可充锂空气电池关键材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可充锂空气电池具有能量密度高(达5200Wh kg-1,氧计算在内),绿色环保等优点,是目前备受关注的电化学能量存储体系。自K. M.Abraham构造出首个可充锂空气电池以来,世界各国科学家已经对其展开大量的基础研究工作。虽然已经取得一些初步研究成果,但是对于可充锂空气电池研究仍然处于初级阶段,在实用化之前,两个关键性问题需要解决:1)在缺乏高效氧还原(ORR)和析氧(OER)双效催化剂时,放电产物(过氧化锂或氧化锂)将会逐渐沉积于空气电极空隙并堵塞电极,从而使得氧气不能顺利进入反应界面,导致电池放电停止;2)碳酸酯及醚类电解液应用在锂空气电池中不稳定,在活性氧作用下非常容易分解,从而使得电池性能劣化。本论文针对氧还原/析氧双效催化剂和电解质体系存在的问题进行应用基础研究。主要研究内容如下:
     一、使用小分子含氮配体邻菲啰啉螯合过渡金属钴得到钴配合物,将钴配合物负载于BP2000碳载体上,通过热处理制得Co-N/C双效催化剂,探索了热处理温度对Co-N/C催化剂性能的影响。结果表明,800℃热处理的催化剂表现出最优的电化学性能,旋转圆盘测试证实,在有机电解液中为两电子转移机理,氧还原产物为过氧化锂。Co-N/C催化剂在锂空气电池中首圈放电比容量为3221mAh g-(1按空气电极中碳或催化剂质量计算锂空气电池比容量),催化性能与大环化合物钴卟啉(Co-P/C)催化剂相近。
     二、基于所制备的Co-N/C双效催化剂,制作锂空气电池空气电极进行电解质研究。制备了PVDF-HFP聚合物电解质,研究了纳米SiO2作为添加剂对聚合物电解质电化学性能的影响。结果表明所制备的聚合物电解质表面致密、没有缺陷孔。纳米SiO2的添加降低了聚合物电解质结晶度,提高了聚合物电解质离子电导率(添加量为3%时离子电导率为1.3×10-5S cm-1,锂离子迁移数为0.36),使用该聚合物电解质制作的锂空气电池在电流密度为0.2mA cm-1时,展现了3163mAh g-1放电比容量。
     三、为进一步提高PVDF-HFP聚合物电解质离子电导率,使用离子液体PP13TFSI替代纳米SiO2对电解质进行改性后,电解质离子电导率提高明显(4.9×10-5S cm-1),使用该聚合物电解质制作的锂空气电池充电极化减小0.2V(充电电压为3.6V),电池的倍率性能得到提高:在电流密度为1mAcm-1时,展现了1246mAh g-1放电比容量。
     四、针对电解液电化学稳定性差的现象,研究了甲基磷酸二甲酯(DMMP)为有机溶剂的电解液电化学性能。1.0M LiTFSI-DMMP电解液具有较高室温离子电导率(5.1×10-3S cm-1)和较宽电化学窗(5.5Vvs. Li/Li+)。循环伏安测试表明该电解液具有良好溶氧能力和氧气扩散系数,氧还原为多步骤过程,电解液还原起始电位为~2.5VLi/Li+,还原产物的氧化峰电流出现在~3.2VLi/Li+,低于碳酸酯电解液(~3.28VLi/Li+)和四乙二醇二甲醚电解液(~3.56VLi/Li+)。重复扫描50个周期后的循环伏安曲线发现,LiTFSI-DMMP电解液峰电流轻微衰减,表明氧还原产物在玻碳电极表面没有明显积累。
     五、基于全氟磺酸膜制备了LiTFSI-DMMP/PFSA-Li聚合物电解质。电化学测试表明该电解质具有宽的电化学窗口(5.0V vs. Li/Li+),室温离子电导率高于PVDF-HFP聚合物电解质一个数量级(1.4×10-4Scm-1),锂离子迁移数有所提高(0.48)。使用该聚合物电解质制作锂空气电池,展现出非常高的充放电比容量以及倍率性能,在电流密度为1mA cm-1时,放电比容量2471mAh g-1。限定时间(两小时)三十个充放电周期效率为98%。X射线光电子能谱表明放电产物为锂氧化物,核磁结构分析证实该电解质在锂空气电池循环过程中结构稳定、没有分解。
Recently, lithium-air batteries have attracted great interest due to theirhuge theoretical specific energy of5200Wh kg-1including O2. The firstlithium-air battery with a structure of Li|organic electrolyte|air was reportedby Abraham and Jiang, and further developed by many scientists over theworld. However, the investigation and development on lithium-air batteriesis still in its initial stage. Much fundamental research is required before itcan be considered further for technological applications: first, if there is notan effective bifunctional electrocatalyst (oxygen reduction reaction (ORR)and oxygen evolution reaction (OER)), discharge products (Li2O and Li2O2)will precipitate in the pores of the carbon based cathodes, which blocksfurther intake of oxygen and thus abruptly ends cell life. On the other hand,organic carbonates are not suitable as electrolytes for Li/O2batteries. In thisdissertation, high performance non-noble metal catalysts and compositepolymer electrolytes were developed. Electrochemical properties of theprepared materials were studied. The major research contents are presentedas follows:
     1. Phenanthroline (phen) was used as a ligand to prepare Co(phen)2complexes, which were coated on BP2000and then heat-treated to obtaincarbon-supported Co-N catalysts (Co-N/C). The influence of heat treatingtemperature on the structure and catalytic performance of the Co-N/Ccatalysts were investigated. The results indicated that the Co-N/C catalystprepared at800℃showed the best performance. Charge/discharge tests ofthe lithium-oxygen cells using the prepared Co-N/C catalyst showeddischarge capacities of3221mAh g-1(The specific capacities werereferenced with respect to the total mass of carbon and cobalt catalyst in thecathode). The catalytic activity of Co-N/C is similar to other non-noblecatalysts, such as Co-P/C electrocatalyst.
     2. We synthesized a PVDF-HFP composite polymer electrolyte. Theinfluence of silica on the structure and electrochemical performance of thepolymer electrolyte were investigated. The results revealed that polymerelectrolyte membranes showed smooth morphology properties. Theaddition of3%silica in the polymer electrolyte displayed the highest ionicconductivity (1.3×10-5S cm-1). Li ion transference number is as high as0.36. The lithium-oxygen cells using this polymer electrolyte showed thefirst discharge capacity of about3163mAh g-1, at0.2mA cm-1currentdensity.
     3. Due to low conductivity of PVDF-HFP polymer electrolyte, Ionicliquids PP13TFSI was used to improve the performance of polymer electrolyte. The electrolyte with ionic liquid showed a better ionicconductivity (4.9×10-5S cm-1), and had a smaller polarization on charge(3.6V) and discharge (2.75V). The cycling performance of the lithium-airbattery was also improved.
     4. Because of poor stability of carbonate based organic solvents inlithium air batteries, we explored dimethyl methyl phosphonate (DMMP)as an organic solvent of electrolyte. The results showed that1.0MLiTFSI-DMMP electrolyte presented high ion conductivity (5.1×10-3Scm-1) and wide electrochemical window (5.5V vs. Li/Li+) at roomtemperature. CV measurements indicate that oxygen reduction inDMMP-based electrolyte is a multistep process. The onset of the oxygenreduction reaction on GC electrode occurred at the potential~2.5VLi/Li+forLiTFSI-DMMP electrolyte and oxidation current peak appeared at~3.2VLi/Li+, lower than the carbonate electrolyte (~3.28VLi/Li+) and TEGDMEbased electrolyte (~3.56VLi/Li+). The CV curves show good reproducibilitywith cycle number increase, only slightly decrease of the peak area isobserved after50cycles, which indicates less accumulation of insolubleORR products on the electrode surface.
     5. Based on perfluorinated sulfonic, we designed and synthesized anew composite polymer electrolyte LiTFSI-DMMP/PFSA-Li.Electrochemical tests show that the ionic conductivity of the compositeelectrolyte was1.4×10-4S cm-1. The Li ion transference number of the electrolyte membrane is as high as0.48. The lithium-oxygen cells using theLiTFSI-DMMP/PFSA-Li electrolyte showed high rate discharge capacitieswith the first discharge capacity of2471mAh g-1, at1mA cm-1. Noobvious evidence of electrolyte decomposition was observed from theresults of1H,13C and31P NMR experiments.
引文
[1]. Christensen, J., Albertus, P., Sanchez-Carrera, R. S., et al. A Critical Review of Li/AirBatteries[J]. Journal of the Electrochemical Society,2012,159(2): R1-R30.
    [2]. Black, R., Adams, B., Nazar, L. F. Non-Aqueous and Hybrid Li-O2Batteries[J]. AdvancedEnergy Materials,2012,2(7):801-815.
    [3]. Bruce, P. G., Freunberger, S. A., Hardwick, L. J., et al. Li-O2and Li-S batteries with highenergy storage[J]. Nature materials,2012,11(1):19-29.
    [4].Padbury, R., Zhang, X. Lithium-oxygen batteries:Limiting factors that affect performance[J].Journal of Power Sources,2011,196(10):4436-4444.
    [5].Kraytsberg, A., Ein-Eli, Y. Review on Li-air batteries:Opportunities, limitations andperspective[J]. Journal of Power Sources,2011,196(3):886-893.
    [6].Girishkumar, G., McCloskey, B., Luntz, A. C., et al. Lithium-Air Battery: Promise andChallenges[J]. The Journal of Physical Chemistry Letters,2010,1(14):2193-2203.
    [7].Littauer, E. L., Momyer, W. R., Tsai, K. C. Current efficiency in the lithium-water battery[J].Journal of Power Sources,1977,2(2):163-176.
    [8].Abraham, K. M. A Polymer Electrolyte-Based Rechargeable Lithium/Oxygen Battery[J]. Journalof the Electrochemical Society,1996,143(1):1-5.
    [9].Read, J. Characterization of the Lithium/Oxygen Organic Electrolyte Battery[J]. Journal of theElectrochemical Society,2002,149(9): A1190-A1195.
    [10].Ogasawara, T., Débart, A., Holzapfel, M., et al. Rechargeable Li2O2Electrode for LithiumBatteries[J]. Journal of the American Chemical Society,2006,128(4):1390-1393.
    [11].Sandhu, S. S., Brutchen, G. W., Fellner, J. P. Lithium/air cell: Preliminary mathematicalformulation and analysis[J]. Journal of Power Sources,2007,170(1):196-209.
    [12].Zhang, J.-G., Wang, D., Xu, W., et al. Ambient operation of Li/Air batteries[J]. Journal ofPower Sources,2010,195(13):4332-4337.
    [13].Adams, J., Karulkar, M. Bipolar plate cell design for a lithium air battery[J]. Journal of PowerSources,2012,199247-255.
    [14].Debart, A., Paterson, A. J., Bao, J., et al. α-MnO2nanowires: a catalyst for the O2electrode inrechargeable lithium batteries[J]. Angew Chem Int Ed Engl,2008,47(24):4521-4524.
    [15].Jung, H. G., Kim, H. S., Park, J. B., et al. A transmission electron microscopy study of theelectro-chemical process of lithium-oxygen cells[J]. Nano letters,2012,12(8):4333-4335.
    [16].Cui, Y., Wen, Z., Liang, X., et al. A tubular polypyrrole based air electrode with improved O2diffusivity for Li-O2batteries[J]. Energy&Environmental Science,2012,5(7):7893-7897.
    [17].Trahan, M. J., Jia, Q., Mukerjee, S., et al. Cobalt Phthalocyanine Catalyzed Lithium-AirBatteries[J], Journal of The Electrochemical Society,2013,160(9): A1577-A1586.
    [18].Sun, B., Wang, B., Su, D., et al. Graphene nanosheets as cathode catalysts for lithium-airbatteries with an enhanced electrochemical performance[J]. Carbon,2012,50(2):727-733.
    [19].Cho, Y.-H., Wolfenstine, J., Rangasamy, E., et al. Mechanical properties of the solid Li-ionconducting electrolyte: Li0.33La0.57TiO3[J]. Journal of Materials Science,2012,47(16):5970-5977.
    [20].Kichambare, P., Rodrigues, S., Kumar, J. Mesoporous nitrogen-doped carbon-glass ceramiccathodes for solid-state lithium-oxygen batteries[J]. ACS applied materials&interfaces,2012,4(1):49-52.
    [21].Gao, Y., Wang, C., Pu, W., et al. Preparation of high-capacity air electrode for lithium-airbatteries[J]. International Journal of Hydrogen Energy,2012,37(17):12725-12730.
    [22].Zhamu, A., Chen, G., Liu, C., et al. Reviving rechargeable lithium metal batteries: enablingnext generation high-energy and high-power cells[J]. Energy&Environmental Science,2012,5(2):5701-5707.
    [23].Sutorik, A. C., Green, M. D., Cooper, C., et al. The comparative influences of structuralordering, grain size, Li-content, and bulk density on the Li+-conductivity of Li0.29La0.57TiO3[J].Journal of Materials Science,2012,47(19):6992-7002.
    [24].Lim, H. D., Park, K. Y., Gwon, H., et al. The potential for long-term operation of alithium-oxygen battery using a non-carbonate-based electrolyte[J]. Chem Commun (Camb),2012,48(67):8374-8376.
    [25].Zhang, S. S., Foster, D., Read, J. Discharge characteristic of a non-aqueous electrolyte Li/O2battery[J]. Journal of Power Sources,2010,195(4):1235-1240.
    [26].Li, L.,Zhao, X., Manthiram, A. A dual-electrolyte rechargeable Li-air battery with phosphatebuffer catholyte[J]. Electrochemistry Communications,2012,14(1):78-81.
    [27].He, H., Niu, W., Asl, N. M., et al. Effects of aqueous electrolytes on the voltage behaviors ofrechargeable Li-air batteries[J]. Electrochimica Acta,2012,6787-94.
    [28].Schaefer, J. L., Lu, Y., Moganty, S. S., et al. Electrolytes for high-energy lithium batteries[J].Applied Nanoscience,2011,2(2):91-109.
    [29].Veith, G. M., Nanda, J., Delmau, L. H., et al. Influence of Lithium Salts on the DischargeChemistry of Li-Air Cells[J]. The Journal of Physical Chemistry Letters,2012,3(10):1242-1247.
    [30].Black, R., Oh, S. H., Lee, J. H., et al. Screening for superoxide reactivity in Li-O2batteries:effect on Li2O2/LiOH crystallization[J]. J. Am. Chem. Soc.,2012,134(6):2902-2905.
    [31].Hardwick, L. J., Bruce, P. G. The pursuit of rechargeable non-aqueous lithium–oxygen batterycathodes[J]. Current Opinion in Solid State and Materials Science,2012,16(4):178-185.
    [32].Lu, Y.-C., Xu, Z., Gasteiger, H. A., et al. Platinum Gold Nanoparticles: A Highly ActiveBifunctional Electrocatalyst for Rechargeable Lithium Air Batteries[J]. Journal of theAmerican Chemical Society,2010,132(35):12170-12171.
    [33].Zhang, L., Wang, Z., Xu, D., et al. α-MnO2hollow clews for rechargeable Li-air batteries withimproved cyclability[J]. Chinese Science Bulletin,2012,57(32):4210-4214.
    [34].Yoon, T.,Park, Y. Carbon nanotube/Co3O4composite for air electrode of lithium-air battery[J].Nanoscale Res Lett,2012,7(1):1-4.
    [35].Zhang, S. S., Ren, X., Tran, D. T., et al. Catalytic Effect of Heat-treated Iron and CopperPhthalocyanines in Non-aqueous Electrolyte Li/air Batteries A Review[J]. Green,2012,2:2-3.
    [36].Thapa, A. K., Shin, T. H., Ida, S., et al. Gold–Palladium nanoparticles supported bymesoporous β-MnO2air electrode for rechargeable Li-Air battery[J]. Journal of Power Sources,2012,220211-216.
    [37].Ida, S., Thapa, A. K., Hidaka, Y., et al. Manganese oxide with a card-house-like structurereassembled from nanosheets for rechargeable Li-air battery[J]. Journal of Power Sources,2012,203159-164.
    [38].Lu, Y., Wen, Z., Jin, J., et al. Mesoporous carbon nitride loaded with Pt nanoparticles as abifunctional air electrode for rechargeable lithium-air battery[J]. Journal of Solid StateElectrochemistry,2012,16(5):1863-1868.
    [39].Cui, Y., Wen, Z., Sun, S., et al. Mesoporous Co3O4with different porosities as catalysts for thelithium-oxygen cell[J]. Solid State Ionics,2012,225598-603.
    [40].Anandan, V., Kudla, R.,Drews, A., et al. Mixed Metal Oxide Catalysts for RechargeableLithium-Air Batteries[J]. ECS Transactions,2012,41(41):167-174.
    [41].Wang, Y., Ohnishi, R., Yoo, E., et al. Nano-and micro-sized TiN as the electrocatalysts forORR in Li–air fuel cell with alkaline aqueous electrolyte[J]. Journal of Materials Chemistry,2012,22(31):15549-15555.
    [42].Sun, B., Liu, H., Munroe, P., et al. Nanocomposites of CoO and a mesoporous carbon (CMK-3)as a high performance cathode catalyst for lithium-oxygen batteries[J]. Nano Research,2012,5(7):460-469.
    [43].Fu, Z., Lin, X., Huang, T., et al. Nano-sized La0.8Sr0.2MnO3as oxygen reduction catalyst innonaqueous Li/O2batteries[J]. Journal of Solid State Electrochemistry,2011,16(4):1447-1452.
    [44].Bryantsev, V. S. Calculation of solvation free energies of Li+and O2-ions and neutrallithium-oxygen compounds in acetonitrile using mixed cluster/continuum models[J].Theoretical Chemistry Accounts,2012,131:1250-1261.
    [45].Nanda, J., Bilheux, H., Voisin, S., et al. Anomalous Discharge Product Distribution inLithium-Air Cathodes[J]. The Journal of Physical Chemistry C,2012,116(15):8401-8408.
    [46].Zheng, J. P., Liang, R. Y., Hendrickson, M., et al. Theoretical Energy Density of Li–AirBatteries[J]. Journal of the Electrochemical Society,2008,155(6): A432-A437.
    [47].Harding, J. R., Lu, Y. C., Tsukada, Y., et al. Evidence of catalyzed oxidation of Li2O2forrechargeable Li-air battery applications[J]. Physical chemistry chemical physics: PCCP,2012,14(30):10540-10546.
    [48].Kang, J., Jung, Y. S., Wei, S.-H., et al. Implications of the formation of small polarons in Li2O2for Li-air batteries[J]. Physical Review B,2012,85:035210-035215.
    [49].Ong, S., Mo, Y., Ceder, G. Low hole polaron migration barrier in lithium peroxide[J]. PhysicalReview B,2012,85:081105-081109.
    [50].Wang, Y. Modeling discharge deposit formation and its effect on lithium-air batteryperformance[J]. Electrochimica Acta,2012,75239-246.
    [51].Andrei, P., Zheng, J. P., Hendrickson, M., et al. Modeling of Li-Air Batteries with DualElectrolyte[J]. Journal of the Electrochemical Society,2012,159(6): A770-A780.
    [52].Bryantsev, V. S., Faglioni, F. Predicting autoxidation stability of ether-and amide-basedelectrolyte solvents for Li-air batteries[J]. The journal of physical chemistry. A,2012,116(26):7128-7138.
    [53].San, C. H., Hong, C. W. Quantum Analysis on the Platinum/Nitrogen Doped CarbonNanotubes for the Oxygen Reduction Reaction at the Air Cathode of Lithium-Air Batteries andFuel Cells[J]. Journal of the Electrochemical Society,2012,159(5): K116-K121.
    [54].Dathar, G. K. P., Shelton, W. A., Xu, Y. Trends in the Catalytic Activity of Transition Metalsfor the Oxygen Reduction Reaction by Lithium[J]. The Journal of Physical Chemistry Letters,2012,3(7):891-895.
    [55].McCloskey, B. D., Speidel, A., Scheffler, R., et al. Twin Problems of Interfacial CarbonateFormation in Nonaqueous Li-O2Batteries[J]. The Journal of Physical Chemistry Letters,2012,3(8):997-1001.
    [56].Freunberger, S. A., Chen, Y., Peng, Z., et al. Reactions in the rechargeable lithium-O2batterywith alkyl carbonate electrolytes[J]. J Am Chem Soc,2011,133(20):8040-8047.
    [57].Wang, H., Xie, K. Investigation of oxygen reduction chemistry in ether and carbonate basedelectrolytes for Li-O2batteries[J]. Electrochimica Acta,2012,6429-34.
    [58].Chen, Y., Freunberger, S. A., Peng, Z., et al. Li-O2battery with a dimethylformamideelectrolyte[J]. J Am Chem Soc,2012,134(18):7952-7957.
    [59].Xu, W., Xiao, J., Wang, D., et al. Effects of Nonaqueous Electrolytes on the Performance ofLithium/Air Batteries[J]. Journal of the Electrochemical Society,2010,157(2): A219-A224.
    [60].Ding, F., Xu, W., Shao, Y., et al. H+diffusion and electrochemical stability ofLi1+x+yAlxTi2xSiyP3yO12glass in aqueous Li/air battery electrolytes[J]. Journal of PowerSources,2012,214292-297.
    [61].Zhang, L., Zhang, X., Wang, Z., et al. High aspect ratio gamma-MnOOH nanowires for highperformance rechargeable nonaqueous lithium-oxygen batteries[J]. Chem Commun (Camb),2012,48(61):7598-7600.
    [62].Puech, L., Cantau, C., Vinatier, P., et al. Elaboration and characterization of a free standingLiSICON membrane for aqueous lithium–air battery[J]. Journal of Power Sources,2012,214330-336.
    [63].Wang, Y., Zhou, H. A lithium-air battery with a potential to continuously reduce O2from airfor delivering energy[J]. Journal of Power Sources,2010,195(1):358-361.
    [64].He, P., Wang, Y., Zhou, H. A Li-air fuel cell with recycle aqueous electrolyte for improvedstability[J]. Electrochemistry Communications,2010,12(12):1686-1689.
    [65].Wang, Y., Zhou, H. A lithium-air fuel cell using copper to catalyze oxygen-reduction based oncopper-corrosion mechanism[J]. Chem Commun (Camb),2010,46(34):6305-6307.
    [66].Williford, R. E., Zhang, J.-G. Air electrode design for sustained high power operation of Li/airbatteries[J]. Journal of Power Sources,2009,194(2):1164-1170.
    [67].Eswaran, M., Munichandraiah, N., Scanlon, L. G. High Capacity Li-O2Cell andElectrochemical Impedance Spectroscopy Study[J]. Electrochemical and Solid-State Letters,2010,13(9): A121-A124.
    [68].Tran, C., Kafle, J., Yang, X.-Q., et al. Increased discharge capacity of a Li-air activated carboncathode produced by preventing carbon surface passivation[J]. Carbon,2011,49(4):1266-1271.
    [69].Mirzaeian, M., Hall, P. J. Preparation of controlled porosity carbon aerogels for energy storagein rechargeable lithium oxygen batteries[J]. Electrochimica Acta,2009,54(28):7444-7451.
    [70].Shitta-Bey, G. O., Mirzaeian, M., Hall, P. J. The Electrochemical Performance ofPhenol-Formaldehyde Based Activated Carbon Electrodes for Lithium/Oxygen Batteries[J].Journal of the Electrochemical Society,2012,159(3): A315-A320.
    [71].Yang, X.-h., He, P., Xia, Y.-y. Preparation of mesocellular carbon foam and its application forlithium/oxygen battery[J]. Electrochemistry Communications,2009,11(6):1127-1130.
    [72].Xiao, J., Wang, D., Xu, W., et al. Optimization of Air Electrode for Li/Air Batteries[J]. Journalof the Electrochemical Society,2010,157(4): A487-A492.
    [73].Beattie, S. D., Manolescu, D. M., Blair, S. L. High-Capacity Lithium–Air Cathodes[J]. Journalof the Electrochemical Society,2009,156(1): A44-A47.
    [74].Tran, C., Yang, X.-Q., Qu, D. Investigation of the gas-diffusion-electrode used as lithium/aircathode in non-aqueous electrolyte and the importance of carbon material porosity[J]. Journalof Power Sources,2010,195(7):2057-2063.
    [75].Cheng, H., Scott, K. Carbon-supported manganese oxide nanocatalysts for rechargeablelithium–air batteries[J]. Journal of Power Sources,2010,195(5):1370-1374.
    [76].Zhang, G. Q., Zheng, J. P., Liang, R., etc. Lithium-Air Batteries Using SWNT/CNFBuckypapers as Air Electrodes[J]. Journal of the Electrochemical Society,2010,157(8):A953-A956.
    [77].Zhang, G. Q., Zheng, J. P., Liang, R., et al. α-MnO2/Carbon Nanotube/Carbon NanofiberComposite Catalytic Air Electrodes for Rechargeable Lithium-air Batteries[J]. Journal of theElectrochemical Society,2011,158(7): A822-A827.
    [78].Xiao, J., Mei, D., Li, X., et al. Hierarchically porous graphene as a lithium-air batteryelectrode[J]. Nano letters,2011,11(11):5071-5078.
    [79].Yoo, E., Nakamura, J., Zhou, H. N-Doped graphene nanosheets for Li–air fuel cells underacidic conditions[J]. Energy&Environmental Science,2012,5(5):6928-6932.
    [80].Yoo, E., Zhou, H. Li-Air Rechargeable Battery Based on Metal-free Graphene NanosheetCatalysts[J]. ACS Nano,2011,5(4):3020-3026.
    [81].Li, Y., Wang, J., Li, X., et al. Nitrogen-doped graphene nanosheets as cathode materials withexcellent electrocatalytic activity for high capacity lithium-oxygen batteries[J].Electrochemistry Communications,2012,1812-15.
    [82].Shao, Y., Park, S., Xiao, J., et al. Electrocatalysts for Nonaqueous Lithium-Air Batteries: Status,Challenges, and Perspective[J]. ACS Catalysis,2012,2(5):844-857.
    [83].Zhang, S. S., Ren, X., Read, J. Heat-treated metal phthalocyanine complex as an oxygenreduction catalyst for non-aqueous electrolyte Li/air batteries[J]. Electrochimica Acta,2011,56(12):4544-4548.
    [84].Xiao, J., Xu, W., Wang, D., et al. Hybrid Air-Electrode for Li/Air Batteries[J]. Journal of theElectrochemical Society,2010,157(3): A294-A297.
    [85].Oloniyo, O., Kumar, S., Scott, K. Performance of MnO2Crystallographic Phases inRechargeable Lithium-Air Oxygen Cathode[J]. Journal of Electronic Materials,2012,41(5):921-927.
    [86].Débart, A., Bao, J., Armstrong, G., et al. An O2cathode for rechargeable lithium batteries: Theeffect of a catalyst[J]. Journal of Power Sources,2007,174(2):1177-1182.
    [87].Ominde, N., Bartlett, N., Yang, X.-Q., et al. The effect of oxygen reduction on activated carbonelectrodes loaded with manganese dioxide catalyst[J]. Journal of Power Sources,2008,185(2):747-753.
    [88].Crisostomo, V. M. B., Ngala, J. K., Alia, S., et al. New Synthetic Route, Characterization, andElectrocatalytic Activity of Nanosized Manganite[J]. Chemistry of Materials,2007,19(7):1832-1839.
    [89].Lee, J.-H., Black, R., Popov, G., et al. The role of vacancies and defects in Na0.44MnO2nanowire catalysts for lithium-oxygen batteries[J]. Energy&Environmental Science,2012,5(11):9558-9565.
    [90].Chen, J., Hummelsh j, J. S., Thygesen, K. S., et al. The role of transition metal interfaces onthe electronic transport in lithium–air batteries[J]. Catalysis Today,2011,165(1):2-9.
    [91].Li, J., Wang, N., Zhao, Y., et al. MnO2nanoflakes coated on multi-walled carbon nanotubes forrechargeable lithium-air batteries[J]. Electrochemistry Communications,2011,13(7):698-700.
    [92].Jin, L., Xu, L., Morein, C., et al. Titanium Containing γ-MnO2(TM) Hollow Spheres: One-StepSynthesis and Catalytic Activities in Li/Air Batteries and Oxidative Chemical Reactions[J].Advanced Functional Materials,2010,20(19):3373-3382.
    [93].Wang, H.,Yang, Y.,Liang, Y., et al. Rechargeable Li-O2batteries with a covalently coupledMnCo2O4–graphene hybrid as an oxygen cathode catalyst[J]. Energy&Environmental Science,2012,5(7):7931-7935.
    [94].Thapa, A. K., Saimen, K., Ishihara, T. Pd/MnO2Air Electrode Catalyst for RechargeableLithium/Air Battery[J]. Electrochemical and Solid-State Letters,2010,13(11): A165-A167.
    [95].Thapa, A. K., Ishihara, T. Mesoporous α-MnO2/Pd catalyst air electrode for rechargeablelithium–air battery[J]. Journal of Power Sources,2011,196(16):7016-7020.
    [96].Lu, Y.-C., Gasteiger, H. A., Crumlin, E., et al. Electrocatalytic Activity Studies of Select MetalSurfaces and Implications in Li-Air Batteries[J]. Journal of the Electrochemical Society,2010,157(9): A1016-A1025.
    [97].Lu, Y.-C., Gasteiger, H. A., Parent, M. C., et al. The Influence of Catalysts on Discharge andCharge Voltages of Rechargeable Li-Oxygen Batteries[J]. Electrochemical and Solid-StateLetters,2010,13(6): A69-A72.
    [98].Yang, Y., Shi, M., Zhou, Q.-F., et al.. Platinum nanoparticle–graphene hybrids synthesized byliquid phase pulsed laser ablation as cathode catalysts for Li-air batteries[J]. ElectrochemistryCommunications,2012,20:11-14.
    [99].Ein-Eli, Y., Kraytsberg, A. Comment on Oxygen Solubility Measurements in Non-AqueousElectrolytes[J]. Journal of the Electrochemical Society,2011,158(5): S13-S13.
    [100].Sandhu, S. S., Fellner, J. P., Brutchen, G. W. Diffusion-limited model for a lithium/air batterywith an organic electrolyte[J]. Journal of Power Sources,2007,164(1):365-371.
    [101].Albertus, P., Girishkumar, G., McCloskey, B., et al. Identifying Capacity Limitations in theLi/Oxygen Battery Using Experiments and Modeling[J]. Journal of the ElectrochemicalSociety,2011,158(3): A343-A351.
    [102].Andrei, P., Zheng, J. P., Hendrickson, M., et al. Some Possible Approaches for Improving theEnergy Density of Li-Air Batteries[J]. Journal of the Electrochemical Society,2010,157(12):A1287-A1295.
    [103].Read, J., Mutolo, K., Ervin, M., et al. Oxygen Transport Properties of Organic Electrolytesand Performance of Lithium/Oxygen Battery[J]. Journal of the Electrochemical Society,2003,150(10): A1351-A1356.
    [104].Zhang, S. S., Foster, D., Read, J. The effect of quaternary ammonium on dischargecharacteristic of a non-aqueous electrolyte Li/O2battery[J]. Electrochimica Acta,2011,56(3):1283-1287.
    [105].Xu, W., Xiao, J., Zhang, J., et al. Optimization of Nonaqueous Electrolytes for PrimaryLithium/Air Batteries Operated in Ambient Environment[J]. Journal of the ElectrochemicalSociety,2009,156(10): A773-A779.
    [106].Xu, W., Xiao, J., Wang, D., et al. Crown Ethers in Nonaqueous Electrolytes for Lithium/AirBatteries[J]. Electrochemical and Solid-State Letters,2010,13(4): A48-A51.
    [107].Zhang, S. S., Read, J. Partially fluorinated solvent as a co-solvent for the non-aqueouselectrolyte of Li/air battery[J]. Journal of Power Sources,2011,196(5):2867-2870.
    [108].Zhang, S. S., Xu, K., Read, J. A non-aqueous electrolyte for the operation of Li/air battery inambient environment[J]. Journal of Power Sources,2011,196(8):3906-3910.
    [109].Wang, Y., Zheng, D., Yang, X.-Q., et al. High rate oxygen reduction in non-aqueouselectrolytes with the addition of perfluorinated additives[J]. Energy&Environmental Science,2011,4(9):3697-3702.
    [110].Crowther, O., Meyer, B., Salomon, M. Methoxybenzene as an Electrolyte Solvent for thePrimary Lithium Metal Air Battery[J]. Electrochemical and Solid-State Letters,2011,14(8):A113-A115.
    [111].Xiao, J., Hu, J., Wang, D., et al. Investigation of the rechargeability of Li–O2batteries innon-aqueous electrolyte[J]. Journal of Power Sources,2011,196(13):5674-5678.
    [112].Xu, W., Viswanathan, V. V., Wang, D., et al. Investigation on the charging process ofLi2O2-based air electrodes in Li-O2batteries with organic carbonate electrolytes[J]. Journal ofPower Sources,2011,196(8):3894-3899.
    [113].Laoire, C. O., Mukerjee, S., Plichta, E. J., et al. Rechargeable Lithium/TEGDME-LiPF6/O2Battery[J]. Journal of the Electrochemical Society,2011,158(3): A302-A308.
    [114].Jung, H.-G., Hassoun, J., Park, J.-B., et al. An improved high-performance lithium-airbattery[J]. Nat Chem,2012,4(7):579-585.
    [115].Read, J. Ether-Based Electrolytes for the Lithium/Oxygen Organic Electrolyte Battery[J].Journal of the Electrochemical Society,2006,153(1): A96-A100.
    [116].Freunberger, S. A., Chen, Y., Drewett, N. E., et al. The lithium-oxygen battery withether-based electrolytes[J]. Angew Chem Int Ed Engl,2011,50(37):8609-8613.
    [117].Laoire, C. O., Mukerjee, S., Abraham, K. M., et al. Elucidating the Mechanism of OxygenReduction for Lithium-Air Battery Applications[J]. The Journal of Physical Chemistry C,2009,113(46):20127-20134.
    [118].Laoire, C. O., Mukerjee, S., Abraham, K. M., et al. Influence of Nonaqueous Solvents on theElectrochemistry of Oxygen in the Rechargeable Lithium Air Battery[J]. The Journal ofPhysical Chemistry C,2010,114(19):9178-9186.
    [119].Peng, Z., Freunberger, S. A., Chen, Y., et al. A Reversible and Higher-Rate Li-O2Battery[J].Science,2012,337(6094):563-566.
    [120].Xu, D., Wang, Z. L., Xu, J. J., et al. Novel DMSO-based electrolyte for high performancerechargeable Li-O2batteries[J]. Chem Commun (Camb),2012,48(55):6948-6950.
    [121].Zhang, Z., Lu, J., Assary, R. S., et al. Increased Stability Toward Oxygen Reduction Productsfor Lithium-Air Batteries with Oligoether-Functionalized Silane Electrolytes[J]. The Journalof Physical Chemistry C,2011,115(51):25535-25542.
    [122].Wang, H., Liao, X. Z., Li, L., et al. Rechargeable Li/O2Cell Based on aLiTFSI-DMMP/PFSA-Li Composite Electrolyte[J]. Journal of the Electrochemical Society,2012,159(11): A1874-A1879.
    [123].Cecchetto, L., Salomon, M., Scrosati, B., et al. Study of a Li–air battery having an electrolytesolution formed by a mixture of an ether-based aprotic solvent and an ionic liquid[J]. Journalof Power Sources,2012,213233-238.
    [124].Kuboki, T., Okuyama, T., Ohsaki, T., et al. Lithium-air batteries using hydrophobic roomtemperature ionic liquid electrolyte[J]. Journal of Power Sources,2005,146(1-2):766-769.
    [125].Ye, H., Huang, J., Xu, J. J., et al. Li Ion Conducting Polymer Gel Electrolytes Based on IonicLiquid/PVDF-HFP Blends[J]. Journal of the Electrochemical Society,2007,154(11):A1048-A1057.
    [126].Kumar, B., Kumar, J., Leese, R., et al. A Solid-State, Rechargeable, Long Cycle LifeLithium–Air Battery[J]. Journal of the Electrochemical Society,2010,157(1): A50-A54.
    [127].Zhang, D., Li, R., Huang, T., et al. Novel composite polymer electrolyte for lithium airbatteries[J]. Journal of Power Sources,2010,195(4):1202-1206.
    [128].Wang, D., Xiao, J., Xu, W., et al. High Capacity Pouch-Type Li–Air Batteries[J]. Journal ofthe Electrochemical Society,2010,157(7): A760-A764.
    [129].Crowther, O., Salomon, M. Oxygen Selective Membranes for Li-Air (O2) Batteries[J].Membranes,2012,2(4):216-227.
    [130].Fu, Z., Wei, Z., Lin, X., et al. Polyaniline membranes as waterproof barriers for lithium airbatteries[J]. Electrochimica Acta,2012,78195-199.
    [131].Zhang, J., Xu, W., Liu, W. Oxygen-selective immobilized liquid membranes for operation oflithium-air batteries in ambient air[J]. Journal of Power Sources,2010,195(21):7438-7444.
    [132].Zhang, J., Xu, W., Li, X., et al. Air Dehydration Membranes for Nonaqueous Lithium–AirBatteries[J]. Journal of the Electrochemical Society,2010,157(8): A940-A946.
    [133].Crowther, O., Keeny, D., Moureau, D. M., et al. Electrolyte optimization for the primarylithium metal air battery using an oxygen selective membrane[J]. Journal of Power Sources,2012,202347-351.
    [134].Crowther, O., Meyer, B., Morgan, M., et al. Primary Li-air cell development[J]. Journal ofPower Sources,2011,196(3):1498-1502.
    [135].Zhang, T., Imanishi, N., Shimonishi, Y., et al. A novel high energy density rechargeablelithium/air battery[J]. Chem Commun (Camb),2010,46(10):1661-1663.
    [136].Zhang, T., Imanishi, N., Shimonishi, Y., et al. Stability of a Water-Stable Lithium MetalAnode for a Lithium–Air Battery with Acetic Acid–Water Solutions[J]. Journal of theElectrochemical Society,2010,157(2): A214-A218.
    [137].Imanishi, N., Hasegawa, S., Zhang, T., et al. Lithium anode for lithium-air secondarybatteries[J]. Journal of Power Sources,2008,185(2):1392-1397.
    [138].Hasegawa, S., Imanishi, N., Zhang, T., et al. Study on lithium/air secondary batteries-Stabilityof NASICON-type lithium ion conducting glass-ceramics with water[J]. Journal of PowerSources,2009,189(1):371-377.
    [139].Shimonishi, Y., Zhang, T., Johnson, P., et al. A study on lithium/air secondarybatteries-Stability of NASICON-type glass ceramics in acid solutions[J]. Journal of PowerSources,2010,195(18):6187-6191.
    [140].Shimonishi, Y., Zhang, T., Imanishi, N., et al. A study on lithium/air secondarybatteries-Stability of the NASICON-type lithium ion conducting solid electrolyte in alkalineaqueous solutions[J]. Journal of Power Sources,2011,196(11):5128-5132.
    [141].Zhang, T., Imanishi, N., Hasegawa, S., et al. Li/Polymer Electrolyte/Water StableLithium-Conducting Glass Ceramics Composite for Lithium-Air Secondary Batteries with anAqueous Electrolyte[J]. Journal of the Electrochemical Society,2008,155(12): A965-A969.
    [142].Zhang, T., Imanishi, N., Hasegawa, S., et al. Water-Stable Lithium Anode with theThree-Layer Construction for Aqueous Lithium-Air Secondary Batteries[J]. Electrochemicaland Solid-State Letters,2009,12(7): A132-A135.
    [143].Wang, Y., Zhou, H. To draw an air electrode of a Li–air battery by pencil[J]. Energy&Environmental Science,2011,4(5):1704-1707.
    [144]. Niwa, H., Horiba, K., Harada, Y., et al. X-ray absorption analysis of nitrogen contributionto oxygen reduction reaction in carbon alloy cathode catalysts for polymer electrolyte fuelcells[J], J. Power Sources,2009,187:93-97.
    [145]. Liu Y., Cai Z., Tan L., et al. Ion exchange membranes as electrolyte for high performanceLi-ion batteries[J]. Energy&Environmental Science,2012,5:9007-9013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700