γ-Al_2O_3负载型稀土催化剂的改性及脱硫性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃煤烟气中SO_2的污染问题已经成为一个全球性难题,而且尚未有一种很好的解决方法,为此,近几年提出了烟气直接还原脱硫技术,因为烟气直接还原脱硫技术的最终产物是单质硫,无废水废渣排放。由于燃煤不可能完全燃烧而产生一定的CO有害气体,而CO又是一种还原性气体,因此,以烟气中的有害成分CO为还原剂脱除烟气中的SO_2,实现以废治废,成为La/γ-Al_2O_3催化剂直接还原脱硫技术的一大特点和优势。尽管该催化剂的脱硫反应温度较高,但是若能够通过改性解决这个问题,那么改催化剂的应用前景仍然是很好的。因此,本文用Ce、Fe和Ti对La/γ-Al_2O_3催化剂进行改性,使该催化剂在较低的还原脱硫反应温度下能够保持较高的脱硫活性。本文用Ce、Fe和Ti对γ-Al_2O_3负载型稀土催化剂进行改性,从一下几个方面进行了实验研究:
     1.采用浸渍法制备了一系列的γ-Al_2O_3负载型稀土催化剂: La/γ-Al_2O_3、La-Ce/γ-Al_2O_3、La-Fe-Ce/γ-Al_2O_3和La-Fe-Ce-Ti/γ-Al_2O_3;研究比较适宜的Ce、Fe、Ti和La的配比、制备工艺和焙烧条件;
     2.在实验室一模拟烟气脱硫装置中进行还原脱硫实验,研究改性催化剂的脱硫活性及不同焙烧温度对其脱硫活性的影响;
     3.通过BET、XRD和SEM等分析手段对改性催化剂进行表征,研究催化剂改性前后物相变化,探索改性催化剂催化还原脱硫机理。
     研究发现:500℃焙烧制得的催化剂的脱硫活性相对较高;经Ce改性制得的9%La-5%Ce/γ-Al_2O_3催化剂的脱硫活性明显高于单组分9%La/γ-Al_2O_3催化剂的脱硫活性,其反应所需温度为600℃,脱硫率为98.7% ;经Fe改性制得的9%La-3%Fe-5%Ce/γ-Al_2O_3催化剂的脱硫反应温度为500℃,脱硫率为98.8%;经过Ti改性制得的9%La-3%Fe-5%Ce-0.8%Ti/γ-Al_2O_3催化剂的脱硫反应温度为420℃,脱硫率为99.3%;该类催化剂脱硫反应中的活性相为La2O2S、FeS、FeS2及具有储氧和传递氧能力的CeO2和TiO2,其脱硫机理可能为中间产物机理与氧空位理论的协同作用。
The pollution of SO_2 produced from coal-fired smoke has been becoming a global problem, and there is none effectual technique to resolve it. Therefore, the direct reduction of SO_2 technology has been brought forward nowadays, as the characteristics of this technology is that the finally production is element sufur and no water pollution or solid waste pollution in the process of desulphurization. Because coal can not be fired completely, in the coal-fired smoke, there must be some deoxidized CO which is deleterious. Using CO from flue gas as the reducing agent to reduce fulfur dioxids to element fulfur by catalyst is one of the distinct characteristics of rare earth catalyst supported onγ-Al_2O_3. Though, in the desulphurization process, the high reaction temperature needed is one prodigious disadvantage of this kind of catalyst for catalystic reduction of fulfur dioxides, if this problem can be solved by modification means, the modification catalyst may be used in the field of flue gas desulphurization gradually. So, in this thesis, CO is used as reducing agent and Ce, Fe and Ti are used as additive to modificate La/γ-Al_2O_3 aiming to prepare a kind of catalyst which can keep high activities in relatively lower reaction temperature in the process of desulphurization.
     Ce, Fe and Ti are used to modify La/γ-Al_2O_3 cataly, and the research content are described as following:
     1. a series of catalysts ofγ-Al_2O_3 loaded by rare earth: La/γ-Al_2O_3、La-Ce/γ-Al_2O_3、La-Fe-Ce/γ-Al_2O_3 and La-Fe-Ce-Ti/γ-Al_2O_3 have been prepared by dipping Ce,Fe,Ti and La intoγ-Al_2O_3 to study the feasible prepare ratio and bake temperature.
     2. In a suit of lab experimental simulation system, all the experiments are carried out in order to study the desulphurization activities of modification catalyst and the influence for the desulphurization activitie in deffrent baking temperature.
     3. In this thesis, BET, XRD and SEM are used to research the component changing of modification catalysts. And researching the desulphurization mechanism of modification catalysts is another aim of this thesis.
     Disquisitions indicate that, in the desulphurization experiment, the activity of catalyst 9%La-5%Ce/γ-Al_2O_3 is much higher than single catalyst 9%La/γ-Al_2O_3 and the reaction temperature of catalyst 9%La-5%Ce/γ-Al_2O_3 is 600 centigrade, while the SO_2 conversion rate is 98.7%; The reaction temperature of catalyst 9%La-3%Fe-5%Ce/γ-Al_2O_3 is 500 centigrade, while the SO_2 conversion rate is 98.8%; And, The reaction temperature of catalyst 9%La-3%Fe-5%Ce- 0.8%Ti/γ-Al_2O_3 is 420 centigrade, while the SO_2 conversion rate is 99.3%. La2O2S, FeS, FeS2 are the active phases of the catalyst 9%La-3%Fe-5%Ce-0.8%Ti/γ-Al_2O_3, furthermore, CeO2 and TiO2 which have the abilities to deposit and transport oxygen in the reaction are both the active phases too. The desulphurization mechanism of catalyst 9%La-3%Fe-5%Ce-0.8%Ti/γ-Al_2O_3 is the cooperative process of medial producetion mechanism and oxygen vacancy mechanism.
引文
[1]涂俊杰.我国燃煤的污染现状及治理对策.环境污染与防治, 1999, 21(3): 18~21
    [2]熊云威.我国SO2污染危害及其治理技术的进展.矿业安全与环保, 2000, 27(增刊): 37~40
    [3]国家环境保护总局.中国环境状况公报(2002)[N].中国环境报, 2003
    [4]王志轩.国家电力公司“两控区”火电厂SO2污染现状及防治对策.电力环境保护, 1999, 15(2): 1~4
    [5]赵鹏高.火电厂烟气脱硫关键技术与设备国产化规划要点摘要.电力环境保护, 2000, 16(2):28~32
    [6] Vincent K, Roland E M. Rounding up Sulfur. Chem. Eng. 1995, (2):74~83
    [7] Heisel M, Linde G. Purifying a Gas Stream. U. S. Patent 4, 795, 620. 1989
    [8] Makansi J. Special Report Controlling SO2 Emissions. Power, 1993, 137(3): 23~25
    [9] John N A. Environmental Catalysis. Apil. Catal. B, 1992, 1: 221~256
    [10] Bacon R F. Hydrodesulfurization Catalyst. U. S. Patent 1, 830, 076. 1932
    [11] Doumani T F, Deer R F, Bradley W E. Removal of SO2 by CO. Ind. Eng. Chem., 1944(36): 329
    [12] Murdock D L, Atwood G A. Kinetics of Catalytic Reduction of SO2 with Hydrogen. Ind. Eng. Chem. Process. Des. Develop. 1974(13): 254
    [13] Paik S C, Chung J S. Selective Catalytic Reduction of SO2 with Hydrogen to Elemental Sulfur over Co-Mo/A1203. Appl. Catal. B, 1995, 5: 233~243
    [14] Helmstrom J J, Atwood G A. The Kinetics of the Reduction of SO2 with Methane over a Bauxite Catalyst. Ind. Eng. Chem., Prod. Res. Dev., 1978, 17: 114~117
    [15] Sariis J, Berk D. Reduction of SO2 with CH4 over Activated Alumina. Ind. Eng. Chem. Res., 1988, 27: 1951~1954
    [16] Muligan D J, Dberk D. Reduction of SO2 with CH4 over Selected Transition Metal Sulfides. Ind. Eng. Chem. Res., 1989, 28: 926~931
    [17]张黎明,秦永宁.载体对Ni基氨分解催化剂性能的影响.燃烧科学与技术, 2000,6(1): 70~72
    [18]张黎明,梁新仪等.铜对Mn/A1203氨还原SO2到单质硫催化性能的影响.燃料化学学报,2001, 29(1): 83~86
    [19]张黎明.氨还原SO2到单质硫催化剂和催化反应研究: [博士论文].天津:天津大学图书馆. 1999
    [20] Roesner G. Study on the reaction activity of CuO/γ-Al2O3 for dry flue gas desulfurization. Die. Chemische. Fabrik, 1937(10): 101
    [21] Khalafalla S E, Foerster E F, Haas L A. Simultaneous Catalytic Reduction of Sulfur Dixoide by Carbon Monoxide. Ind. Eng. Chem. Prod. Res. Dev, 1971(10): 133
    [22] Khalafalla S E, Haas L A. Reduction of SO2 with CO. J. Catal, 1972, 24: 121
    [23] Okay V C, Short W L. Effect of Water on Sulfur Dioxide Reduction by Carbon Momoxide. Ind. Eng. Chem. Prod. Res. Dev, 1973(12): 291
    [24] Hibbert D B, Tseung A C C. The Reduction of SO2 by CO on a La2O3 Catalyst. J. Chem. Soc. Faraday. Trans, 1978, 74(1): 1981
    [25] Bazes J G I, Garetto L S, Nobe K. Catalytic Reduction of SO2 with CO on Cobalt Oxides. Ind. Eng. Chem. Prod. Res. Dev, 1975(14): 264
    [26] Liu W, M Flytzani-Stephanoqoulos. Reduction of SO2 by CO to Elemental Sulfur over Composite Oxide Catalysts. AM. Chem. Soc, Symp. Ser, 1994, 552: 375
    [27] Liu W, Satorm A F, M Flytzani-Stephanoqoulos. Reduction of sulfur dioxide by carbon monoxide to elemental sulfur over composite oxide catalyst. Appl. Catal. B, 1994(4): 167
    [28] Ma J, Fang M, Lau N T. Reduction of SO2 by CO over lanthanum oxide. Appl. Catal, 1997, 150: 253
    [29] Paik S C, Kim H, Chung J S. Selective Hydrogenation of SO2 to Elemetal Sulfur over Transition Metal Sulfides Supported on Al2O3. Catalysis Today, 1997, 38: 193
    [30] Kim H, Park D W, Woo H C, et.al. Removal of SO2 by Catalytic Conversion Technologies. Appl. Catal. B, 1998, 19: 233
    [31] Ryason P R, Harkins. Studies on a New Method of Simultaneously Removing SO2 and NO from Combusition Gases. J.Air Pollution Control Association, 1967, 17(12): 796~799
    [32] Quinlan CW, Okay VC, Kittrrll JR. Simultaneous Catalytic Reduction of Nitric Oxide and Sulfur Dixoide by Carbon Monoxide. Ind. Eng. Chem. Procees Des. Dev., 973, 12 (3): 359~365
    [33] Querido R, Short WL. Removal of SO2 from Stack Gases by Catalytic Reduction to Elemental Sulfur with CO. Ind. Eng. Chem. ProcessDes. Dev., 1973, 12(1): 10~17
    [34] Goetz VN, Sood A, Kittrell JR. Catalyst Evaluation for the Simultaneous Reduction of SO2 and NO by CO. Ind. EngChem., Prod. Res. Dev., 1974, 13(2): 110~114
    [35] Hass LA, Khalafalla SE. Kinetic Evidence of a Reactive Intermediatein Reduction of SO2 with CO. J. Catal., 1973, 29: 264~269
    [36] Zhuang S.X., Magara H, Yamazaki M.etal. Applied Catalysis B: Environmental 2000, 24(2): 89~96
    [37]王世忠,俞启全. PrO/γAl2O3等稀土氧化物催化还原SO2的研究.环境科学学报, 1999, 19(6): 652~656
    [38]胡辉,李劲,程国宏等.稀土混合物CeO2-La2O3上的SO2催化还原研究.中国稀土学报, 2004, 22(4): 470
    [39]胡辉,李劲,张顺喜等. CeO2-La2O3稀土氧化物混合物催化还原SO2的实验研究.环境科学, 2004, 25(2): 17~21
    [40]胡辉,李胜利,张顺喜等. CeO2-La2O3/γ-Al2O3催化还原SO2反应机理的研究.催化学报, 2004, 25(2): 115~119
    [41] Happel J, Hnatow MA, Bajars L etal. Lanthanum Titanate Catalyst-SO2 Reduction. Ind. Eng. Chem., Prod. Res. Dev., 1975, 14(3): 154~158
    [42] Hibbert DB, Campbell RH. Flue Gas Desulphurisation: Removal of SO2 by CO on Sulphided La1-xSrxCoO3. Appl. Catal. 1988, 41: 289~299
    [43] Hibbert DB, Tseung ACC. The Reduction of SO2 by CO on a La0.5Sr0.5CoO3 Catalyst. J. Chem. Tech. Biotechnol., 1979, 29: 713~722
    [44] Bagllo JA. Lanthanum Oxysulfide as a Catalyst for the Oxidation of CO and COS by SO2. Ind. Eng. Chem., Prod. Res. Dev., 1982, 21(1): 38~41
    [45] Ma JX, Fang M, Lau NT. On the Synergism between La2O2S and CoS2 in the Rduction of SO2 by CO. J. Catal., 1996, 158: 251~259
    [46]王磊,马建新,路小峰.稀土氧化物上SO2和NO的催化还原Ⅰ.催化剂的活化特性和机理.催化学报, 2000, 21(6): 542~546
    [47]陈爱平,马建新,王幸宜等.稀土氧化物上COS还原SO2脱硫反应及机理.燃料化学学报, 1998, 26(4): 351~355
    [48]贾立山,秦永宁,马智等.含氧气氛下预硫化钙钛矿LaCoO3上的CO还原SO2反应.催化学报, 2003, 24(10): 751~754
    [49]贾立山,秦永宁,马智等.氧存在下钙钛矿LaCoO3硫化过程的XPS研究.催化学报, 2004, 25(1): 19~22
    [50] Zhu T, Kundakovic L, Dreher A etal. Redox chemistry over CeO2-based catalysts: SO2 reduction by CO or CH4. Catalysis Today, 1999, 50: 381~397
    [51] Paik SC, Chung JS. Selective Hydrogenation of SO2 to Elemetal Sulfur over Transition Metal Sulfides Supported on Al2O3. Appl. Catal. B, 1996, 8: 267~279
    [52] Chung JS, Paik SC, Kim HS etal. Removal of H2S and SO2 by Catalytic onversion Technologies. Catal. Today, 1997, 35: 37~43
    [53] Ma JX, Fang M, Lau NT. The Catalytic Reduction of SO2 by CO over lanthanum oxysulphide. Appl. Catal., 1997, 150: 253~268
    [54] Ma JX, Fang M, Lau NT. Activation of La2O3 for the Catalytic Reduction of SO2 by CO. J. Catal., 1996, 163: 271~278
    [55]李谦,李劲.等离子体分解模拟烟气中CO2的实验.第六届全国电除尘会议学术论文集, 1995
    [56]李劲,李端娇,李谦.燃煤烟气CO2和CO在脉冲电晕场的转化.华中理工大学学报, 1995, 23(4): 26~31
    [57] F .J. Rivas, S. T. Kolaczkowski, F. J. Beltran, D. B. McLurgh. Development of a Model for Wet Air Oxidation of Based on a Free Radical Mechanism. Chem. Eng. Sci.1998, 53: 2575~2586
    [58] Q. L. Zhang, T. Chuang. Kinetics of Wet Oxidation of Black Liquor over a Pt-Pd-Ce/Al2O3 catalyst. Appl. Catal. B: Environmental. 1998, 17: 321~332
    [59] J.E.Jaffe, R. Pandey, A. B. Kunz. Electronic Structure of the Rocksalt-Structure of the Semiconductor ZrO and CdO. Phys. Rev. 1991, 43(17): 14030~14034
    [60] H. Idiss, C. Diane, J. P. Hindermann A. Kinnemann, M.A.Barteau.Reactions ofAcetaldehyde on Ce02 and CeO2-Supported Catalysts. J. Catal. 1995, 155(2): 219~237
    [61] R.B.Zhong, F.Y.Li, Q.J. The Efect of Rare Earth on Supported Amorphous NiB/A12O3 Catalysts. Appl. Catal. A: General. 2001, 205: 279~284
    [62] M. Boaro, M. Vicaro, C. De Leitenburg, G. Dolceti, A. Trovarelli. The Use of Temperature-programmed and Dynamic/transient Methods in Catalysis: Characterization of Ceria-based, Model Three-way Catalysts. Catal. Today. 2003, 77(4): 407~417
    [63] B. R. Strohmeier, D. E. Leyden, R. S. Field. Surface Spectroscopic Characterization of Cu/A12O3 Catalysts. J. Catal. 1985, 94: 514~530
    [64]胡大为.烟气中CO还原SO2的催化剂和催化反应的研: [博士论文].天津:天津大学图书馆. 2002
    [65]刘旦初.多相催化原理.上海:复旦大学出版社, 1997. 75~88
    [66]吴越.催化化学.北京:北京科学出版社, 1998. 68~75
    [67]陈文梅,赵修建.溶胶凝胶法制备TiO2多孔纳米薄膜.武汉工业大学学报. 2000, 12(1): 6~9
    [68]朱新锋,杨家宽,肖波等.负载型纳米二氧化钛光催化剂制备及其光催化性能研究.材料科学与工程学报. 2004, 22(6): 863~866

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700