi, B. Weinberger, F. Donsanti, P. Cowache, and D. Lincot, Atomic layer deposition of zinc oxide and indium sulfide layers for Cu(In, Ga)Se 2-thin-film solar cells, Thin Solid Films, 2001,387:29-32.
    [14] D. M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, and T. Goto, Optically pumped lasing of ZnO at room temperature, Appl. Phys. Lett. 1997,70(17): 2230-2232.
    [15] W. Yang, R.D. Vispute, S. Choopun, R.P. Sharma, and T. Venkatesan, Ultraviolet photoconductive detector based on epitaxial Mg_(0.34)Zn_(0.66)O thin films, Appl. Phys. Lett. 2001,78 (18): 2787-2789.
    [16] Ziqiang Xu, Hong Deng, Juan Xie, Yan Li, Yanrong Li, Xiaotao Zu, and Shuwen Xue, Photoconductive UV detectors based on ZnO films prepared by Sol-Gel method, J. Sol-Gel Sci. Techn. 2005,36:223-226.
    [17] S.S. Hullavarad, S. Dhar, B. Varughese, I. Takeuchi, T. Venkatesan, and R.D. Vispute, Realization of Mg(x=0.15)Zn(1-x=0.85) O-based metal-semiconductor-metal UV detector on quartz and sapphire, J. Vac. Sci. Technol. A 2005,23(4): 982-985.
    [18] T. Aoki, Y. Hatanaka, and D.C. Look, ZnO diode fabricated by excimer-laser doping, Appl. Phys. Lett. 2000,76(22): 3257-3258.
    [19] H. Ohta, M. Orita, and M. Hirano, Fabrication and characterization of ultraviolet-emitting diodes composed of transparent p-n heterojunction, p-SrCu_2O_2 and n-ZnO, J. Appl. Phys.2001,89(10): 5720-5725.
    [20] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtami, T. Makino, and M. Sumiya, Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO, Nature Materials 2005,4:42-46.
    [21] S.-K. Hong, T. Hanada, H. Makino, Y. Chen, H.-J. Ko, and T. Yao, Band alignment at a ZnO-(GaN) (0001) heterointerface, Appl. Phys. Lett. 2001,78(21): 3849-3850.
    [22] Ahmed Nahhas, Hong Koo Kim, and Jean Blachere, Epitaxial growth of ZnO films on Si substrates using an epitaxial GaN buffer, Appl. Phys. Lett. 2001,78(11): 1511-1513.
    [23] Y.I. Alivov, E.V. Kalinina, A.E. Cherenkov, D.C. Look, B.M. Ataev, A.K. Omaev, M.V. Chukichev, and D.M. Bagnall, Fabrication and chanracterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrate, Appl. Phys. Lett. 2003, 83(23):4719-4721.
    [24] D.-K. Hwang, S.-H. Kang, J.-H. Lim, E.-J. Yang, J.-Y. Oh, J.-H. Yang, and S.-J. Park, p-ZnO/n-GaN heterostructure ZnO light-emitting diodes, Appl. Phys. Lett. 2005, 86:222101.
    [25] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, Mg_xZn_(1-x)O as a II-VI widegap semiconductor alloy, Appl. Phys. Lett.,1998, 72 (19): 2466-2468.
    [26] W.L. Park, G-C. Yi, H.M. Jany, Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn_(1-x)Mg_xO (0=x=0.49) thin films, Appl. Phys. Lett. 2001,79(13): 2022-2024.
    [27] L Zou, Z.Z.Ye, J.Y. Huang, B.H. Zhao, Structural characterization and pluminescent properties of Zn_(1-x)Mg_x films on silicon, Chin. Phys. Lett. 2002,19(9): 1350-1352.
    [28] T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, Effect of MgZnO-layer capping on optical properties of ZnO epitaxial layers, Appl. Phys. Lett., 2002,81(12): 2172-2174.
    [29] S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, and H. Shen, Realization of band gap above 5.0 eV in metastable cubic-phase Mg_xZn_(1-x)O alloy films, Appl. Phys. Lett., 2002,80(9): 1529-1531.
    [30] T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, and H. Koinuma, Band gap engineering based on Mg_xZn_(1-x)O and Cd_yZn_(1-y)O ternary alloy films, Appl. Phys. Lett. 2001,78(9): 1237-1239.
    [31] K. Sakurai, T. Takagi, T. Kubo, D. Kajita, T. Tanabe, H. Takasu, Shizuo Fujita, and Shigeo Fujita, Spatial composition fluctuations in blue-luminescent ZnCdO semiconductor films grown by molecular beam epitaxy, J. Cryst. Growth 2002,237-239: 514-517.
    [32] Z.Z. Ye, D.W. Ma, J.H. He, J.Y. Huang, B.H. Zhao, X.D. Luo, and Z.Y. Xu, Structural and photoluminescent properties of ternary Zn_(1-x)Cd_xO crystal films grown on Si(l 1 1) substrates, J. Cryst. Growth 2003,256:78-82.
    [33] H.S. Kang, S.H. Lim, J.W. Kim, H.W. Chang, GH. Kim, J.H. Kim, S.Y. Lee, Y. Li, J.S. Lee, J.K. Lee, M.A. Nastasi, S.A. Crooker, and Q.X. Jia, Exciton localization and Stokes' shift in Zn_(1-x)Cd_xO thin films depending on chemical composition, J. Cryst. Growth 2006,28(1): 70-73.
    [34] J. Chen, W. Z. Shen, N.B. Chen, D.J. Qiu, and H.Z. Wu, The study of composition non-uniformity in ternary Mg_xZn_(1-x)O thin films, J. Phys: Condens. Matter 2003, 15:L475-L482.
    [35] DJ. Qiu, H.Z. Wu, N.B. Chen, and T.N. Xu, Characterizations of cubic ZnMgO films grown on Si(lll) at low substrate temperature, Chin. Phys. Lett. 2003, 20 (4): 582-584.
    [36] Jun. Liang, Huizhen. Wu, Naibo. Chen and Tianning. Xu, Annealing effect on electrical properties of high-k MgZnO film on silicon, Semicond. Sci. Technol. 2005,20: L15-L19.
    [37] Z. Vashaei, T. Minegishi, H. Suzuki, T. Hanada, M.W. Cho, T. Yao, and A. Setiawan, Structural variation of cubic and hexagonal Mg_xZn_(1-x)O layers grown on MgO(111)/c-sapphire, J. Appl. Phys. 2005,98 (5): 054911.
    [38] S. Muthukumar, J. Zhong, Y. Chen, and Y. Lu, Growth and structural analysis of metalorganic chemical vapor deposited (1120) Mg_xZn_(1-x)O(0    [39] Hiroshi Tanaka, Shigeo Fujita, and Shizuo Fujita, Fabrication of wide-band-gap Mg_xZn_(1-x) quasi-ternary alloys by molecular-beam epitaxy, Appl. Phys. Lett. 2005,86(19):192911.
    [40] M. Fujita, M. Sasajima, Y. Deesirapipata, and Y. Horikoshia, Molecular beam epitaxial growth of hexagonal ZnMgO films on Si(111) substrates using thin MgO buffer layer, J. Cryst. Growth 2005, 278: 293-298.
    [41] Z. Vashaei, C. Harada, A. Setiawan, M.W. Cho, and T. Yao, Structural characterization of Ga-doped Mg_(0.9)Zn_(0.9) layers grown on ZnO/a-Al_2O_3 templates by P-MBE, Current Applied Physics 2004, 4: 618-620.
    [42] J. H. Kang, Y.R. Park, and K.J.Kim, Spectroscopic ellipsometry study of Zn_(1-x)Mg_xO thin films deposited on Al_2O_3(0001), Solid State Communication 2000, 115: 127-130.
    [43] T. Minemoto, T. Negami, S. Nishiwaki, H. Takakura, and Y. Hamakawa, Preparation of Zn_(1-x)Mg_xO films by radio frequency magnetron sputtering, Thin Solid Films 2000, 372: 173-176.
    [44] DJ. Cohen, K.C. Ruthe, and S.A. Barnett, Transparent conducting Zn_(1-x)Mg_xO:(Al, In)...thin films, J. Appl. Phys. 2001, 96(1): 459-467.
    [45] Y. Jin, B. Zhang, S. Yang, Y. Wang, J. Chen, Room temperature UV emission of Mg_xZn_(1-x)O films, Solid State Commun. 2001, 119: 409-413.
    [46] D. Zhao, Y. Liu, D. Shen, Y. Lu, J. Zhang, and X. Fan, Photoluminescence properties of Mg_xZn_(1-x)O alloy thin films fabricated by the sol-gel deposition method, J. Appl. Phys. 2001, 90(11): 5561-5563.
    [47] T. Takagi, H. Tanaka, Shizuo Fujita, and Shigeo Fujita, Molecular beam epitaxy of high Magnesium content single-Phase wurzite Mg_xZn_(1-x)O alloys(x\simeq 0.5) and their application to aolar-blind region photodetectors, Jpn. J. Appl. Phys. Part 2 2003, L401-L403.
    [48] 半导体异质结物理,虞丽生编著,科学出版社,1990.
    [49] 分子束外延和异质结构 复旦大学表面物理研究,1988,6.
    [50] 夏建白,半导体微结构物理效应及其应用讲座第2讲 量子阱、超晶格物理及其在光电子领域中的应用,物理,2004,33(9):684-691.
    [51] A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda, and Y. Segawa, Structure and optical properties of ZnO/Mg_(0.2)Zn_(0.8)O superlattices, Appl. Phys. Lett., 1999, 75(7): 980-982.
    [52] A. Ohtomo, K. Tamura, M. Kawasaki, T. Makino, Y. Segawa, Z.K. Tang, G.K.L. Wong, Y. Matsumoto, and H. Koinuma, Room-temperature stimulated emission of excitons in ZnO/(Mg, Zn)O superlattices, Appl. Phys. Lett., 2000, 77(14): 2204-2206.
    [53] T. Makino, C.H. Chia, Nguen T. Tuan, H. D. Sun, Y. Segawa, M. Kawasaki, A. Ohtomo, and K. Tamura, and H. Koinuma, Room-temperature luminescence of excitons in ZnO/(Mg, Zn)O multiple quantum wells on lattice-matched substrates, Appl. Phys. Lett., 2000, 77(7): 975-977.
    [54] H. D. Sun, T. Makino, N. T. Tuan, Y. Segawa, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohteme, K. Tamura, and H. Koinuma, Stimulated emission induced by exciton-exciton scattering in ZnO/ZnMgO multiquantum wells up to room temperature, Appl. Phys. Lett., 2000, 77(26): 4250-4252.
    [55] B. P. Zhang, N.T. Birth, K. Wakatsuki, C.Y. Liu, Y. Segawa, and N. Usami, Growth of ZnO/MgZnO quantum wells on sapphire substrates and observation of the two-dimensional confinement effect, Appl. Phys. Lett. 2005, 86: 032105.
    [56] K, Koike, K. Hama, I. Nakashinma, G. Takada, K. Ogata, S. Sasa, M. Inoue, and M. Yano, Molecular beam epitaxial growth of wide bandgap ZnMgO allou films on(111)-oriented Si substrate toward UV-detector applications, J. Cryst. Growth 2005, 278: 288-292.
    [57] Y.W. Heo, Y.W. Kwon, Y.Li, S.J. Pearton, and D.P. Norton, p-type behavior in phosphorus-doped(Zn, Mg)O device structures, Appl. Phys. Lett., 2004, 84(18): 3474-3476.
    [58] K. Ip, Y.W. Heo, D.P. Norton, S.J. Pearton, J.R. LaRoche and E Ren, Zn_(0.9)Mg_(0.1)O/ZnO p-n junctions grown by pulsed-laser deposition, Appl. Phys. Lett., 2004, 85(7): 1169-1171.
    [59] Y.J. Li, Y.W. Heo, J.M. Erie, H.S. Kim, K. Ip, S.J. Pearton, and D.P. Norton, Properties of phosphorus-doped ZnO and(Zn, Mg)O thin films via pulsed laser deposition, SPIE, 2005, Belling, ham, Fifth International Conference on Solid State Lighting, edited by lan T. Ferguson, et al, Proc. of SPIE Vol.5941(2005), 59411T.
    [60] Hyucksoo Yang, Y. Li, D. P. Norton, S. J. Pearton, Soohwan Jung, F.Ren, and L.A. Boatuer, Characteristics of unaunealed ZnMgO/ZnO p-n junctions on bulk(100) ZnO substrates, Appl. Phys. Lett. 2005, 86: 172103.
    [61] X. Zhang, X.M. Li, T.L. Chen, C.Y. Zhang, and W.D. Yu, p-type conduction in wide-gap Zn_(1-x)Mg_xO films grown by ultrasonic spray pyrolysis, Appl. Phys. Lett. 2005, 87: 092101.
    [62] A. Osinsky, J. W. Dong, M. Z. Kauser, B. Hertog, A. M. Dabiran, P.P. Chow, S. J. Pearton, O. Lopatiuk, and L. Chernyak, MgZnO/AlGaN heterostructure light-emitting diodes, Appl. Phys. Lett., 2004, 85(19): 4272-4274.
    [63] Kazuto Koike, Ippei Nakashima, Kazuyuki Hashimoto, Shigehiko Sasa, Masataka Inoue, and Mitsuaki Yano, Characteristics of a Zn_(0.7)Mg_(0.3)O/ZnO heterostructure field-effect transistor grown on sapphire substrate by molecular-beam epitaxy, Appl. Phys. Lett. 2005, 87: 112106.
    [64] 邹璐,叶志镇,黄靖云,赵炳辉,脉冲激光沉积法生长Zn_(1-x)Mg_xO薄膜,半导体学报,2002,23(12):1291-1294.
    [65] 邹璐,汪雷,黄靖云,赵炳辉,叶志镇,硅衬底上Zn_(1-x)Mg_xO薄膜的结构与光学性质,物理学报,2003,52(4):935-938.
    [66] G. F. Neumark, "Doping and conductivity in widegap Ⅱ-Ⅵ compounds, " in Widegap Ⅱ-Ⅵ Compounds for Opto-electronics Applications, ed. by H.E. Ruda(Chapman and Hall, London) 1992, 281.
    [67] D.B. Lake, C. G. Ban de Walle, G. F. Neumark, and S.T. Pantelides, Acceptor doping in ZnSe versus ZnTe, Appl. Phys. Lett. 1993,(6310): 1375-1377
    [68] C.H. Park, S.B. Zhang, and S.H. Wei, Origin of p-type doping difficulty in ZnO: the impurity perspective, Phys. Rev. B 2002, 66: 073202.
    [69] E.C. Lee, and K.J. Chang, Possible p-type doping with group-I elements in ZnO, Phys. Rev. B 2004, 70: 115210.
    [70] Y. Kanai, Admittance Spectroscopy of Cu-Doped ZnO Crystals, Jpn. J. Appl. Phys. Part 1, 1991, 30: 703-707.
    [71] Y. Kanai, Admittance Spectroscopy of ZnO Crystals Containing Ag, Jpn. J. Appl. Phys. Part 1, 1991, 30: 2021-2022.
    [72] J.J. Lander, Reactions of Lithium as a donor and an acceptor in ZnO, J. Phys. Chem. Solids, 1960, 15(3-4): 324-334.
    [73] B.K. Meyer, J. Sann, and A. Zeuer, Lithium and sodium acceptors in ZnO, Supperlattices and Microstructures, 2005, 38: 344-348.
    [74] O. Lopatiuk, L Chemyak, A. Osinsky, and J.Q. Xie, Lithium-related states as deep electron traps in ZnO, Appl. Phys. Lett. 2005, 87: 214110.
    [75] M. G. Wardle, J.P. Goss, and P.R. Briddon, Theory of Li in ZnO: A limitation for Li-based p-type doping, Phys. Rev. B2005, 71: 155205.
    [76] Y.J. Zeng, Z.Z. Ye, W.Z. Xu, L.L. Cben, D.Y. Li, L.P. Zhu, B.H. Zhao, Y.L Hu, Realization of p-type ZnO films via monodoping of Li acceptor, J. Cryst. Growth, 2005, 283: 180-184.
    [77] Y.J. Zeng, Z.Z. Ye, W.Z. Xu, D.Y. Li, J.G. Lu, L.P. Zhu, and B. H. Zhao, Dopant source choice for formation of p-type ZnO: Li acceptor, Appl. Phys. Lett. 2006, 88: 062107.
    [78] B. Xiao, Z. Z. Ye, Y.Z. Zhang, L.P. Zhu, B.H. Zhao, Fabrication of p-type Li-doped ZnO films by pulsed laser deposition, Appl. Surf. Sci. 2006,(accepted).
    [79] X. L Guo, H. Tabata, and T. Kawal, Pulsed laser reactive deposition of p-type ZnO film enhanced by an electron cyclotron resonance source, J. Cryst. Growth 2001, 223: 135-139.
    [80] D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason, and G. Cantwell, Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy, Appl. Phys. Lett. 2002, 81(10): 1830-1832.
    [81] X. Li, Y. Yan, T.A. Gessert, C. Dehart, C.L. Perkins, D. young, and T.J. Courts, p-Type ZnO thin gilms gormed by CVD reaction of Diethylzinc and NO gas, Electrochemical & Solid-State Letters 2003, 6(4): C56-C58.
    [82] W.Z. Xu, Z.Z. Ye, T. Zhou, B.H. Zhao, LP. Zhu, and J.Y. Huang, Low-pressure MOCVD growth of p-type ZnO thin films by using NO as the dopant source, J. Cryst. Growth 2004, 265: 133-136.
    [83] C.C. Lin, S.Y.Chen, S.Y. Cheng, and H.Y. Lee, Properties of nitrogen-implanted p-type ZnO films grown on Si_3N_4/Si by radio-frequency magnetron sputtering, Appl. Phys. Lett. 2004, 84(24): 5040-5042.
    [84] N.Y. Garces, N.C. Giles, L.E. Halliburton, G. Cantwell, D.B. Eason, D.C. Reynolds, and D.C. Look, Production of nitrogen acceptors in ZnO by thermal annealing, Appl. Phys. Lett. 2002, 80(8): 1334-1336.
    [85] Y.G. Wang, S.P. Lau, X.H. Zhang, H.W. Lee, H.H. ling, and B.K.Tay, Observations of nitrogen-related photoluminescence bands from nitrogen-doped ZnO films, J. Cryst. Growth 2003, 252: 265-269.
    [86] E.C. Lee, Y.S. Kim, Y.G. Jin, and K.J. Chang, Compensation mechanism for N acceptors in ZnO, Phys. Rev. B2001, 64: 085120.
    [87] Y. Yan, S.B. Zhang, and S.T. Pantelides, Control of doping by impurity chemical potentials: predictions forp-Type ZnO, Phys. Rev. Lett. 2001, 86(25): 5723-5726.
    [88] J. Neugebaner and C.G. Van de Walle, Role of hydrogen in doping of GaN, Appl. Phys. Lett. 1996, 68(13): 1839-1831.
    [89] K. Ogata, D. Kawaguchi, T. Kera, Sz. Fujita, and Sq. Fnjita, Effects of annealing atmosphere and temperature on acceptor activation in ZnSe: N grown by photoassisted MOVPE, J. Cryst. Growth 1996, 159(1-4): 312-316.
    [90] J.G. Lu, Z.Z. Ye, L. Wang, B.H. Zhao, and J.Y. Huang, Preparation and properties of N-Doped p-Type ZnO films by solid-source chemical vapour deposition with the c-axis parallel to the substrate, Chin. Phys. Lett. 2002, 19(10): 1494-1497.
    [91] J.G. Lu, Z.Z. Ye, L Wang, J.Y. Huang, and B.H. Zhao, Structural, electrical and optical properties of N-doped ZnO films synthesized by SS-CVD, Mater. Sci. in Semicond. Proc. 2003, 5: 491-496.
    [92] Z.Z. Ye, J.G. Lu, H.H. Chen, Y.Z. Zhang, L Wang, B.H. Zhao, and J.Y. Huang, Preparation and characteristics of p-type ZnO films by DC reactive magnetron sputtering, J. Cryst. Growth 2003, 253: 258-264.
    [93] J.G. Lu, Y. Z. Zhang, Z. Z. Ye, L Wang, B.H. Zhao, and J.Y. Huang, p-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations, Mater. Lett. 2003, 57: 3311-3314.
    [94] J.Y. Huang, Z. Z. Ye, H. H. Chen, B. H. Zhao, and L. Wang, Growth of N-doped p-type ZnO films using ammonia as dopant source gas, J. Mater. Sci. Lett. 2003, 22: 249-251.
    [95] Z.G. Ji, C.X. Yang, K. Liu, and Z. Z. Ye, Fabrication and characterization of p-type ZnO films by pyrolysis of zinc-acetate-ammonia solution, J. Cryst. Growth 2003, 253: 239-242.
    [96] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu, Growth of p-type zinc oxide films by chemical vapor deposition, Jpn. J. Appl. Phys. 1997, 36: L1453-L1455.
    [97] X. Li, B. Keyes, S. Asher, S. B. Zhang, S. Wei, T. J. Courts, S. Limpijumnong, and C.G. Van de Walle, Hydrogen passivation effect in nitrogen-doped ZnO thin films, Appl. Phys. Lett. 2005, 86(12): 122107.
    [98] J.F. Rommeluere, L Svob, F. Jomard, J. Mimila-Arroyo, A. Lusson, V. Sailer and Y. Marfaing, Electrical activity of nitrogen acceptors in ZnO films grown by metalorganic vapor phase epitaxy, Appl. Phys. Lett. 2003, 83(2): 287-289.
    [99] I. Suemune, ABM. A. Ashrafi, M. Ebihara, M. Kudmoto, H. Kumano, T.Y. Seong, B.J. Kim, and Y.W. Ok, Epitaxial ZnO growth and p-type doping with MOMBE, Phys. Stat. Sol.b2004,241:640-647.
    [100] Tetsuya. Yamamoto and Hiroshi. Katayama-Yoshida, Physics and control of valence states in ZnO by codoping method, Physica B 2001,302/303:155-162.
    [101] L.G Wang, and A. Zunger, Cluster-doping approach for wide-gap semiconductors: the case of p-type ZnO, Phys. Rev. Lett. 2003,90:256401.
    [102] M. Joseph, H. Tabata, and T. Kawai, p-type electrical condution in ZnO thin films by Ga and N codoping, Jpn. J. Appl. Phys. 1999,38: L1205-L1207.
    [103] A.V. Singh, R.M. Mehra, A. Wakahara, and A. Yoshida, p-type conduction in codoped ZnO thin films, J. Appl. Phys. 2003, 93(1): 396-399.
    [104] M. Komatsu, N. Ohashi, I. Sakaguchi, S. Hishita, and H. Haneda, Ga, N solubility limit in co-implanted in ZnO measured by secondary ion mass spectrometry, Appl. Surf. Sci. 2002, 189(3-4): 349-352.
    [105] J.G Lu, Z.Z. Ye, F. Zhuge, Y.J. Zeng, B.H. Zhao, and L.P. Zhu, p-type conduction in N-Al co-doped ZnO thin films, Appl. Phy. Lett. 2004,85(15): 3134-3135.
    [106] J.G Lu, L.P. Zhu, Z.Z. Ye, Y.J. Zeng, F. Zhuge, B.H. Zhao, and D.W. Ma, Improved N-Al codoped p-type ZnO thin films by introduction of a homo-buffer layer, J. Cryst. Growth2005,274: 425-429.
    [107] Z.Z. Ye, F. Zhu-Ge, J.G Lu, Z.H. Zhang, L.P. Zhu, B.H. Zhao, and J.Y. Huang, Preparation of p-type ZnO films by Al+N-codoping method, J. Cryst. Growth 2004,265:127-132.
    [108] F. Zhuge, Z.Z. Ye, L.P. Zhu, J.G Lu, B.H. Zhao, J.Y. Huang, Z.H. Zhang, L. Wang, and Z.G Ji, Electrical and optical properties of Al-N co-doped p-type zinc oxide films, J. Cryst. Growth 2004,268:163-168.
    [109] F. Zhuge, L.P. Zhu, Z.Z. Ye, D.W. Ma, J.G Lu, J.Y. Huang, F.Z. Wang, Z.G Ji, and S.B. Zhang, ZnO p-n homojunctions and ohmic contacts to Al-N-co-doped p-type ZnO, Appl. Phys. Lett. 2005, 87:092103.
    [110] GD. Yuan, Z.Z. Ye, L.P. Zhu, Q. Qian, B.H. Zhao, R.X. Fan, Craig L. Perkins and S. B. Zhang, Control of conduction type in Al- and N-codoped ZnO thin films, Appl. Phys. Lett. 2005,86: 202106.
    [111] GD. Yuan, Z.Z. Ye, L.P. Zhu, Y.J. Zeng, J.Y. Huang, Q. Qian, and J.G Lu, p-type conduction in Al-N co-doped ZnO films, Mater. Lett. 2004,58:3741-3744.
    [112] J.M. Bian, X.M. Li, X.D. Gao, W.D. Yu, and L.D. Chen, Deposition and electrical properties of N-In codoped p-type ZnO films by ultrasonic spray pyrolysis, Appl. Phys. Lett. 2004,84(4): 541-543.
    [113] J.M. Bian, X.M. Li, C.Y. Zhang, L.D. Chen, and Q. Yao, Synthesis and characterization of two-layer-structured ZnO p-n homojunctions by ultrasonic spray pyrolysis, Appl. Phys. Lett. 2004,84(19): 3783-3785.
    [114] L.L. Chen, J.G Lu, Z.Z. Ye, Y.M. Lin, B.H. Zhao, Y.M. Ye, J.S. Li, and L.P. Zhu, p-type behavior in In-N codoped ZnO thin films, Appl. Phys. Lett. 2005,87:252106.
    [115] M. Sanmyo, Y. Tomita, and K. Kobayashi, Preparation of zinc oxide films containing Be and N atoms by radio frequency magnetron sputtering, Thin Solid Films 2005, 472:189-194.
    [116] K. Kobayashi, T. Yamazaki, Y. Hatta, and Y. Tomita, Doping of bonds into ZnO films and the changes of their electric properties, Key Engin. Mater. 2004,269:79-82.
    [117] A. Krtschil, A. Dadgar, N. Oleynik, J. Biasing, A. Diez, and A. Krost, Local p-type conductivity in zinc oxide dual-doped with nitrogen and arsenic, Appl. Phys. Lett. 2005,87:262105.
    [118] Soon-Jin So, Choon-Bae Park, Diffusion of phosphorus and arsenic using ampoule-tube method on undoped ZnO thin films and electrical and optical properties of p-type ZnO thin films, J. Cryst. Growth 2005,285:606-612.
    [119] K.K. Kim, H.S. Kim, D.K. Hwang, J.H. Lim, and S.J. Park, Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopans, Appl. Phys. Lett. 2003,83(1): 63-65.
    [120] Fugang Chen, Zhizhen Ye, Weizhong Xu, Binghui Zhao, Liping Zhu, Jianguo Lv, Fabrication of p-type ZnO thin films via MOCVD method by using phosphorus as dopant source, J. Cryst. Growth 2005, 281:458-462.
    [121] F.X. Xiu, Z. Yang, L.J. Mandalapu, J.L. Liua, and W.P. Beyermann, p-type ZnO films with solid-source phosphorus doping by molecular-beam epitaxy, Appl. Phys. Lett 2006, 88:052106.
    [122] Y.R. Ryu, S. Zhu, D.C. Look, J.M. Wrobel, H.M. Jeong, and H.W. White, Synthesis of p-type ZnO films J. Cryst. Growth 2000, 216: 330-334.
    [123] Y.R. Ryu, T.S. Lee, and H.W. White, Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition, Appl. Phys. Lett. 2003, 83(1): 87-89.
    [124] D.C. Look, GM. Renlund, R.H. Burgener II, and J.R. Sizelove, As-doped p-type ZnO produced by an evaporation/sputtering process, Appl. Phys. Lett. 2004,85(22): 5269-5271.
    [125] Veeramuthu Vaithianathan, Byung-Teak Lee, and Sang Sub Kim, Preparation of As-doped p-type ZnO films using a Zn_3As_2/ZnO target with pulsed laser deposition, Appl. Phys. Lett.2005,86:062101.
    [126] Veeramuthu Vaithianathan, Yong Hee Lee, Byung-Teak Lee, Shunichi Hishitab, and Sang Sub Kima, Doping of As, P and N in laser deposited ZnO films, J. Cryst. Growth 2006,287:85-88.
    [127] T. Aoki, Y. Shimizu, A. Miyake, A. Nakamura, Y. Nakanishi, and Y. Hatanaka, p-type ZnO layer formation by excimer laser doping, Phys. Stat. Sol. (b) 2002,229(2): 911-914.
    [128] F.X. Xiu, Z. Yang, L.J. Mandalapu, D.T. Zhao, J.L. Liu, and W.P. Beyermann, High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy, Appl. Phys. Lett. 2005,87:152101.
    [129] F.X. Xiu, Z. Yang, L.J. Mandalapu, D.T. Zhao, J.L. Liu, and W.P. Beyermann, Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy, Appl. Phys. Lett. 2005, 87: 252102.
    [130] S. Limpijumnong, S.B. Zhang, S.H. Wei, and C. H. Park, Doping by large-size-mismatched impufites: the microscopic origin of arsenic or antimony-doped p-type zinc oxide, Phys. Rev. Lett. 2004, 92: 155504.
    [131] U. Wahl, E. Rita, J. G. Correia, A. C. Marques, E. Alves, and J. C. Soares, Direct evidence forAs as a Zn-site impurity in ZnO, Phys. Rev. Lett. 2005, 95: 215503.
    [132] Y. Liu, C.R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, and M. Wraback, Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD, J. Electro. Mater. 2000, 29(1): 69-74.
    [133] D. Basaka, GAmin, B. Mallik, G.K. Paul, and S.K.Sen, Photoconductive UV detectors on sol-gel-synthesized ZnO films, J. Cryst. Growth 2003, 256: 73-77.
    [134] Q.A. Xu, J.W. Zhang, K.R. Ju, X.D. Yang, and X. Hou, ZnO thin film photoconductive ultraviolet detector with fast photoresponse, J. Cryst. Growth 2006, 289: 44-47.
    [135] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, ZnO Schottky ultraviolet photodetectors, J. Cryst. Growth 2001, 225: 110-113.
    [136] Ya.I. Alivov, J. E. Van Nostrand, D.C. Look, M.V. Chukichev, and B.M. Ataev, Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes, Appl. Phys. Lett. 2003, 83(14): 2943-2945.
    [137] Ya.I. Alivov, U. Ozgiir, S. Dogan, C. Liu, Y. Moon, X. Gu, V. Avrutin, Y. Fu, H. Morkoc, Forward-current electroluminescence from GaN/ZnO double heterostructure diode, Solid-State Electron. 2005, 49: 1693-1696.
    [138] S.J. Jiao, Z.Z. Zhang, Y.C. Liu, D.Z. Shen, B. Yao, J.Y. Zhang, B.H. Li, D.X. Zhao, X.W. Fan, and Z.K. Tang, ZnO p-n junction light-emitting diodes fabricated on sapphire substrates, Appl. Phys. Lett. 2006, 88: 031911.
    [139] 叶志镇,徐伟中,曾昱嘉,江柳,赵炳辉,朱丽萍,吕建国,黄靖云,汪雷,李先杭,MOCVD法制备ZnO同质发光二极管,半导体学报,2005,26(11):2264-2266.
    [140] J.E Ready, Development of plume of material evaporized by giant-pulse laser, Appl. Phys. Lett. 1963, 39(1): 11-13.
    [141] D. Dijkkamp, T. Venkatesan, X.D. Wu, S.A. Shaheen, N. Jisrawi, Y. H. Min-Lee, W.L. Mclean, and M. Croft, Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material, Appl. Phys. Lett. 1987, 51(8): 619-621.
    [142] R. Diamant, E. Jimenez, E. Haro-Poniatowski, L Ponce, M. Fernandez-Guasti, J.C. Alonso, Plasma dynamics inferred from optical emission spectra, during diamond-like thin film pulsed laser deposition, Diamond & Related Materials 1999, 8(7): 1277-1284.
    [143] M. Yoshimoto, K.Yoshida, H. Maruta, Y. Hishitani, H. Koinuma, S. Nishio, M. Kakihana, and T. Tachibana, Epitaxial diamond growth on sapphire in an oxidizing environment, Nature 1999, 399: 340-342.
    [144] C.B. Collins, E Davanloo, E. M. Juengerman, W. R. Osborn, and D. R. Jander, Laser plasma source of amorphic diamond, Appl. Phys. Lett. 1989, 54(3): 216-218.
    [145] Z. Paszti, G. Peto, Z. E. Horvath, A. Karacs, Laser ablation induced formation of nanoparticles and nanocrystal networks, Appl. Surf. Sci. 2000, 168: 114-117.
    [146] Ye Sun, Gareth M. Fuge, and Michnel N. R. Ashfold, Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods, Chem. Phys. Lett. 2004, 396: 21-26.
    [147] R.K. Singh, and J. Narayan, Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model, Phys. Rev. B 1990, 41(13): 8843-8859.
    [148] M.Von奥尔曼,激光束与材料相互作用的物理原理及应用,科学出版社 1994.
    [149] J.W. Hastie, D.W. Bonnel, A.J. Paul, and P. K. Schenck, Gas dynamics and chemistry in the pulsed laser deposition of oxide dielectric thin films, Mater. Res. Soc. Symp. Proc. 1994, 334: 305.
    [150] X. Y. Chen, and Z. G. Liu, Interaction between laser beam and target in plsed laser deposition: laser fluence and ambient gas effects, Appl. Phys. A1999, S69: S523-S525.
    [151] Douglas B. Chrisey, and Graham K. Hubler, Pulsed Laser Deposition of Thin Films, 2nd ed, John Wiley & Sons, 1994, p.168.
    [152] D.C. Reynold, D.C. Look, B. Jogai, H. Morkoc, Ti, Similarities in the bandedge and deep-center photoluminescence mechanisms of ZnO and GaN, Solid State Commun., 1997, 101(9): 643-646.
    [153] D.C. Look, D.C. Reynolds, Z.-Q. Fang, J.W. Hemsky, J.R. Sizelove, R.L. Jones, Point defect characterization of GaN and ZnO, Mater. Sci. Eng. B, 1999, 66(1-3): 30-32.
    [154] 陈奶波,邱东江,吴惠桢,张寒洁,鲍世宁,何丕模,MgZnO和ZnO晶体薄膜紫外发光特性比较,红外与毫米波学报,2003,22(5):349-352.
    [155] Bixia Lin, Zhuxi Fu, and Yunbo Jia, Green luminescent centers in undoped zinc oxide films deposited on silicon substrates, Appl. Phys.Lett. 2001, 79(7): 943-945.
    [156] F.H. Leiter, H.R. Alves, A. Hofstaetter, D. Mhofmann, and B.K. Meyer, The oxygen vacancy as the origin of a green emission in undoped ZnO, Phys. Stat. Sol. b, 2001, 226(1): R4-R5.
    [157] Shen Zhu, Y. Ryu, H.W. White, and Y. Yang, Effects of ambient pressure in pulsed laser deposition-morphology and composition study of epitaxial ZnSe film, Appl. Surf. Sci. 1998, 127-129: 584-588.
    [158] T.E. Itina, A. A. Katassonov, W. Marine, and M. Autric, Numerical study of the role of a background gas and system geometry in pulsed laser deposition, J. Appl. Phys. 1998, 83(11): 6050-6054.
    [159] Zhaoyan Zhang, and George Gogos, Effects of laser intensity and ambient conditions on the laser-induced plume, Appl. Surf. Sci. 2005, 252: 1057-1064.
    [160] T. Schaff, H.U. Krebs, Influence of inert gas pressure on deposition rate during pulsed laser deposition, Appl. Phys. A, 2002, 75(5): 551-554.
    [161] J.W. Hastie, D.W. Bonnel, A.J. Paul, and P.K. Schenck, Gas dynamics and chemistry in the pulsed laser deposition of oxide dielectric thin films, Mater. Res. Soc. Symp. Proc. 1994, 334: 305.
    [162] Hang-Ju Ko, Yefan Chen, Soon-Ku Hong, Takafumi Yao, Doping effects in ZnO layers using Li_3N as a doping source, J. Cryst. Growth 2003, 251: 628-632.
    [163] H. C. Ong, A. X. E. Zhu, and G. T. Du, Dependence of the excitonic transition energies and mosaicity on residual strain in ZnO thin films, Appl. Phys. Lett. 2002, 80(6): 941-943.
    [164] A. P. Roth, J. B. Webb, and D.F. Williams, Band-gap narrowing in heavily defect-doped ZnO, Phys. Rev. B, 1982, 25(12): 7836-7839.
    [165] Y. Dou, T. Fishlock, R.G. Egdell, D.S.L Law, and G. Beamson, Band-gap shrinkage in n-type-doped CdO probed by photoemission spectroscopy, Phys. Rev. B 1997, 55(20): R13381-13384.
    [166] T. E. Itina, A.A. Katassonov, W. Marine, and M. Autric, Numerical study of the role of a background gas and system geometry in pulsed laser deposition, J. Appl. Phys. 1998, 83(11): 6050-6054.
    [167] 吕建国,znO半导体光电材料的制备及其性能研究,浙江大学博士学位论文,2005.06.
    [168] N.Y. Garces, LJ. Wang, N.C. Giles, L.E. Halliburto n, D.C. Look, and D.C. Reynolds, Thermal diffusion of lithium acceptors into ZnO crystals, J. Electronic Materials 2003, 32(7): 766-771.
    [169] M. Chen, Z. L Pei, X. Wang, Y.H. Yu, X.H. Liu, C. Sun, and L.S. Wen, Intrinsic limit of electrical properties of transparent conductive oxide films, J. Phys. D 2000, 33: 2538-2548.
    [170] K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, and J.A. Voigt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors, Appl. Phys. Lett. 1996, 68(3): 403-405.
    [171] M.A. Reshchikov, F. Shahedipour, R. Y. Korotkov, B.W. Wessels, M.P. Ulmer, Photoluminescence band near 2.9 eV in undoped GaN epitaxial layers, J. Appl. Phys. 2000, 87(7): 3351-3354.
    [172] D.-K. Hwang, H.-S. Kim, J.-H. Lim, J.-Y. Oh, J.-H. Yang, S.-J. Park, K.-K. Kim, D.C. Look, and Y.S. Park, Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering, Appl. Phys. Lett. 2005, 86: 151917.
    [173] E.C. Lee, Y.S. Kim, Y.G. Jin, and K.J. Chang, Compensation mechanism for N acceptors in ZnO, Phys. Rev. B 2001, 64: 085120.
    [174] Y. Yah, S.B. Zhang, and S.T. Pantelides, Control of doping by impurity chemical potentials: predictions for p-type ZnO, Phys. Rev. Lett. 2001, 86(25): 5723-5726
    [175] X.-L. Guo, H. Tabata, and T. Kawai, p-Type conduction in transparent semiconductor ZnO thin films induced by electron cyclotron resonance N_2O plasma, Optical Materials 2002, 19: 229-233.
    [176] T. A. Cleland, and D. W. Hess, Diagnostics and modeling of N_2O RF glow discharges, J. Electrochem. Soc. 1989, 136(10): 3103-3111.
    [177] Tetsuya Yamamoto, and Hiroshi Katayama-Yoshida, Unipolarity of ZnO with a wide-band gap and its solution using codoping method, J. Cryst. Growth, 2000, 214/215: 552-555.
    [178] Yefan Chen, D.M. Bagnall, Hang-jun Koh, Ki-tae Park, Kenji Hiraga, Ziqiang Zhu, and Takafumi Yao, Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization, J. Appl. Phys. 1998, 84(7): 3912-3918.
    [179] 叶志镇,陈汉鸿,刘榕,张吴翔,赵炳辉,直流磁控溅射ZnO薄膜的结构和室温PL谱,半导体学报,2001,22(8):1015-1018.
    [180] Jasprit Singh, Semiconductor Optoelectronics: Physics and Technology, McGraw-Hill, 1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700