Lyocell纤维生产用溶剂N-甲基吗啉-N-氧化物(NMMO)回收工艺和机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文探索了Lyocell纤维生产用溶剂N-甲基吗啉-N-氧化物(NMMO)的回收方法,并对回收的机理进行了研究,为选择合适回收工艺和溶剂NMMO多次循环有效使用作理论和生产上的指导。
     本文研究了纤维素纤维/NMMO/水纺丝溶液体系中,各种工艺条件对NMMO/纤维素降解的影响;探讨了高效液相色谱法(HPLC)在不同的检测条件下对N-甲基吗啉-N-氧化物(NMMO)及其主要分解产物N-甲基吗啉(NMM)和吗啉(M)的定量检测,建立了用HPLC同时测定NMMO,NMM和M的方法;文中对凝固浴回收液中的悬浮物进行了结构和粒径大小分析,讨论了水质对回收液中的悬浮物大小以及纤维性能的影响;着重探讨了氧化锆陶瓷膜的制备机理,制备工艺条件以及氧化锆陶瓷膜在Lyocell纤维溶剂回收中的具体应用;研究了离子交换树脂去除部分带色杂质和金属离子以及选择性的去除吗啉(M)的机理和具体操作工艺条件;探讨了回收液的氧化脱色和氧化大部分N-甲基吗啉(NMM)到N-甲基吗啉-N-氧化物(NMMO)的工艺条件和简单机理,主要结论如下:
     1.研究纤维素/NMMO/H_2O体系的降解与稳定时发现,在NMMO/纤维素体系中,酸性条件以及过高的温度不利于NMMO的稳定,浆液保温放置时间过长,将会增加NMMO的降解,也会加强纤维素的降解。金属离子的存在能够大大催化NMMO的降解,且能增加纤维素的降解;NMMO/纤维素体系中的金属离子含量为600ppm吋,NMMO的降解已经超过30%,而纤维素聚合度降解的更多;金属离子的存在能够降低NMMO/纤维素体系的热稳定性,甚至能使体系达到热失控分解。没食子酸丙酯是比鞣花酸和对苯二酚更有效的抗氧剂,其抗氧机理是捕捉体系中的自由基,从而减少自由基对纤维素的攻击,阻止纤维素的降解。而在NMMO加热浓缩的过程中出现的部分深色物质,主要是因为没食子酸丙酯被氧化成高度共轭的深色的双临苯醌。没食子酸丙酯对体系稳定的最佳浓度是0.4wt%,其和NaOH结合使用作为稳定剂,既能提高体系的热稳定性,又能阻止NMMO和纤维素的降解。
     2.本文建立了一种在Lyocell纤维的NMMO溶剂回收中用反相高效液相色谱同时测定NMMO,NMM和M的方法:采用Waters公司的Xterra~(TM)色谱柱通过等梯度洗脱,使NMMO,M和NMM在碱性流动相条件下达到完全分离成为现实,它们的保留时间t_R依次为1.231,1.924和2.726分钟,而且分析周期仅为4分钟。通过均匀设计方法快速选择了最佳流动相,从而得到了分离M,NMM和NMMO的最佳条件为:
     流动相:V(缓冲溶液):V(乙腈)=97:3,其中缓沖溶液为0.02M/L的Na_2CO_3和NaHCO_3缓冲体系,pH也是用此缓冲溶液来调,pH值为10.54;三乙胺的体积分数为0.55%;流速:1ml/min;检测波长:218nm;检测器灵敏度为0.01AUFS;柱温:室温;进样量:10μl。本文确定的HPLC方法操作简便,测定准确,重现性好。NMMO在50~300mg/L范围内有良好的线性关系,最小检出限为50mg/L,平均回收率为96.85±0.48%,平行样(n=5)测定的RSD%低于3.6%;NMM在20-300mg/L范围内有良好的线性关系,最小检出限为20mg/L,平均回收率为98.41±0.45%,平行样(n=5)测定的RSD%低于3.4%;M在20~300 mg/L范围内有良好的线性关系,最小检出限为20mg/L,平均回收率为98.61±0.40%,平行样(n=5)测定的RSD%低于3.1%。
     3.研究了纺丝凝固浴中悬浮粒子的结构和水质不同对纤维的部分性能的影响,并首次测定了凝固浴中的悬浮粒子的大小。结果表明:从红外谱图上看出,纺丝的浆粕和凝固浴中的悬浮粒子基本上是一种物质。不论凝固浴是采用蒸馏水还是自来水,粒子的个数平均粒径大概稍大于1μm,与蒸馏水比较起来,用自来水作凝固浴纺出的纤维白度降低了15%,强度降低了9.5%,断裂伸长下降了7.4%。
     4.研究了ZrO_2陶瓷膜的制备及其在Lyocell纤维的凝固浴回收中的应用。结果表明:
     粒径分布集中在5μm以上的Z_rO_2粒子不适宜于制备陶瓷动态膜。不同粒径的ZrO_2粉体的涂膜液的浓度均集中在0.7~0.8g/L左右。随着错流速度的增大渗透通量也增大,0.2m/s的错流速度为最佳涂膜条件。在涂膜时间到达30分钟后,渗透通量趋于稳定,因此采用30分钟为动态膜的涂膜时间参数。采用平均粒径为4.98μm粉体膜处理的凝固浴中颗粒的粒径较大,采用平均粒径为1.90μm和平均粒径为1.15μm粉体膜处理的凝固浴中颗粒的粒径较小,能够满足纺丝生产的需要。随操作压力的增大,通量开始上升较快,而后上升幅度较小,可以选择在150kPa时的操作压力运行。
     5.采用阴离子交换树脂X不仅能去除Lyocell纺丝凝固浴的悬浮物,还能对其有效脱色。阳离子交换树脂Y不仅能去除NMMO的分解产物吗啉,还能去除铁、铜等金属离子,并且有良好的耐疲劳性。本文确定了先经过阴离子交换树脂X,再经过阳离子交换树脂Y的离子交换树脂法溶剂回收工艺,不但能脱色、去除吗啉和铁铜等金属离子,而且操作方便并能循环多次利用,完全能满足大工业生产的需要。经离子树脂交换处理浓缩后的再生NMMO溶剂能有效地溶解纤维素纺丝,所纺制的纤维性能良好。
     6.分析了各种条件对氧化脱色反应的影响,并通过正交实验得到了氧化脱色的最佳工艺条件。再生温度对氧化反应的快慢和反应的程度影响很大,50℃、60℃时反应较慢且反应也不彻底,又因70℃时比80℃反应更平稳、好控制,所以优选70℃。H_2O_2加入量对反应进行的快慢和程度有影响,但其主要影响H_2O_2的残余量,以按回收溶液质量的1.0%加入为佳;溶液的PH为8是最佳的,也是适应生产实际要求的;溶液的NMMO浓度不作为最主要的影响因素,故按生产实际来取12%左右,本文用12.2%NMMO。正交实验得到的最佳方案为:再生温度为70℃,H_2O_2的加入量为1.0%,溶液PH为8,凝固浴溶液的浓度为12.2%NMMO。此外,NMM氧化到NMMO的最终工艺条件为:凝固浴溶液的pH为8,氧化反应温度为70℃,反应时间为5小时,H_2O_2加入量以H_2O_2与NMM的摩尔比为1.2。最后,NMM氧化到NMMO的产率为85%。
     7.确定了Lyocell纤维生产用溶剂NMMO的回收的最终流程:
     10%的NMMO凝固浴水溶液(w/w)→粗虑→精滤(ZrO_2陶瓷膜过滤)→阴离子交换树脂处理→阳离子交换树脂处理→H_2O_2氧化→浓缩到50%的NMMO水溶液(w/w)
In this thesis, the recycle process and mechanism of N-methylmorpholine-N-oxide (NMMO) as a solvent for the lyocell fibers production have been studied. In order to select the optimum recycle process parameter and use NMMO repeatedly, a new recycle process has been developed and the mechanism of the recovery of NMMO has also been investigated.
     First of all, the effects of process parameters on the degradation of NMMO and cellulose in the system NMMO·H_2O /cellulose were studied; The quantitative determination of NMMO, N-methylmorpholine (NMM) and morpholine (M) was investigated. The quantity of main NMMO degradation products, i.e. NMM, M, under different conditions were discussed. A high performance liquid chromatography (HPLC) method for the determination and quantification of NMMO, NMM and M was also developed. A study on composition, structure and the sizes of the deformable floccule particles in the coagulation bath has been carried out; The influences of water quality on the properties of fiber and the sizes of the deformable floccule particles were discussed. The preparation mechanism and process of the ZrO_2 ceramic membrane, and the effects of applying the ZrO_2 ceramic membrane on NMMO recovery in lyocell fiber process were further investigated. The effects of operating conditions on removing the colored impurity, metal ions and morpholine (M) by ion exchange resin were investigated and the mechanism of this process was also studied. In addition, the processing conditions and mechanism of the discoloring oxidation reaction and how to oxidize the N-methylmorpholine to N-methylmorpholine-N-oxide were also discussed. The main results obtained are as follows:
     1. The study of the degradation and stabilization in cellulose/NMMO/H_2O mixtures indicates that the acid environment and the elevated temperature increases the instability of NMMO, the degradations of NMMO and cellulose increase with heating time, the decompositions of NMMO and cellulose are further accelerated by metal ions. If the concentration of metal ions reaches 600 ppm in the system of NMMO·H_2O /cellulose, more than 30% of NMMO will be decomposed, while cellulose is degraded severely. It is shown that the thermal instability of NMMO/cellulose system in the presence of metal ions would be increased remarkably, even an uncontrollable decomposition process could occur. Propyl gallate could stabilize the NMMO/cellulose system better than hydroquinone and ellagic acid. The mechanism of stabilization using propyl gallate is that it acts as a free radical scavenger agent and inhibits the degradation of cellulose by preventing free radicals to attack cellulose. On the other hand, propyl gallate can be oxidated into highly conjugated bis(ortho-quinone) which is deeply colored. It represents one major reason for the discoloration of concentrating NMMO in the presence of propyl gallate. The optimum concentration of propyl gallate is 0.4wt% in order to stabilize NMMO/cellulose system, propyl gallate in combination with NaOH can not only counteract the degradation of NMMO and cellulose but also considerably increase the thermal stability of NMMO-cellulose-water solution.
     2. A HPLC method for the separation and quantitative determination of NMMO,NMM and M from the coagulation bath has been established. The separation is carried out on a Xterra~(TM) C_(18) column. A standard method is employed to optimize the mobile phase, the mobile phase composition is V (0.02mol/L sodium carbonate and sodium bicarbonate buffer containing 0.55% triethylamine, pH10.54) :V (acetonitrile) =97:3. The detection is performed at 218nm and the injection volume is 10μl. A baseline separation is achieved within 4 min and the retention times for NMMO, M and NMM are 1.231 min, 1.924 min and 2.726 min respectively. NMMO,NMM and M show good linearity in the ranges of 50 mg/L to 300 mg/L, 20 mg/L to300 mg/L and 20 mg/L to300 mg/L respectively. The average recoveries is 96.85±0.48% for NMMO, 98.41±0.45% for NMM, and 98.61+0.40% for M. The detection limits for NMM0,NMM and M are 50 mg/L, 20mg/L and 20mg/L, RSD is less than 3.6%, 3.4% and 3.1% respectively. HPLC method is rapid and accurate, and suitable for control of the recovery of NMMO.
     3. The composition and structure of the deformable floccule particles in coagulation bath and the effect of water quality on fiber properties are investigated, and the sizes of the deformable floccule particles are also determined. The deformable floccule particles in the coagulation bath show a main characteristic of cellulose from IR spectrum. The deformable particles average size in coagulation bath is bigger than 1μm whatever the coagulation bath is tap water or distilled water. Compared with the distilled water, the whiteness, tenacity and elongation at break of the fiber made from using tap water as coagulation bath decrease 15.5%, 9.5% and 7.4% respectively.
     4. The preparation and application of ZrO_2 ceramic membrane in NMMO recycle process. The results show that ZrO_2 powder with size bigger than 5μm and too high or too low concentration of ZrO_2 powder are not suitable to for membrane. The best concentration for ZrO_2 membrane is 0.7-0.8g/l. The permeation flux increases with the cross-flow velocity, and the optimum cross-flow velocity for forming membrane is 0.2m/s. It is found permeation flux will be stable 30 minutes after forming membrane, so the time of forming dynamic membrane should be 30 minutes. The deformable particle sizes are big if the coagulation bath is filtrated through a membrane by using the ZrO_2 powder whose average size is 4.98μm. On the other hand, if the coagulation bath is filtrated through a membrane made by ZrO_2 powder with average size of 1.90μm or 1.15μm, the deformable particle sizes are small and can meet the demand of the recycle process. In addition, with the applied pressure increasing, the permeation flux increases rapidly at first, increases slightly and finally the applied pressure reaches 150kPa.
     5. The anion exchange resin X can not only remove the deformable floccule particles in the coagulation bath but also decolorize the coagulation bath, while the cation exchange resin Y can selectively remove morpholine(M) as NMMO degradation product and eliminate metal ions like iron, copper etc, at the same time the cation exchange resin Y has a good fatigue resistance. The regeneration process of the aqueous solutions of NMMO is developed, that is, the coagulation bath to be recycled is treated by the anion exchange resin X firstly, then is treated by the cation exchange resin, the above process discolors the coagulation bath, removes morpholine(M) and eliminates metal ions, and is easy to operate, can be used repeatedly. The recycled NMMO aqueous solution can completely meets the demand of the industrial production for lyocell fibers. In addition, the properties of fiber which is made by recycled NMMO are almost equal to the fibers which are made by virgin NMMO.
     6. The factors which influence the discoloring oxidation reaction of the coagulation bath are investigated. The optimum processing condition for the discoloring oxidation reaction is obtained. The results indicate that the regenerating temperature strongly affects the rate and extent of the oxidation reaction and it is found that the optimum regenerating temperature is 70℃. The amount of H_2O_2 mainly affects the remains of H_2O_2 besides influencing the rate and extent of the discoloring oxidation reaction. On the other hand, the NMMO concentration of the coagulation bath is not the main factor which influences the discoloring oxidation reaction. Finally the optimum processing conditions of the discoloring oxidation reaction are that, the regenerating temperature is 70℃, hydrogen peroxide added is 1.0% by weight of the total solution, the pH value of the coagulation bath is 8, and the NMMO concentration of the coagulation bath is 12.2%. The final processing condition of oxidizing N-methylmorpholine to N-methylmorpholine-N-oxide are that, the pH value of the coagulation bath is 8, the oxidation reaction temperature is 70℃, the oxidation reaction time is 5 hours, and hydrogen peroxide employed is 1.2 mole per mole of N-methylmorpholine. In addition, approximately 85% N-methylmorpholine can be converted into N-methylmorpholine-N-oxide.
     7. The final recycle process of solvent NMMO for the lyocell fibers production has been established:
     Coagulation bath(concentration of NMMO is 10%(w/w))→rough filtrated→fine filtrated (processed by ZrO_2 ceramic membrane)→treated with anion exchange resin→treated with cation exchange resin→oxidized by H_2O_2→concentrated into 50% NMMO aqueous solution (w/w) .
引文
[1] W. Albrecht, M. Reintjes, Chemical Fibers International, 1997, Vol. 47, 298.
    [2] Chanzy H, Peguy A, Chaunis S, Monzie P. Oriented cellulose films and fibers from a mesophase system. J Polym Sci Polym Phys Ed 1980; 18: 1137-44.
    [3] Cole DJ. Courtaulds Tencel fibre in Apparel Fabrics. Lenz Ber 1994; 74: 45-9.
    [4] Krüger R. Cellulose filament yarn from the NMMO process. Lenz Ber 1994; 74; 49-53.
    [5] Nechwatal A. Nicolai M, Mieck KP, Heubiein B, Kuhne D. Studies. on the wet fibrillation of Lyocell fibers. Angew Makromol Chem 1999; 271; 84-92.
    [6] Nicolai M, Nechwatal A, Mieck KP. Lyocell fibers. Alternatives for reducing fibrillation. Melliand Textilber 1999; 80(10): 848-51.
    [7] Picht S. Fibrillation-problem or chance? Lenz Ber 1998; 78: 48-9.
    [8] Bredereck K, Schulz F, Otterbach A. Fibrillation propensity of Lyocell and the influence of reactive dyeings. Melliand Textilber 1997; 78(10): 703-4 also p. 707-8, 710-1, E155-8.
    [9] Mortimer SA, Peguy AA, Ball RC. Influence of the tendency of Lyocell fibers to fibrillate. J Appl Polym Sci 1996; 60: 305-16.
    [10] Mortimer SA, Peguy AA, Ball RC. Influence of the physical process parameters on the structure formation of Lyocell fibers. Cell Chem Technol 1996; 30(3-4): 251-66.
    [11] Mortimer SA, Peguy AA. The influence of air-gap conditions on the structure formation of Lyocell fibers. J Appl Polym Sci 1996; 60; 305-16.
    [12] Honber T, Thumm S. Finishing of Lyocell. Melliand Int 1999; 1: 83-5.
    [13] Honber T, Thumm S. Finishing of Lyocell. Melliand Int 1998; 2: 122-4.
    [14] Honber T, Thumm S. Finishing of Lyocell. Part 1-3. Melliand Textilber 1998; 79(4): 253-6 and p. E66-8.
    [15] Honber T, Thumm S. Finishing of Lyocell. Part 1-3. Melliand Textilber 1998; 79(5): 334-6 and p. E85-6.
    [16] Honber T, Thumm S. Finishing of Lyocell. Part 1-3. Melliand Textilber 1998; 79(6): 452-5 and p. E124-5.
    [17]Schurz J, Lenz J. Investigations on the structure of regenerated cellulose fibers. Macromol Symp 1994;83: 273-89.
    
    [18]Burrow T. Recent results with Lyocell fibers in textiles. Lenz Ber 1998;78:37-40.
    
    
    [19]Wachsmann U. Lyocell. A fiber with a great future. DWI Rep 1999;122:381-9.
    
    [20]Macfarlane K. Nonwovens applications of Lyocell fibers. Chem Fibers Int 1997;47(4):328 and p. 332-3.
    
    [21]Granacher C, Sallmann R. DRP 719,486 (07.10.1936). Verfahren zur Herstellung von Celluloselosungen.
    
    [22]Granacher C, Sallmann R. US Patent 2,179,181,1936.
    
    [23]Johnson DL. British Patent 1,144,048 (1969), assigned to Eastman Kodak Company.
    
    [24]Johnson DL. Patent 3,447,939 (03.06.1969). Compounds dissolved in cyclic amine oxides.
    
    [25]Johnson DL. US Patent 3,508,941 (28.04.1970). Method of preparing polymers from a mixture of cyclic amine oxides and polymers.
    
    [26]American Enka. US Patent 4,144,080 (1979). Process for making amine oxide solution of cellulose.
    
    [27]American Enka, US Patent 4,196,282 (1980). Process form making a shapeable cellulose and shaped cellulose products.
    
    [28]American Enka. US Patent 4,246,221 (1981). A process for shaping cellulose articles prepared from a solution containing cellulose dissolved in a ternary amine oxide solvent.
    
    [29]Akzo Fbres. German patent DE 30,34,685 C2, 1984.
    
    [30]Chanzy H. Quellung und Losen von Cellulose im Aminoxid-Wasser-System. J Polym Sci Polym Phys Ed 1980;18:l 137-44.
    
    [31]Chanzy H, Nawrot S, Peguy A, Smith P. The phase behavior of the quasiternary system N-methylmorpholine-N-oxide, water and cellulose. J Polym Sci 1982; 20: 1909-24.
    [32] Linton EP. The dipole moment of amine oxides. J Am Chem Soc 1940; 62: 1945-8.
    [33] Walker M., Zinnnerman R. -L., Whitcombe G-P, Humber H. -H., N-methylmorpholinoxide(NMMO)-die entwicklung eines losemittels zur industriellen produleetion yon zellulosefasen. Leninger Berichte, 1997; 76: 76-80
    [34] Maia E, Peguy A, Perez S. Cellulose organic solvents. Ⅰ. The structure of andydrous N-methylmorpholine-N-oxide and N-methylm0rpholine-N-oxide monohydrate. Acta Cryst B 1981; 37: 1858-62.
    [35] Maia E, Perez S. Cellulose organic solvents Ⅱ. Acta Cryst B 1982; 38: 849.
    [36] Davis MM, Hetzer HB. The relative basicities of trialkylamine and trialkylamine oxides in benzene and water. J Am Chem Soc 1954; 76: 4247-60.
    [37] Kruger TL, White WN, White H, Hartzell SL, Kress JW, Walter N. Preparation and basicities of N,N-diethyl and N,N-dimethylaniline oxides. J Org Chem 1975; 40: 77-81.
    [38] Koster R, Morita Y. Quantitative Bestimmung verschiedener B-Funktionenin organischen Borverbindungen durch Oxydation mit Trimethylamin-N-oxyd. Liebigs Ann Chem 1967; 704: 70-90.
    [39] Sonderquish JA, Anderson CL. Crystalline anhydrous trimethylamine N-oxide. Tetrahedron Lett 1986; 27: 3961-2.
    [40] Cook MJ, Katritzky AR, Moreno Manas M. The conformational analysis of saturated heterocycles. Part ⅩⅩⅩⅧ. N-Alkylpiperidine and N-alkylmorpholine N-oxides. J Chem Soc(B)
    [41] Chanzy H, Maia E, Perez S. Cellulose organic solvents Ⅲ. The structure of N-Methylmorpholine-N-oxide-tranS-1,2-cyclohexanediol. complex. Acta Cryst B 1982; 38: 852-5.
    [42] Ullmann's encyclopedia of industrial chemistry, Weinheim: Wiley-VCH. 1998.
    [43] Taeger E, Michels C, Nechwatal A. Untersuchungen zur Auflosung und Verformung on Cellulose in N-methyl-morpholin-N-oxide. Das Papier 1991; 12: 784-8.
    [44] Novoselov NP, Sashina ES, Kozlov IL, Kurlykin MP. Polythermal study of the heat of dissolution of cellulose in N-methylmorpholine N-oxide. Zh Prikl Khim(St Petersburg) 1999; 72(7): 1192-4.
    [45] Golova LK, Borodina OE, Belousov YY, Andreeva IN, Yablochko LP, Papkov SP. Thermal stability of cellulose in methylmorpholine N-oxide-based systems. Khim Volokna 1987; 3: 30-2.
    [46] Kim SO, Shin WJ, Cho H, Kim BC, Chung IJ. Rheological investigation on the anisotropic phase of cellulose-MMNO/H_2O solution system. Polymer 1999; 40(23): 6443-50.
    [47] Kosan B, Michels C. Particle analysis by laser diffraction. Application and restrictions in the Lyocell process. Chem Fibers Int 1999; 49(1): 50-4.
    [48] Borisova TI, Afanas'evea NV, Burshtein LL, Borodina OE, Golova LK. Dielectric absorption and molecular mechanisms of the initial stages of cellulose dissolution in N-methylmorpholine N-oxide. Vysokomol Soedin Ser A 1993; 35(8): 1326-31.
    [49] Novoselov NP, Sashina EV, Khanin VA, Kozlov IL. Specifc features of cellulose dissolution in tertiary amine oxides. Zh Prikl Khim(St Petersburg), 1999; 72(3): 500-4.
    [50] Novoselov NP, Sashina EV, Tret'yak VM. Role of water during dissolution of cellulose in N-methylmorpholine N-oxide. Zh Fiz Khim 1999; 73(1): 78-82.
    [51] Kast KM, Reiling S, Brickmaim J, Ab initio investigations of hydrogen bonding in aliphatic N-oxide-water system. THEOCHEM 1998; 453: 169-80.
    [52] Novoselov NP, Tret' yak VM, Sinel'nikov EV, Sashina ES. Quantum-chemical study of interaction of cellulose with N-methylmorpholine N-oxide. Russ J Gen Chem 1997; 67(3): 430-4.
    [53] Ioleva MM, Goikhman A, Sh, Banduryan SI, Papkov SP. Characteristics of the interaction of cellulose with N-methylmorpholine-N-oxide. Vysokomol Soedin Ser B 1983; 25(11): 803-4.
    [54] Harmon KM, Akin AC, Keefer PK, Snider BL. Hydrogen bonding. Part 45. J Mol Struct 1992; 269: 109-21.
    [55]Khanin VA, Bandura AV, Novoselov NP. Barriers to rotation of bridging bonds of cellulose molecule in its interaction with N-methylmorpholine N-oxide. Russ J Gen Chem 1998;68(2):305-8.
    
    [56]Rozhkova OV, Myasoedova VV, Krestov GA. Effect of donor-acceptor interactions on solubility of cellulose in methylmorpholine N-oxide-based systems. Khim Drev 1985;2:26-9.
    
    [57]Berger W, Keck M, Kabrelian V, Philipp B, Zenke I. Solution of cellulose in aprotic mixed solvents. 2. Effect of the physical structure of the cellulose on the dissolution process. Acta Polym 1989;40(5): 351-8.
    
    [58]Berger W, Keck M, Philipp B. On the mechanism of cellulose dissolution in nonaqueous solvents, especially in O-basic systems. Cell Chem Technol 1998;22(4):387-97.
    
    [59]Karbrelian V, Berger W, Keck M, Philipp B. Investigation of the dissolution of cellulose in binary aprotic systems. 1. Solubility and decrease in degree of polymerization of a textile pulp in binary systems with N-methylmorpholine N-oxide as one component. Acta Polym 1988;39(12): 710-4.
    
    [60]Petrovan S, Collier JR, Morton GH. Rheology of cellulosic N-methylmorpholine oxide monogydrate solutions. J Appl Polym Sci 2000; 77(6): 1369-77.
    
    [61]Petrovan S, Negulescu II, Collier JR, Collier BJ. Rheology of cellulosic and lignocellulosic N-methylmorpholine N-oxide solutions. Polym Prepr(Am Chem Soc, Div Polym Chem) 1999;40(2):746-7.
    
    [62]Blachot JF, Bruner N, Navard P, Caville JY. Rheological behavior of cellulose/monohydrate of N-methylmorpholine N-oxide solutions. Part 1. Liquid state Rheol Acta 1998;37(2):107-14. .
    
    [63]Bleishmidt NV, Dreval VE, Borodina OE, Golova LK, Kulichikhin VG. Rheoloty of concentrated N-methylmorpholine N-oxide cellulose solutions. Vysokomol Soedin Ser A, Ser B 1997;39(9):1511-8.
    
    [64]Schrempf C, Schild G, Ruef H. Cellulose-NMMO solutions and their flow properties. Das Papier 1995;49(12):748-57.
    [65] Radosta S, Drechsler U, Vorwerg W, Loth F. Investigation of the state of solution of cellulose in solvent mixtures with N-methylmorpholine-N-oxide. Das Papier 1998; 52(12): 718-24.
    [66] Bochek AM, Silinskaya IG, Kalinina NA, Kallistov OV, Sidorovich AV, Petropavlovskii GA. Supramolecular structure of moderately concentrated solutions of cellulose in amine N-oxides. Zh Prikl Khim(Leningrad) 1988; 61(1): 117-23.
    [67] Andresen EM, Mitchell GR, In situ X-ray scattering investigations of solutions of cellulose in N-methylmorpholine N-oxide during shear flow. Polymer 1998; 39(26): 7127-9.
    [68] Goikhman AS, Iovleva MM, Banduryan SI, Ivanova NA, Matsibora NP, Papkov SP. X-ray study intracrystallite swelling of cellulose in N-methylmorpholine N-oxide solutions. Vysolomol Soedin Ser. A 1985; 27(1): 122-6.
    [69] Chanzy H, Noe P, Pailler M, Smith P. Swelling and dissolution of cellulose in amine oxide/water systems. J Appl Polym Sci: Appl Polym Symp 1983; 37: 239-59.
    [70] Roder T. Doctoral dissertation. Losungsstrukturen von Cellulose in N-Methylmorpholine-N-oxide Monogydreat. Dresden University of Technology, 1998.
    [71] Roder T, Morgenstern B. The influence of activation on the solution state of cellulose dissolved in N-methylmorpholine-N-oxide-monohydrate. Polymer 1999; 40(14): 4143-7.
    [72] Morgenstern B, Roder T. Investigations on structures in the system cellulose/N-methylmorpholine N-oxide monohydrate by means of light scattering measurements. Das Papier 1998; 52(12): 713-7.
    [73] Marini I, Brauneis F. Lenzing-Lyocell-die wichtigsten Unters hiede zu den anderen cellulosischen Fasern. Textilveredlung 1996; 31: 182-7.
    [74] Firgo H, Eigl M, Eichinger D. Lyocell-an ecological alternative. Lenz Ber 1995; 75: 47-50.
    [75]Meister G, Wechsler M. Biodegradation of N-methylmorpholine-N-oxide. Biodegradation 1998;9(2):91 -102.
    
    [76]Sengupta A.K.Rayon fibers, In Manufacturerd Fibre Technology, Ed. by Gupta V.B. and Kothar V.K., London Chapman & Hall,1997,408-513.
    
    [77]Brandner A, Zengel HG. German Patent DE-OS 3,034,685, 1980. Molding and spinning compositions based on cellulose with a low content of low-molecular-weight degradation products.
    
    [78]Laity PR.PCT Int Appl 8,304,415(1983). Polymer solutions.
    
    [79]Franz H, Reusche P, Schoen W, Wiesener E, Taeger E, Schleicher H, Lukanoff B. German (East) Patent 218104, 1985. Thermally stable pulp-amine oxide solutions for preparation of fibers, films, and molded articles from regenerated cellulose.
    
    [80]Michels C, Mertel H. German (East) Patent 229708, 1985. Stable cellulose solutions.
    
    [81]Lukanoff B, Scheicher H. German (East) Patent 158656, 1983. Reduction of cellulose decomposition in amine oxide containing cellulose solutions.
    
    [82]Brandner A, Zengel GH. Molding and spinning compositions based on cellulose with a low content of low-molecular-weight degradation products. Chem Abstr 1982;97:7727d CA See also Ref.[77].
    
    [83]Black DSC, Deacon GB, Thomas NC. New decarbonylation reactions of carbonylruthenium( II) complexes. Inorg Chim Acta 1983;65:L75-6.
    
    [84]Ringel C. Vorsicht bei der Darstellung von Trimethylaminoxyd. Z Chem 1969;9:188.
    
    [85]Buijtenhuis FA, Abbs M, Witteveen AJ. The degradation of and stabilization of cellulose dissolved in N-methylmorpholine-N-oxide(NMMO). Das Papier 1986;40:615-9.
    
    [86]Taeger E, Franz H, Mertel H. Probleme der schwefelkohlenstoffreien Verformung von Zellulose zu textilen Zellulosefaden mittels N-Methylmorpholin-N-oxids. Formeln Faserstoffe, Fertigware 1985;4:14-22.
    [87] Lang H, Laskowski I, Lukanoff B, Schleicher H, Mcrtel H, Franz H, Taeger E. Untersuchungen an Losungen von Cellulose in N-Methylmorpholine-N-oxid(MMNO). Cell Chem Technol 1986; 20: 289-301.
    [88] Firgo H, Eibl M, Kalt W, Meister G. Critical questions on the future of NMMO technology. Lenz Ber 1994; 74: 80-90.
    [89] Rosenau T, Potthast A, Kosma P. The chemistry of side reactions and byproduct formation in the system NMMO/water/cellulose, IPW-Das Papier 2001; 40-6.
    [90] Rosenau T, Potthast A, Kosma P. Chemistry of the cellulose/NMMO/water system: heterolytic reactions. Book of Abstracts. 218th ACS National Meeting, New Orleans, LA, 22-26 August 1999, Part Ⅰ, CELL 71.
    [91] Potthast A, Rosenau T, Kosma P. Chemistry of the cellulose/NMMO/water system: homolytic reactions. Book of Abstracts, 218th ACS National Meeting, New Orleans, LA, 22-26 August 1999, Part Ⅰ, CELL 72.
    [92] Toney CJ, Friedli FE, Frank PJ. Kinetics and preparation of amine oxides. J Am Oil Chem Soc 1994; 71(7): 793-4.
    [93] Metcalfe LD. Potentiometric titration of long chain amine oxides using alkyl halide to remove tertiary amine interference. Anal Chem 1962; 34: 1849.
    [94] Mertel H, Michels C, Kaufmann S, Malitzke P, Taeger E. Reinigung und Riickgewinnung sowie Methoden der quantitative Bestimmung yon N-Methylmorpholin-N-oxid. Das Papier 1992; 3: 101-5.
    [95] Brooks RT, Sternglanz PD. Titanometric determination of the N-oxide group in pyridine-N-oxide and related compounds. Anal Chem 1959; 31: 561-5.
    [96] Gawargious YA, Ashworth MRF. Microdetermination of the amine oxide group in organic compounds by reduction with titanium(Ⅲ). Z Anal Chem 1971; 256: 117.
    [97] Stockinger H, Kut OM, Heinzle E. Ozonation of wastewater containing N-methylmorpholine-N-oxide. Water Res 1996; 30(8): 1745-8.
    [98] Sohn OS, Fiala ES, Conaway CC, Weisburger JH. Separation of morpholine and some of its metabolites by high-performance liquid chromatography. J Chromatogr 1982; 242: 347-80.
    [99] Lamarre C, Gilbert R, Gendron A. Liquid chromatographic determination of morpholine and its thermal breakdown products in steam-water cycles at nuclear power plants J Chromatogr 1989; 467: 249-58.
    [100] Mohnke M, Schmidt B, Schrnidt R, Buijten JC, Mussche P, Application of a fused-silica column to the determination of very volatile amines by. gas-solid chromatography. J Chromatogr 1994; 667: 334-9.
    [101] Widhalm A, Kenndler E. Determination of morpholine and N-methylmorphline formed as degradation products in cellulose fiber production by capillary isotachophoresis. Anal Chem 1991; 63: 645-8.
    [102] L.R.施奈德,J.L格莱吉克,J.J.柯克兰著,王杰,赵岚峰,王树力,丁洁译,实用高效液相色谱法的建立,科学出版社,1998.9
    [103] 刘国诠,余兆楼,色谱柱技术,化学工业出版社,2001.7
    [104] 林炳承,毛细管电泳导论,科学出版社,1996.11
    [105] 邹汉法,刘霞等编著,毛细管电色谱及其应用,科学出版社,2001.11
    [106] Jung GY, Kim TH, Lim HB. Separation of morpholine, N-methylmorpholine and N-methylmorpholine-N-oxide by indirect UV absorption capillary electrophoresis. Anal Sci 1996; 12: 367-9.
    [107] Weinberger R. Practical capillary electrophoresis. Boston: Academic Press, 1993, 46.
    [108] Potthast A, Rosenau T, K0sma P, Scheloski N, Baldinger T, Thermal reactions of N-methylmorphlline-N-oxide(NMMO):a general method for separation and quantification of N-methylmorpholine-N-oxide and its main degradation products N-methylmorphline and morphline by capillary electrophoresis(CE). Holzforschung 2000; 54(6): 641-6.
    [109]Rosenau T, Potthast T, Kosma P. A general method for the quantification of NMMO and it's main degradation products by capillary electrophoresis. Lenz Ber 2000;79:102-7.
    
    [110] Labuza P, Reineccius GA, Monnier V, O'Brien J, Baynes J. Maillard reactions in chemistry, food and health. Cambridge: The Royal Society of Chemistry, 1994.
    
    [111]Yaylayan VA, Ismail AA, Huyghues-Despointes A. Investigations of the acyclic forms of reducing sugars and Amadori products by FTIR spectroscopy. In: Labuza P, Reineccius GA, Monnier V, O'Brien J, Baynes J, editors. Maillard reactions in chemistry, food and health. Cambridge: The Royal Society of Chemistry, 1994,69-74.
    
    [112]Chan F, Reineccius GA. The reaction kinetics of the formation of isovaleraldehyde,2-acetyl-1-pyrroline,di(H)di(OH)-6-methylpyranone, phenylacetaldehyde, 5-methyl-2-hexenal, and 2-acetylfuran in model systems. In: Labuza P, Reineccius GA, Monnier V, O'Brien J, Baynes J, editors, Maillard reactions in chemistry, food and health. Cambridge: The Royal Society of Chemistry, 1994,132-9.
    
    [113]Coleman IIIWM. A study of the behavior of Maillard reaction products analyzed by solid-phase microextraction-gas chromatography-mass selective detection. J Chromatogr 1996;34:213-8.
    
    [114]Deyl Z, Miksik I, Struzinzky R. Separation and partial characterization of Maillard reaction products by capillary zone electrophoresis. J Chromatogr 1990;516:287-98.
    
    [115]Cuculo J. A., Hanson S. M. and Wilson A. V., Direct solvents for cellulose, International Fibers Journal, 1993;4:50-57.
    
    [116]Albrecht W, Reintjes M. and WulthorstB. Lyocell Fibers (An alternative regenerated cellulose fibers). Man-made Year Book, Chem. Fibers Int.,Sept. 1997,41-6.
    
    [117]Papkov S. P. New methods of fabrication of cellulose fibers. Fibre Chem.,1996;28(1):1-4.
    [118] Chegolya A. S., Grinshpan D. D. and Burd E. Z. Production of regenerated cellulose fibers without carbon disulfide. Textile Res. J., 1989; 59: 501-505.
    [1] Buijtenhuis FA, Abbs M, Witteveen AJ. The degradation of and stabilization of cellulose dissolved in N-methylmorpholine-N-oxide(NMMO). Das Papier 1986; 40: 615-9.
    [2] Taeger E, Franz H, Mertel H. Probleme der schwefelkohlenstoffreien Verformung von Zellulose zu textilen Zellulosefaden mittels N-Methylmorpholin-N-oxids. Formeln Faserstoffe, Fertigware 1985; 4: 14-22.
    [3] Lang H, Laskowski I, Lukanoff B, Schleicher H, Mertel H, Franz H, Taeger E. Untersuchungen an Losungen von Cellulose in N-Methylmorpholine-N-oxid(MMNO). Cell Chem Technol 1986; 20: 289-301.
    [4] Firgo H, Eibl M, Kalt W, Meister G. Critical questions on the future of NMMO technology. Lenz Ber 1994; 74: 80-90.
    [5] Thomas Rosenau, Antje Potthast, Herbert Sixta, Paul Kosman, The chemistry of side reactions and byproduct formation in the system NMMO/cellulose(Lyocell process), Prog. Plolym. Sci. 2001; 26: 1763-1837.
    [6] Novoselov NP, Tret' yak VM, Sinel'nikov EV, Sashina ES. Quantum-chemical study of interaction of cellulose with N-methylmorpholine N-oxide. Russ J Gen Chem 1997; 67(3): 430-4.
    [7] Thomas Rosenau, Antje Potthast, Paul Kosman, Heinrich Firgo, Herbert Sixta, The chemistry of side reactions and byproduct formation in the system NMMO/Water/Cellulose. Paper to the 4th International Symposium "Alternative Cellulose-Manufacturing, Forming, Properties",06./07.09.2000 Rudolstadt.
    [8] Polonowske M, Polonowski M. Bull Soc Chim Fr. 1927; 41: 1190.
    [9] Taeger E, Franz H, Mertel H. Probleme der schwefelkohlenstoffreien Verformung von Zellulose zu textilen Zellulosefaden mittels N-Methylmorpholin-N-oxids. Formeln Faserstoffe, Fertigware 1985; 4: 14-22.
    [10] Lang H, Laskowski I, Lukanoff B, Schleicher H, Mertel H, Franz H, Taeger E. Untersuchungen an Losungen von Cellulose in N-Methylmorpholine-N-oxid(MMNO). Cell Chem Technol 1986; 20: 289-301.
    [11] Firgo H, Eibl M, Kalt W, Meister G. Critical questions on the future of NMMO technology. Lenz Ber 1994; 74: 80-90.
    [12] American Enka. US Patent 4,144,080 (1979). Process for making amine oxide solution of cellulose.
    [13] Akzo Fbres. German patent DE 30, 34, 685 C2, 1984.
    [14] Gratzl JS. Oxidativ bedingte Abbaureaktionen in NMMO-CelluloselOsungen. Internal Report, Lenzing AG, 4 October 1994.
    [15] 孔行权,纤维素铜氨粘度的测定,中华人民共和国纺织工业部部颁标准,FJ517-82,1985.
    [16] Golova LK, Borodina OE, Belousov YY, Andreeva IN, Yablochko LP, Papkov SP. Thermal stability of cellulose in methylmorpholine N-oxide-based systems. Khim Volokna 1987; 3: 30-2.
    [17] Brandner A, Zengel HG. German Patent DE-OS 3,034,685, 1980. Molding and spinning compositions based on cellulose with a low content of low-molecular-weight degradation products.
    [18] Laity PR. PCT Int Appl 8,304,415(1983). Polymer solutions.
    [19] Franz H, Reusche P, Schoen W, Wiesener E, Taeger E, Schleicher H, Lukanoff B. German (East) Patent 218104, 1985. Thermally stable pulp-amine oxide solutions for preparation of fibers, films, and molded articles from regenerated cellulose.
    [20] Michels C, Mertel H. German (East) Patent 229708, 1985. Stable cellulose solutions.
    [21] Lukanoff B, Scheicher H. German (East) Patent 158656, 1983. Reduction of cellulose decomposition in amine oxide containing cellulose solutions.
    [22] 李余增,热分析,清华大学出版社,1987.8
    [23] 陈镜泓,李传儒,热分析及其应用,科学出版社,1985,6
    [24] Brandner A. and Zengel H.G. 1980. Molding and Spinning compositions based on cellulose with a low content of low-molecular-weight degradation products., German Patent DE-OS 3,034,685.
    [25] Laity RR. 1983. Polymer solutions. PCT Int. Appl. 8,304,415.
    [26] Franz H., Reusche R, Schoen W., Wiesener E., Taeger E., Schleicher H. et al. 1985. Thermally stable pulp-amine oxide solutions for preparation of fibers, films, and molded articles from regeneration cellulose. German(East) Patent 218104.
    [27] Michels C. and Mertel H. 1985. Stable cellulose solutions. German(East) Patent 229708.
    [28] Lukanoff B. and Schleicher H. 1983. Reduction of cellulose decompositon in amine oxide containing cellulose solutions. German(East) Patent 158656.
    [29] 徐寿昌主编,有机化学,科学出版社,1981
    [30] Thomas Rosenau, Antje Potthast, Immanuel Adorjan, Andreas Hofinger, Herbert Sixta, Heinrich Firgo and Paul Kosman, Cellulose solutions in N-methylmorpholine-N-oxide(NMMO) degradation process and stabilizers, Cellulose 2002; 9: 283-291.
    [31] Kalt, Wolfram, US Patent 5,679,146 (1997). Moulding materials and spinning materials containing cellulose.
    [1] Alexandra widhalm. Ernst Kendler. Determination of Morpholine and N-Methylmorpholine Formed as Degradegration Products in Cellulose Fiber Production by Capillary Isotachophoresis. Anal Chem 1991, 63, 645~648.
    [2] Toney CJ, Friedli FE, Frank PJ. Kinetics and preparation of amine oxides. J Am Oil Chem Soc 1994; 71(7): 793-4.
    [3] Metcalfe LD. Potentiometric titration of long chain amine oxides using alkyl halide to remove tertiary amine interference. Anal Chem 1962; 34: 1849.
    [4] Mertel H, Michels C, Kaufmann S, Malitzke P, Taeger E. Reinigung und Rückgewinnung sowie Methoden der quantitative Bestimmung von N-Methylmorpholin-N-oxid. Das Papier 1992; 3: 101-5.
    [5] Brooks RT, Sternglanz PD. Titanometric determination of the N-oxide group in pyridine-N-oxide and related compounds. Anal Chem 1959; 31: 561-5.
    [6] Gawargious YA, Ashworth MRE Microdetermination of the amine oxide group in organic compounds by reduction with titanium(Ⅲ). Z Anal Chem 1971; 256: 117.
    [7] Stockinger H, Kut OM, Heinzle E. Ozonation of wastewater containing N-methylmorpholine-N-oxide. Water Res 1996; 30(8): 1745-8.
    [8] Sohn OS, Fiala ES, Conaway CC, Weisburger JH. Separation of morpholine and some of its metabolites by high-performance liquid chromatography. J Chromatogr 1982; 242: 347-80.
    [9] Lamarre C, Gilbert R, Gendron A. Liquid chromatographic determination of morpholine and its thermal breakdown products in steam-water cycles at nuclear power plants J Chromatogr 1989; 467: 249-58.
    [10] Mohnke M, Schmidt B, Schmidt R, Buijten JC, Mussche P, Application of a fused-silica column to the determination of very volatile amines by gas-solid chromatography. J Chromatogr 1994; 667: 334-9.
    [11] Wang Xiao-qin,Deng Bo,Qin Jian-hou(王小芹,邓勃,秦建侯).Chinese Journal of Analysis Laboratory(分析实验室),1985,4(12):46~54.
    [12] 达世禄,色谱学导论(第二版) [M].武汉大学出版社,2002,1~102.
    [13] 施奈德L.R,格莱吉克J.L,柯克兰JJ,实用高效液相色谱法的建立[M].北京:科学出版社,1998,12—59.
    [14] 于世林,高效液相色谱方法及应用,化学工业出版社,2000,1.
    [15] 吴宁生,顾光华编,高效液相色谱法,中国科学技术出版社,1998,8.
    [16] 王俊德,实用高效液相色谱方法,石油出版社,1992,246~335.
    [17] A. widhlm and E. Kenndler, Anal. Chem, 63, 645(1991)
    [18] 杨左海,Henderson—Hasselbalch方程及其应用,大学化学,1997,13(1).
    [1] 帅心涛,降解性脂肪酸族聚酸酐及其共聚物的合成及性能研究,北京理工大学博士论文,1996,12
    [2] 赖逸云,淀粉充填乙烯共聚物的特征研究,塑料科技,1996,6:7-10
    [3] 李和平,淀粉/ BA-VAC共聚物的合成及应用研究,高分子材料科学与工程,1997,13(1):135-138
    [4] Linkes, W. F. and Booth, R. B., Trans. Am. Inst. Min. Metall Engers., 1959, 217, 364
    [1] 刘茉娥等,膜分离技术,化学工业出版社,1998.1
    [2] 王学松,膜分离技术及其应用,科学出版社,1994.4
    [3] Anon, Ceramic Membrane, Materials and Science, 1999.3
    [4] 郑领英,袁权,展望21世纪的膜分离技术,水处理技术,1995,21(3):125~131.
    [5] 王丽秋等,溶胶-凝胶法S_iO_2陶瓷膜的制备与应用,齐齐哈尔轻工学院学报,1997,13(3):67~70.
    [6] 吴洁华等,溶胶-凝胶技术制备ZrO2陶瓷膜研究,华东理工大学学报,1997,23(3):349~355.
    [7] 黄仲涛,王乐夫等,无机膜技术及其应用,中国石化出版社,1999.3
    [8] 霍明亮等,多孔陶瓷分离膜,化学工业与工程,1996,13(4):25~29
    [9] 郑领英,我国反渗透、超滤和微滤膜技术的现状,水处理技术,1995.1
    [10] Marcel.Mulder(荷兰)著,李琳译,膜技术基本原理(第二版),清华大学出版社,1999.7.
    [11] Wang, Jun-Yuan; Liu, Ming-Chyi; Lee, Chau-Jen; Chou, Kan-Sen, Formation of extra-Zr dynamic membrane and study on concentration of protein hemoglobin, Journal of Membrane Science, 1999, 162(1): 45-55.
    [12] Jiraratananon, R; Uttapap, D.; Tangamornsuksun, C., Self-forming dynamic membrane for ultrafiltration of pineapple juice, Journal of membrane Science, 1997, 129(11): 135-143.
    [13] Malack, Muhammad H.; Anderson, G, K., Crossflow microfiltration with dynamic membrane, Water Research, 1997, 31(8): 1969-1979.
    [14] Dal-Cin, M. M.; McLellan, F.; Striez, C. N.; Tam, C. M.; Tweddle, T. A.; Kumar, A., Membrane performance with a pulp mill effluent: Relative contributions of fouling mechanisms, Journal of membrane Science, 1996, 120(11): 273-285.
    [15] Uell, Carme; Davis, Robert H., Membrane fouling during microfiltration of protein mixtures, Journal of membrane Science, 1996, 119(10): 269-284.
    [16] 刘明,膜与膜技术研究现状及应用,食品工业科技,1996,(1):30~34
    [17] 范恩荣,陶瓷膜的开发和应用,流体机械,1996,24(12):26—30
    [18] 赵广英,王占生,膜污染实验装置的研究及其应用,膜科学与技术,2000,20(5):32-35.
    [19] 王沛,管式陶瓷微滤膜的制备研究,膜科学与技术,1996,16(3):52~57.
    [20] R G Holdich, J S Boston, Microfiltration using a dynamically formed membrane, Filtration & Separation, 1990, 27(3): 184-187.
    [21] 许莉,陶瓷膜的应用及其动态过滤性能研究,流体机械,1996,24(2):11~14
    [22] 钟璟,徐南平,时钧,陶瓷膜过滤微米级颗粒悬浮液操作条件的影响,膜科学与技术,2000,20(1):12-16.
    [23] Marcel Mulder著,膜技术基本原理(第二版),清华大学出版社,1999.7
    1.夏笃伟,离子交换树脂,化学工业出版社,1983.
    2. Wlto S. Lee, Chong S. Park, Yong K. Hone, et al, A Method For The Purification Of Reclaimed Aqueous N-Methylmorpholin-N-Oxide Solution, 1997, USP, 5, 611, 932.
    3.王方,离子交换树脂,北京科学技术出版社,1989.
    4.何炳林,黄文强,离子交换与吸附树脂,上海科技教育出版社,1995.
    5.闫英桃,D001树脂对酸性流脲溶液中金银的交换性能研究,离子交换与吸附,1998,14(1),53-58.
    6. Cuculo J. A., Hanson S. M. and Wilson A. V., Direct solvents for cellulose, International Fibers Journal, 1993, No.4, 50-57.
    7. Firgo, Heinrich, process for selective separation of morpholine 2000 USP,6,113,799.
    [1] Wha S Lee, Seong M Jo. Method for the purification of reclaimed aqueous N-methylmorpholine- N-oxide solution. USP5611932, 1997 - 03 - 18.
    [2] Analytical Method M 97/0081/01e Dr.Euler Trrifricmetric Determination.
    [3] Dietmar Korger, Steinbach Am. Process for purifying an aqueous solution of N-methylmorpholine-N-oxide. USP5053138,1991-10-01.
    [4] 吕希布,无机过氧化合物化学,科学出版社,1987
    [5] E.米利德,H.菲尔戈,叔胺氧化物水溶液纯化工艺,CN1124044,1996-06-05
    [6] S.阿斯泰格,胺氧化法含水工艺流体的再生方法,CN1165507,1997-11-19
    [7] 栾军,现代试验设计优化方法,上海交通大学出版社,1995
    [8] Buijtenhuis FA, Abbs M, Witteveen AJ. The degradation of and stabilization of cellulose dissolved in N-methylmorpholine-N-oxide(NMMO). Das Papier 1986; 40: 615-9.
    [9] Taeger E, Franz H, Mertel H. Probleme der schwefelkohlenstoffreien Verformung von Zellulose zu textilen Zellulosefaden mittels N-Methylmorpholin-N-oxids. Formeln Faserstoffe, Fertigware 1985; 4: 14-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700