ZnO:Al透明导电薄膜和ZnO发光器件的制备及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO)是一种宽禁带(3.37 eV)Ⅱ-Ⅵ族化合物半导体材料,具有较大的激子束缚能(60 meV),理论上更容易在室温下实现高效率的受激发射,由于ZnO在结构、电学和光学等方面有诸多优点,加上ZnO薄膜的制作方法很多,在透明电极、压敏电阻、太阳能电池窗口、表面声波器件、气体传感器、发光二极管等领域应用潜力巨大。本文采用磁控溅射法生长Al掺杂ZnO透明导电薄膜(AZO),研究了掺H_2对AZO薄膜透明导电特性的影响;采用超声喷雾热分解法(USP),通过氮-铟共掺杂制备了p型ZnO薄膜,在此基础上制备了ZnO同质结及异质结电致发光器件;采用脉冲激光沉积法(PLD),通过GaAs衬底As扩散获得p型ZnO薄膜,并进一步尝试着制备了ZnO发光器件。具体研究内容如下:
     (1)采用磁控溅射法,以AZO(2wt.%Al_2O_3)为靶材,在玻璃衬底上生长AZO薄膜。研究了背景Ar气氛中掺H_2对AZO薄膜结构、光学、电学等特性的影响,发现嵌入Zn-O键中的氢原子存在饱和阶段,在此阶段H_2可以改善AZO薄膜的光学、电学等特性。在低温100℃、H_2气流量1.0 sccm条件下成功制备出电阻率为4.15×10~(-4)Ωcm、可见光区域平均透射率为93%的优质AZO透明导电薄膜,与无H_2条件下制备的AZO薄膜相比较,电阻率降低到未掺H样品的1/4,实现了高质量AZO透明导电薄膜的低温制备。
     (2)采用超声喷雾热分解法,以In(NO_3)_3和CH_3COONH_4为掺杂源,通过氮-铟共掺杂制备了p型ZnO薄膜。在此基础上,成功的进行了ZnO同质结发光器件的制备,室温条件下测得的电致发光谱(EL)由一个较宽的蓝绿光发光带(中心位于~2.44 eV)和一个较弱的蓝紫光右肩峰(中心位于~2.9 eV)组成。为了进一步提高器件发光效率,本论文还制备了ZnMgO/ZnO/ZnMgO双异质结构发光器件,室温下观测到该器件明显的电致发光现象,发光谱由中心位于450 nm和520 nm两个独立的峰组成,属于ZnO缺陷深能级发光。
     (3)采用脉冲激光沉积法,通过衬底As扩散成功制备了p-ZnO薄膜。并在此基础上,成功制作出p-ZnO/n~+-GaAs异质结发光器件,其电致发光谱由蓝绿光波段和红外光波段组成,分别与光致发光谱(PL)测试结果中ZnO的深能光致发光和GaAs的光致发光相对应。在异质结器件基础上,以AZO薄膜作为n型层,构成n-ZnO/p-ZnO/n~+-GaAs三层结构的发光器件。室温下观测到该器件有明显的电致发光现象,EL谱是由一个较宽的蓝绿光发光带(中心位于~2.5 eV)和一个较弱的蓝紫光右肩峰(中心位于~3.0 eV)组成。I-V特性测试结果呈现典型的p-n结整流特性,正向开启电压约为4.5 V,反向击穿电压约为9 V。
ZnO has recently become a very popular material due to its great potential foroptoelectronics applications. The large direct band gap of 3.3 eV, along with the large excitonbinding energy (60 meV) and many other advantages, make ZnO a strong candidate for thenext generation of ultraviolet light emitting and lasing devices operating at high temperaturesand in harsh environments. In this thesis, the Al-doped ZnO (AZO) films were prepared byreactive frequency magnetron sputtering in H_2 ambient, and the influence of H_2 flux on thetransparent and conductive properties of the AZO films was investingated. Moreover, ZnOhomojunction light-emitting diode was grown on single-crystal GaAs (100) substrate byultrasonic spray pyrolysis (USP) based on the success of N-In codoped p-type ZnO films.Furthermore, As-doped p-type ZnO films were prepared by pulsed laser deposition (PLD),and the ZnO based devices were fabricated and characterized. The details are as follows:
     (1) To investigate the influence H_2 on the properties of AZO films, the AZO films weregrown on glass substrate by magnetron sputtering with AZO (98 wt.% ZnO 2 wt.% Al_2O_3)ceramic target in H_2 ambient. The resistivity of 4.15×10~(-4)Ω.cm and the average transmittanceof more than 93% in the visible range were obtained with the optimal H_2-flux of 1.0 sccm at arelatively lower temperature of 100℃. The method of further improving the electricalproperties of AZO films prepared at low growth temperature can be especially useful forsome low-melting point photoelectric devices and substrates.
     (2) N-In codoped p-type ZnO films were successfully prepared by ultrasonic spraypyrolysis using CH_3COONH_4 and In(NO_3)_3 as the doped source of nitrogen and indium.Based on the achievement of p-type ZnO films, ZnO homojunction light-emitting devicescomprised of N-In codoped p-type ZnO and unintentionally doped n-type ZnO film wereprepared on GaAs substrate with the same method. A electroluminescence emissionassociated with defects was observed from the ZnO homojunction under forward currentinjection at room temperature. The EL spectra consisted of a wide band centered at~2.4.4 eV(FWHM,~0.47 eV) and a weak right shoulder centered at~2.9 eV. Furthermore, Theheterojunction light-emitting diode with n-Zn_(0.8)Mg_(0.2)O/ZnO/p-Zn_(0.8)Mg_(0.2)O structure wasgrown. A distinct visible electroluminescence with a dominant emission peak centered at450 nm and an emission peak centered at~520 nm were observed at room temperature fromthe heterojunction structure under forward bias conditions. The origin of electroluminescence emission was supposed to be attributed to a radiative recombination through deep-leveldefects in the ZnO active layer.
     (3) As diffusion p-type ZnO films were successfully prepare by pulsed laser deposition.Based on the achievement of p-type ZnO films, p-ZnO/n~+-GaAs heterojunction light emittingdevice was successfully fabricated by pulsed laser deposition. The electroluminescenceemission was in the blue and ultra red region, which was coincidence with thephotoluminescence spectra of deep-level emission from ZnO layer and GaAs layerrespectively. In addition, the ZnO light emitting device with n-ZnO/p-ZnO/n~+-GaAs structurewas grown by pulsed laser deposition. As-doped ZnO film by diffusion of As from thesubstrate was used for the p-type side and Al-doped ZnO film for the n-type side of the device.Distinct electroluminescence spectrum consists of a dominant emission peak at~2.5 eV and aweak shoulder centered at~3.0 eV was observed at room temperature. The I-V characteristicof the ZnO homojunction showed a good rectifying behavior with a turn-on voltage of~4.5 Vand a reverse breakdown voltage of~9 V.
引文
[1] M.H. Koch, A.J. Hartmann, R.N. Lamb, et al. Self-Texture in the initial stages of ZnO film growth. J. Phys. Chem. B, 1997, 101(4): p8231.
    [2] H.S. Ku, H. Takashi, K.H. Ju, et al. Control of polarity of ZnO films grown by plasma-assisted molecular-beam epitaxy: Zn-and O-polar ZnO films on Ga-palor GaN templates. Appl. Phys. Lett. 2000, 77(22): p3571.
    [3] Bagnall D M, Chen Y F, Zhu Z, et al. High temperature excitonic stimulated emission from ZnO epitaxial layers. Appl Phys Lett. 1998, 73(8): 1038.
    [4] J.S.Prener and F.F.William. Self Activation and Self Coactivation in Zinc Sulfide Phosphors, J. Chem. Phys. 1956, 25: 361.
    [5] W.YLiang and A.D.Jofe. Transmission Spectra of ZnO Single Crystals, Phys. Rev. Let. 1968,20: 59.
    [6] J.M.Hvam. Exciton-exciton interaction and laser emission in high-purity ZnO, Solid state Commun. 1973, 12: 95.
    [7] YN.Xu, W.YChing. Electronic, optical, and structural properties of some wurtzite crystals, Phys.Rev. B. 1993, 48: 4335.
    [8] R.Dingle. Luminescent Transitions Associated With Divalent Copper Impurities and the Green Emission from Semiconducting Zinc Oxide, Phys. Rev. Let. 1969, 23: 579.
    [9] E.GBylander. Surface effects on the low-energy cathodoluminescence of zinc oxide, J. Appi. Phys. 1978, 49: 1188.
    [10] 137.S.Fujihara, H.Naito, T.Kimura, et al. Visible photoluminescence of ZnO nanoparticles dispersed in highly transparent MgF_2 thin-films via sol-gel process, Thin Solid Films 2001, 389: 227.
    [11] Mikrajuddin, F.Iskandar, K.Okuyama, et al. Stable photoluminescence of zinc oxide quantum dots in silica nanoparticles matrix prepared by the combined sol-gel and spray drying method, J. Appl. Phys. 2001, 89:6431.
    [12] H J.Egelhaaf, D.Oelkrug. Luminescence and Nonradiative Deactivation of Excited States Involving Oxygen Defect Centers in Polycrystalline ZnO, J. Cryst. Growth. 1996, 161: 190.
    [13] J.Kossanyi, D.Kouyate, J.C.Ronfard-Haret, et al. Photoluminescence of semiconducting zinc oxide containing rare earth ions as impurities, J. Lumin. 1990, 46: 17.
    [14] 35.X.L.Wu, G.GSiu, C.L.Fu, et al. Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films, Appl. Phys. Let. 2001, 78: 2285.
    [15] 徐小亮,施朝淑.纳米微晶结构ZnO及其紫外激光.物理学进展,2000,20(4):357.
    [16] Z K Tang, G K L Wong, P Yu et al. Room-Temperature Ultraviolet Laser Emission from Self-Assembled ZnO Microcrystallite Thin Films. Applied Physics Letters, 1998, 72(25): 3270.
    [17] Cao H, Zhao Y G, Ho S T, et al. Random Laser Action in Semiconductor Powder. Physics Review Letters, 1999, 82(11): 2278.
    [18] 王卿濮.ZnO薄膜的制备及发光特性的研究:(博士毕业论文).济南:山东大学,2003.
    [19] M Kawasaki, A Ohtomo, I Ohkubo, et al. Excitonic Ultraviolet Laser Emission at Room Temperature from Naturally Made Cavity in ZnO Nanocrytal Thin Films. Materials Science and Engineering: B, 1998, 56(2-3): 239.
    [20] 余旭浒,马瑾,计峰,王玉恒,张锡健,程传福,马洪磊.薄膜厚度对ZnO∶Ga透明导电膜性能的影响.功能材料,2005,36(02):241.
    [21] P. Nunes, E. Fortunato, R. Martins. Influence of the post-treatment on the properties of ZnO thin films. Thin Solid Films. 2001, 383: 277.
    [22] 李微,孙云,何青,刘芳芳,李凤岩.孪生对靶直流磁控溅射制备ZnO∶Al薄膜及其特性研究.人工晶体学报,2006,35(04):761.
    [23] 倪星元,吴永刚,吴广明,张慧琴,金哲民.氧化锌透明导电薄膜的制备及其特性.材料研究学报,1999,13(03):331.
    [24] Kwang Joo Kim and Young Ran Park. Large and abrupt optical band gap variation in In-doped ZnO. Appl. Phys. Lett. 2001,78(4): 475.
    [25] A. Suzuki, T. Matsushita, N. Wada, et al. Transparent Conducting Al-Doped ZnO Films Prepared by Pulsed Laser Deposition. Jpn. J. Appl. Phys. Part 2, 1996, 35: L56.
    [26] 郝晓涛,马瑾,田茂华,王卿璞,马洪磊,叶丽娜,陈峰.柔性衬底铝掺杂氧化锌透明导电膜的特性研究.功能材料与器件学报,2002,8(01):8.
    [27] V. srikant, Valter Sergo and David R. Clarke. Epitaxial Aluminum-doped Zinc Oxide Thin Films on Sapphire:Ⅱ, Defect Equilibria and Electrical Properties. J. Am. Ceram. Soc. 1995, 78(7): 1935.
    [28] NF Cooray, K Kushiya, A Fujimaki, D Okumura et al. Optimization of Al-doped ZnO window layers for large-area CulnGaSe-2 based modules by RF/DC/DC multiple magnetron sputtering, Jpn. J. Appl. Phys. 2000, 39: L555.
    [29] 陆峰,徐成海,曹洪涛,裴志亮,孙超,闻立时.透明导电ZnO∶Al(ZAO)纳米薄膜的性能分析.真空科学与技术,2003,23(01):9.
    [30] A. Kobayashi, O. F. Sankey, and J. D. Dow, Deep energy levels of defects in the wurtzite semiconductors AIN, CdS, CdSe, ZnS, and ZnO, Phys. Rev. B. 1983, 28: 946.
    [31] Yah Yanfa and Zhang S B., "Control of Doping by Impurity Chemical Potentials: Predictions for p-Type ZnO"Phys Rev Lett, 2001, 86: 5723.
    [32] Xin-Li Guo, Tabata Hitoshi, Kawai Tomoji, Pulsed laser reactive deposition of p-type ZnO film enhanced by an electron cyclotron resonance source, J Crystal Growth, 2001,223.
    [33] D. C. Look, D. C. Reynolds, C. W Litton, Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy, Appl Phys Let, 2002, 81 (10): 1830.
    [34] K.K. Kim, H.S. Kim, D.K. Hwang, J.H. Lim, and S.-J. Park, p-type ZnO thin films via phosphorus doping and thermal activation of the dopant, Appl.Phys. Lett. 2003, 83: 63.
    [35] Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, and H. W.White, Synthesis of p-type ZnO films, J. Cryst. Growth. 2000, 216: 330.
    [36] T. Yamamoto and H. Katayama-Yoshida, Unipolarity of ZnO with a wide-band gap and its solution using codoping method, J. Cryst. Growth. 2000, 214: 552.
    [37] A. Tsukazaki et al., Systematic examination of carrier polarity in composition spread ZnO thin films codoped with Ga and N, Appl. Phys. Lett. 2002, 81: 235.
    [38] K. Nakahara, H. Takasu, P. Fons, A. Yamada, K. Iwata, K. Matsubara, R..Hunger, and S. Niki, Interactions between gallium and nitrogen dopants in ZnO films grown by radical-source molecular-beam epitaxy, Appl. Phys. Lett. 2001, 79: 4139.
    [39] K. Nakahara, H. Takasu, et al. Growth of N-doped and Ga + N-codoped ZnO films by radical source molecular beam epitaxy, J. Cryst. Growth. 2002, 237: 503.
    [40] M. Joseph, H. Tabata, and T. Kawai, p-Type Electrical Conduction in ZnO Thin Films by Ga and N Codoping, Jpn. J. Appl. Phys. Part 2, 1999, 38: L1205.
    [41] A. Ohtomo, R. Shiroki, I. Ohkubo, H. Koinuma, and M. Kawasaki, Thermal stability of supersaturated Mg_xZn_(1-x)O alloy films and Mg_xZn_(1-x)O/ZnO heterointerfaces, Appl. Phys. Lett. 1999, 75: 4088.
    [42] T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, and H. Koinuma, Band gap engineeri ng based on Mg_xZn_(1-x)O and Cd_yZn_(1-y)O ternary alloy films, Appl. Phys. Lett. 2001,78: 1237.
    [43] D. W. Ma, Z. Z. Ye, and L. L. Chen, Dependence of structural and optical properties of Zn_(1-x)Cd_xO films on the Cd composition, Phys. Status Solidi A. 2004,201: 2929.
    [44] Yu P. Tang Z. K., Wong G. K. L., et al. 23nd Int Conf on the Physics of Semiconductors, World Scientific, Singapore. 1996, p1453.
    [45] Robert F. Will UV Lasers Beat the Blues , Service, Science, 1997,276: 895.
    [46] D. M. Bagnall, Y. F. Chen, Z. Zhu, et al. High temperature excitonic stimulated emission from ZnO epitaxial layers. Appl. Phys. Lett. 1998,73(8): 1038.
    [47] Z. K. Tang, G. K. L.Wong, P. Yu, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystalline thin films. Appl. Phys. Lett. 1998,72 (25): 3270.
    [48] T. Yamamoto and H.K. Yoshida, Solution using a codoping method to unipolarity for the fabrication of p-type ZnO. Jpn. J. Appl. Phys. Part 2, 1997,38(2): pL166.
    [49] M. Joseph, H. Tabata and T. Kawai, P-type electrical conduction in ZnO thin films by Ga and N codoping. Jpn. J. Appl. Phys. Part 2, 1997, 38(11): pL1205.
    [50] A.V. Singh and R.M. Mehra, P-type conduction in codoped ZnO thin films. J. Appl. Phys. 2003, 93(1): p396.
    [51] J.M. Bian, X.M. Li, X.D. Gao, et al., Deposition and electrical properties of N-In codoped p-type ZnO films by ultrasonic spary pyrolysis. Appl. Phys. Lett. 2004, 84(4): p541.
    [52] J.M. Bian, X.M. Li, C.Y. Zhang, et al., Synthesis and characterization of two-layer-structured ZnO p-n homojunctions by ultrasonic spray pyrolysis. Appl. Phys. Lett. 2004, 84(19): p3783.
    [53] DC Look, JW Hemsky, JR Sizelove. Residual native shallow donor in ZnO. Physical Review Letters 1999, 82(12): 2552.
    [54] D.C. Look, D.C. Reynolds, J. R. Sizelove, et al. Electrical properties of bulk ZnO. Solid State Communications. 1998, 105(6): 399.
    [55] K Iwata, P Fons, A Yamada, K Matsubara, S Niki, Nitrogen-induced defects in ZnO: N grown on sapphire substrate by gas source MBE. Journal of Crystal Growth 2000, 209(2): 526.
    [56] C.H. Park, et. al., Origin of p-type doping difficulty in ZnO: The impurity perspective, Phys.Rev.B. 2002, 66: 73202.
    [57] A. Tsukazaki, A.Ohtomo, T.onuma, et al., Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO.Nature Materials. 2005, 42: p4.
    [58] A. Ohtomo, M. Kawasaki, T. Koida, et al. Mg_xZn_(1-x)O as a II-VI wide-gap semiconductor alloy. Appl. Phys. Lett. 1998, 72(19): 2466.
    [59] T. Makino, Y. Segawa, M. Kawasaki et al. Band gap engineering based on Mg_xZn_(1-x)O and Cd_yZn_(1-y)O ternary alloy films. Appl. Phys. Lett. 2001, 78(9): 1237.
    [60] A Ohtomo, M Kawasaki, I Ohkubo, H Koinuma, T Yasuda, Y Segawa. Structure and optical properties of ZnO/Mg_(0.2)Zn_(0.8)O superlattices. Applied Physics Letters. 1999, 75(7): 980.
    [61] Y. Liu, C. R. Gorla, S. Liang, et al. Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD. J. of Electronic Materials. 2000, 29(1): 60.
    [62] Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides, Science. 2001, 291:1947.
    [63] Q Wan, Q H Li, Y J Chen et al. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Applied Physics Letters, 2004, 84(18): 3654.
    [64] H. Nakahata, S. Fujii, K. Higaki, et al., Diamond-based surface acoustic wave devices, Semiconductor Science and Technology. 2003, 18: 596.
    [65] 张德恒,王卿璞.新型半导体激光器-ZnO紫外激光器.物理,2001,30:741.
    [66] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, Recent progress in processing and properties of ZnO, Progress in Materials Science, 2004, available on line.
    [67] 苏宏波,戴江南,蒲勇,王立,李方,文卿,江风益.生长温度对ZnO薄膜性能的影响.半导体学报,2006,27(07):1221.
    [68] D. P. Norton, Y. W. Heo, M. P. Lvill, K. Ip, S. J. Pearton, ZnO: growth,doping and processing, Materials Today, 2004, 3: 34.
    [69] 王丽玉,谢家纯,林碧霞,王克彦,傅竹西.n-ZnO/p-Si异质结UV增强型光电探测器的研究.电子元件与材料,2004,23(01):42.
    [70] 刘益春,陈艳伟,申德振.ZnO一维纳米线及其异质结构的外延生长.物理,2005,34(9):654.
    [71] 叶志镇,徐伟中,曾昱嘉,江柳,赵炳辉,朱丽萍,吕建国,黄靖云,汪雷,李先杭.MOCVD法制备ZnO同质发光二极管.半导体学报,2005,26(11):2264.
    [72] D. C. Reynolds, D. C. Look, and B. Jogai, Optically Pumped Ultraviolet Lasing From ZnO, Sol. Sta. Comm., 1996, 99: 873.
    [73] P. Yu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, "Ultraviolet spontaneous and stimulated emission from ZnO microcrystallite thin films at room temperature", Sol. Sta. Comm., 1997, 103: 459.
    [74] Y. R. Ryu, W. J. Kim, H. W. White, Fabrication of homostructural ZnO p-n junctions, J. Crys. Growth, 2000, 219: 419.
    [75] 梅增霞,张希清,衣立新,王晶,李庆福.ZnO薄膜的制备和发光特性的研究.发光学报,2002,23(4):389.
    [76] 陈荣.光电功能膜材料研究进展.无机化学学报,2004,20(7):879-880.
    [77] O. Regan, M. Gratzel, A low cost and high efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991, 353: 737.
    [78] 曾隆月,史成武,方霞琴,张华.纳米ZnO在染料敏化薄膜太阳电池中的应用.中国科学院研究生院学报,2004,21(3):393.
    [79] 陈炜,孙晓丹,李恒德,翁瑞.染料敏化太阳电池的研究进展.世界科技研究与发展,2004,26(5):27.
    [80] Ya. I. Alivov, J. E. Van Nostrand, D. C. Look, et al., Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes. Appl. Phys. Lett. 2003, 83: 2943.
    [81] Qing-Xuan Yu, Bo Xu, Qi-Hong Wu, et al., Optical properties of ZnO/GaN heterostructure and its near-ultraviolet light-emitting diode. Appl. Phys. Lett. 2003, 83: 4713.
    [82] 杨清宗.半导体紫外探测器的现状和进展.国际光电与显示,2002,5.
    [83] 张昊翔.硅基GaN薄膜材料及紫外探测器原型器件研究:(博士学位论文).浙江:浙江大学,2001.
    [84] 王俊,赵德刚,刘宗顺,冯淦.GaN基MSM结构紫外光探测器.中国科学,2003,33(1):34.
    [85] M. Razeghi, A. Rogalski, Semiconductor ultraviolet detectors, J. Appl. Phys., 1996, 79(10): 7433.
    [86] H. Z. Xu,Z.G. Wang, M. Kawabe, Fabrication and characterization of metal semiconductor metal ultraviolet photodetectors on undoped GaN/sapphire grown by MBE, J. Crystal. Growth, 2000, 218:1.
    [87] D. Walker, E. Monroy, P. Kung, et al, High-speed,low-noise metal-semiconductor-metal ultraviolet photodetectors based on GaN, Appl. Phys. Lett., 1999, 74(5): 762.
    [88] 叶志镇,张银珠,陈汉鸿,何乐年.ZnO光电导紫外探测器的制备和特性研究.电子学报,2003,31(11):1605.
    [89] Y. Liu, R. C. Gorla, S. Liang, Ultraviolet detectors based on epitaxial ZnO film grown by MOCVD, J. Elec. Mater., 2000, 29(1): 60.
    [90] Wei Yang, Wide bandgap Mg_xZn_(1-x)O semiconducting thin film and applications to solar visible blind ultraviolet photodetectors, Dissertation of University of Maryland, USA, 2002.
    [91] 薛增泉,吴全德,李浩.薄膜物理.电子工业出版社,1991.
    [92] 王力衡,黄运添,郑海涛.薄膜技术.北京:清华大学出版社,1991.
    [93] 陈光华.新型电子薄膜材料.化学工业出版社,2002.
    [94] 李学丹,万英超,姜祥祺等.真空沉积技术.浙江:浙江大学出版社,1994.
    [95] 陈治明,王建农.半导体器件的材料物理学基础.科学出版社,1999.
    [96] T.R. Viverito, E.W Rilee, L.H. Slack. Am. Ceram. Soc. Bull. 1975, 54: 217.
    [97] J.C. Viguie, J. Spitz. J. Electrochem. Soc. 1975, 122: 585.
    [98] G. Blandenet, M. Court and Y Lagarde. Thin Layers Deposited by the Pyrosol Process. Thin Solid Films. 1981,77:81.
    [99] T.Znotins. Thomas Industrial Applications of Excimer Lasers. Excimer Lasers and Optics, TS Luk, Proc. SPIE 710, 1986, 55.
    [100] Dijkkamp D, Venkatesan T, Wu X D et al. Preparation of Y_2Ba_2Cu Oxide Superconductor Thin Films Using Pulsed Laser Vaporation from High Tc Bulk Material. Applied Physics Letters, 1987, 51(8): 619.
    [101] 李美成,陈学康,杨建平等.脉冲激光纳米薄膜制备技术.红外与激光工程,2000,29(6):31-35.
    [102] 陈学康.大功率脉冲激光纳米薄膜制备技术.真空科学与技术,1995,15(2):86-91.
    [103] 刘恩科,朱秉升,罗晋升等.半导体物理学.北京:电子工业出版社,2003:375.
    [104] 陆家和,陈长彦.现代分析技术.北京:清华大学出版社,1995.
    [105] 黄胜涛.固体X射线学.北京:高等教育出版社,1985.
    [106] Cullity B D. Elements of X-ray diffractions. Reading, MA: Addison-Wesley, 1978.
    [107] 方容川.固体光谱学.合肥:中国科学技术大学出版社,2001.
    [108] Kang H S, Kang J S, Kim J W, et al. Annealing effect on the property of ultraviolet and green emissions of ZnO thin films. J Appl Phys. 2004, 95(3): 1246.
    [109] 华中一,罗维昂.表面分析.上海:复旦大学出版社,1989.
    [110] 梁红伟.高质量氧化锌薄膜和低维结构的制备及研究:(博士毕业论文).长春:长春光学精密机械与物理所,2005.
    [111] 韩雪,夏慧.透明导电膜及靶材.电子元件与材料,1998,27(1):30.
    [112] Tadatsugu Minami. New n-Type Transparent Conducting Oxides. MRS BULLETIN. 2000,(8): 38-44.
    [113] 王力衡,黄运添,郑海涛.薄膜技术.清华大学出版社,1991.
    [114] 薛增泉,吴全德,李浩.薄膜物理.电子工业出版社,1991.
    [115] F. C. M. van de Pol, F. R. Blom and Tb. J. A. Popma, R.f. planar magnetron sputtered ZnO films Ⅰ: Structural properties, Thin Solid Films, 1991, 204(2): 349.
    [116] Xiao-Tao Hao, Jin Ma, Yirl-ge Yang. Comparison of the properties for ZnO:Al films deposited on polyimide and glass substrates. Materials Science and Engineering: B. 2002, 90: 50.
    [117] 余旭浒,马瑾.薄膜厚度对ZnO∶Ga透明导电膜性能的影响.功能材料,2005,36:241.
    [118] F. A. Kroger, The Chemistry of Imperfect Crystals, North Holland, Amsterdam, 1974.
    [119] Z. M. Jarzebski. Oxide Semiconductors. Franklink Book Company, 1973.
    [120] Szyszka B.. Transparent and conductive aluminum doped zinc oxide films prepared by mid-frequency reactive magnetron sputtering. Thin Solid Films. 1999, 351:164-169.
    [121] J Lee, Z Li, et al.. Structural, electrical and transparent properties of ZnO thin films prepared by magnetron sputtering. Current Applied Physics. 2004. 398.
    [122] Xiao-Tao Hao, Jin Ma, Yin-ge Yang. Comparison of the properties for ZnO:A1 films deposited on polyimide and glass substrates. Materials Science and Engineering: B. 2002, 90: 50.
    [123] Sang Sub Kim, Byung Teak Lee. Effects of Oxygen Pressure on the Growth of Pulsed laser Deposited ZnO Films on Si(001). Thin Solid Films, 2004, 446 (2): 307.
    [124] Eun Sub Shim, Hong Seong Kang, Jeong Seok Kang, et al. Effect of the Variation of Film Thickness on the Structural and Optical Properties Deposited on Sspphire Substrate Using PLD. Applied Surface Science, 2002, 186(1-4): 474.
    [125] K. C. Park, D. Y. Ma, and K. H. Kim, The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering, Thin Solid Films. 1997, 305: 201.
    [126] Chris G. Van de Walle. Hydrogen as a Cause of Doping in Zinc Oxide. Phys. Rev. Lett.. 2000, 85(5): 1012.
    [127] Y. Igasaki, and H. Saito, The effects of zinc diffusion on the electrical and optical properties of ZnO:Al films prepared by r.f. reactive sputtering, Thin Solid Films. 1991, 199: 223.
    [128] M. K. Hudait, P. Modak, and S. B. Krupanidhi, Si incorporation and Burstein-Moss shift in n-type GaAs, Mater. Sci. Eng. 1999, B 56-60: 1.
    [129] N. Y. Lee, K. J. Lee, C. Lee, et al. Determination of conduction band tail and Fermi energy of heavily Si-doped GaAs by room-temperature photoluminescence, J. Appl. Phys. 1995, 78: 3367.
    [130] L. Y. ih Chen, W. H. Chen, et al. Engineering the quantum point contact response to single-electron charging in a few-electron quantum-dot circuit, Appl. Phys. Lett. 2004, 85: 2628.
    [131] M. Chen, X. Wang, Y.H. Yu, et al. X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films, Appl. Surf. Sci. 2000, 158: 134.
    [132] M. Chen, Z.L. Pei, C. Sun, L.S. Wen, X. Wang, Formation of Al-doped ZnO films by dc magnetron reactive sputtering, Materials Letters. 2001, 48: 194.
    [133] 黄惠忠等.论表面分析及其在材料研究中的应用.科学技术文献出版社,2002.
    [134] Y.T. Zhang, G.T. Du, X.Q. Wang, et al. X-ray photoelectron spectroscopy study of ZnO films grown by metal-organic chemical vapor deposition, Journal of Crystal Growth,. 2003, 252:180.
    [135] T. Yamamoto and H. K.Yoshida, Negative Differential Resistance of CaF 2/CdF 2 Triple-Barrier Resonant-Tunneling Diode on Si(111) Grown by Partially Ionized Beam Epitaxy, Jpn. J. Appl. Phys. 1999, 38:L116.
    [136] T. Yamamoto, Codoping for the fabrication of p-type ZnO, Thin Solid Films. 2002, 100: 420.
    [137] 肖锋,叶建东,王迎军.超声技术在无机材料合成与制备中的应用.硅酸盐学报,2002,30(5):615.
    [138] P. S. Patil, Versatility of chemical spray pyrolysis technique, Materials Chemistry and Physics, 1999, 59:185-198.
    [139] Y. Lee, H. Kim and Y. Roh, Deposition of ZnO thin films by the ultrasonic spray pyrolysis technique, Jpn. J. Appl. Phys. 2001, 40: 2423.
    [140] F. Paraguay, W. Estrada, D. R. Acosta, et al. Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis, Thin Solid Films, 1999, 350:192.
    [141] 赵俊亮,李效民,边继明,张灿云,于伟东,高相东.喷雾热解法生长N掺杂ZnO薄膜机理分析.无机材料学报,2005,04:959.
    [142] A. F. Kohan, G. Geder, D. Morgan, C. G. Walle, First-principles study of native point defects in ZnO, Phys. Rev. B, 2000, 61: 15019.
    [143] C. G. Walle, Hydrogen as a Cause of Doping in Zinc Oxide, Phys. Rev. Lett., 2000, 85: 1012.
    [144] K. Minegishi, Y. Koiwai, Y. Kikuchi, et al., Growth of p-type zinc oxide films by chemical vapor deposition, Jpn. J. Appl. Phys., 1997, 36: L1453.
    [145] 黄兴奎,孙奉娄.p型ZnO薄膜的研究进展.常州工学院学报,2005,18:44.
    [146] Yamamoto T, Katayama, Yoshida H. Unipolarity of ZnO with a wideband gap and its solution using codop ingmethod, [J]. Journal of CrystalGrowth, 2000, 214-215: p 552.
    [147] JosephM, Tabata H, Saeki H, et al. Fabrication of the low resistive p-type ZnO by codop ing method. Physica B, 2001,302-303: p140.
    [148] M. Joseph, H. Tabata, H. Saeki, et al., Fabrication of the low-resistive p-type ZnO by codoping method, Physica B, 2001,302-303:140.
    [149] M. Joseph, H. Tabata and T. Kawai, p-type electrical conduction in ZnO thin films by Ga and N codoping, Jpn. J. Appl. Phys., 1999, 38: L1205.
    [150] D. C. Look, B. Clafin, Y. I. Alivov, S. J. Park, The future of ZnO light emitters, Phys. Stat. Sol. 2004, 201(10): 2203.
    [151] P. Zu, Z. K. Tang, G. K. L. Wong, et al. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature, Solid State Commun. 1997, 103: 458.
    [152] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, High temperature excitonic stimulated emission from ZnO epitaxial layers, Appl. Phys. Lett. 1998, 73: 1038.
    [153] Y. Sun, J.B. Ketterson, G.K.L. Wong, Excitonic gain and stimulated ultraviolet emission in nanocrystalline zinc-oxide powder, Appl. Phys. Lett. 2000, 77: 2322.
    [154] S. Cho, J. Ma, H. Kim, et al., Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn, Appl. Phys. Lett., 1999, 75(18): 2761.
    [155] Y. B. Jin, B. Zhang, S. M. Yang, et al., Room temperature UV emission of Mg_xZn_(1-x)O films, Sol. Stat. Commun., 2001, 119: 409.
    [156] W. Z. Xu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, B. H. Zhao, S. B. Zhang, ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition, Appl. Phys. Lett. 2006, 88: 173506.
    [157] F. K. Shan, G. X. Liu, W. J. Lee, G. H. Lee, and B. C. Shin, Aging effect and origin of deep-level emission in ZnO thin film deposited by pulsed laser deposition, Appl. Phys. Lett. 2005, 86: 221910.
    [158] A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, H. Ohno, S. F. Chichibu, and M. Kawasaki, Blue Light-Emitting Diode Based on ZnO, Jpn. J. Appl. Phys. 2005, 44: L 643.
    [159] F. K. Shan, G. X. Liu, W. J. Lee, G. H. Lee, and B. C. Shin, Aging effect and origin of deep-level emission in ZnO thin film deposited by pulsed laser deposition, Appl. Phys. Lett. 2005, 86: 221910.
    [160] A. K. Sharma, J. Narayan, J. F. Muth, et al., Optical and structural properties of epitaxial Mg_xZn_(1-x)O alloys, Appl. Phys. Lett. 1999,75: 3327.
    [161] T.Minemoto, T.Negami, S.Nishiwaki, et al., Preparation of Zn_(1-x)Mg_xO films by radio frequency magnetron sputtering, Thin Solid Films. 2000, 372: 173.
    [162] A. Ohtomo, M. Kawasaki, I. Ohkubo, Structure and optical properties of ZnO/Mg_(0.2)Zn_(0.8)O superlattices, et al., Appl. Phys. Lett. 1999, 75: 980.
    [163] P. S. Muthukumar, J. Zhong, et al., Growth and structural analysis of metalorganic chemical vapor deposited Mg_xZn_(1-x)O (0    [164] J. I. Pankove, Optical Processes in Semiconductor, Englewood Clifts: Prentice-Hall, 1971.
    [165] K. Ip, Y. W. Heo, D. P. Norton, S. J. Pearton, J. R. LaRoche, and F. Ren, Zn_(0.9)Mg_(0.1)O/ZnOp-n junctions grown by pulsed-laser deposition, Appl. Phys. Lett. 2004, 85: 1169.
    [166] C.H. Park, et. al., Origin of p-type doping difficulty in ZnO: The impurity perspective, Phys.Rev.B. 2002, 66: 73202.
    [167] K. Minegishi, Y. Koiwai, Y. Kikuchi, et al., Growth of p-type Zinc Oxide Films by Chemical Vapor Deposition, Jpn.J.Appl.Phy.Part 2, 1997, 36: L1453.
    [168] X.L. Guo, H. Tabata and T. Kawai, Pulsed laser reactive deposition of p-type ZnO film enhanced by an electron cyclotron resonance source, J.Cryst. Growth. 2001,223: 135.
    [169] W. Xu, Z. Ye, T. Zhou, Low-pressure MOCVD growth of p-type ZnO thin films by using NO as the dopant source, J. Cryst. Growth. 2004, 265: 133.
    [170] Y.R. Ryu, S. Zhu, D.C. Look, et. al., Synthesis of p-type ZnO films, J. Cryst. Growth. 2000, 216: 330.
    [171] Y.R. Ryu, W.J. Kim, H.W. White, Fabrication of homostructural ZnO p-n junctions J. Cryst. Growth. 2000,219:419.
    [172] S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, Doping by Large Size Mismatched Impurities: The Microscopic Origin of Arsenicor Antimony-Doped p-Type Zinc OxidePhys. Rev.Lett. 2004,92:155504.
    [173] Ning Xu, Yingliang Xu, Li Li, et. al., Arsenic doping for synthesis of nanocrystalline p-type ZnO thin films, J. Vac. Sci. Technol. 2006, A 24: 517.
    [174] Fuming Oba,Shigeto R,Nishitani,Siji Isotani, Hirohiko Adachi,et al., Energetics of native defects in ZnO. J.Appl. Phys.2001, 90: p824.
    [175] D.K. Hwang, K.H. Bang, M.C. Jeong, and J.M. Myoung,Effect of PF power variation on properties of ZnO thinfilms and electronical properties of p-n homojunction. J. Cryst. Growth . 2003, 254: p449
    [176] D.G.Chadi, Predictor of p-type doping in II-VI semiconductors.Phys.Rev.1999, B59: p15181.
    [177] W.I. Park and G.C. Yi. Photoluminescent properties of ZnO thin films grown on SiO_2/Si(100) by metal-organic chemical vapor deposition. J. Electron. Mater. 2001, 30(10): L32.
    [178] V. Srikant and D. R. Clarke. Optical absorption edge of ZnO thin films: The effect of substrate. J. Appl. Phys., 1997, 81(9): 6357.
    [179] F. H. Leiter, H. R. Alevs, A. Hofstaetter, D. M. Hofmann, B. K. Meyer. The oxygen vacancy as the origin of a green emission, phys. stat. sol. (b) 2001,226(1): R4.
    [180] K.Vanheusden, CH.Seager, W.L.Warren, D.R.Tallant, JA.Voigt. Correlation between photo luminescence and oxygen vacancies. Appl. Phys. Lett., 1996, 68(3): 403.
    [181] CM. Mo, Y.H. Li, Y.S. Lin, et al. Enhancement effect of photoluminescence in assemblies of nano-ZnO particles/silica aerogels. J. Appl. Phys. 1998, 84(3), 1371.
    [182] L. Guo, S.H. Yang, C.L. Yang, et al. Synthesis and characterization of poly-modified zinc oxide mamoparticles. Chem. Mater. 2000,12(8), 2268.
    [183] S.A. Studenikin, N. Golego, M. Cocivera. Fabtication of green and orange photoluminescent, undoped ZnO films usingspray pyrolysis. J. Appl. Phys. 1998, 84(4): 2287.
    [184] M. Liu, A.H. Kitai and P. Mascher. Point defects and luminescence centers in zinc oxide and zinc oxide doped with manganese. J. Lumin. 1992, 54(1): 35.
    [185] B. Guo, Z.R. Qiu and K.S. Wong. Intensity dependence and transient dynamics of donor-acceptor pair recombination in ZnO thin films grown on (001) silicon. Appl. Phys. Lett. 2003, 82(14): 2290.
    [186] E.G. Bylander. Surface effects on the low-energy cathodoluminescence of zinc oxide. J. Appl. Phys. 1978,49(3): 1188.
    [187] B. Lin, Z. Fu and Y. Jia. Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett. 2001, 79(7): 943.
    [188] R. Dingle. Luminescent transitions associated with divalent copper impurities and the green emission from semiconducting zinc oxide. Phys.Rev. Lett. 1969, 23(11): 579.
    [189] Sze S M. Physics of SemiconductorDevices [M]. 2nd. New York, Wiley, 1981.
    [190] J. D. Ye, S. L. Gu, S. M. Zhu, W. Liu, S. M. Liu, and Y. D. Zheng Electroluminescent and transport mechanismsof n-ZnO/p-Si heterojunctions, Appl. Phys. Lett. 2006, 88: 182112.
    [191] 矫淑杰, 吕有明, 申德振, 张振中, 李炳辉, 张吉英, 赵东旭, 姚斌, 范希武. n-ZnO/i-MgO/p-GaN异质结发光二极管. 发光学报, 2006,27: 499.
    [192] Vladimir Bondarenko, Positron Annihilation study of equilibrium point defects in GaAs: (Dissertation). University Halle, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700