盐芥蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐芥(Thellungiella salsuginea)以其个体较小、生长周期短、自花授粉、种子数量多、自交结实、基因组小、易转化和易突变等特点,以及在cDNA水平与拟南芥高的同源性,并且具有极高的冷、干旱、高盐和低氮素耐受力,被作为研究植物非生物胁迫的新模式材料。
     目前关于盐芥的研究已经取得了一些进展,这些研究主要集中在离子运输、表达谱分析、单个基因的功能鉴定及个别生理性状研究等方面。通过这些研究对盐芥高的胁迫耐受能力的机制有了初步了解,与拟南芥相比,盐芥在正常条件下高表达一些与胁迫相关基因,在受到胁迫后采取较经济的调节方式;在离子选择性、保护性物质代谢及种类方面盐芥和拟南芥之间也存在差别,总之高的胁迫耐受力是由复杂调控系统控制的过程。蛋白是细胞功能的主要执行者,高通量的蛋白分析—蛋白质组学研究将会为我们对这些胁迫耐受差异提供更加直观和准确的信息。在蛋白水平将盐芥和拟南芥以及盐芥不同生态型间进行比较的工作未见报道。本实验以拟南芥、盐芥Shandong生态型及Xinjiang生态型为研究材料,对正常水培条件下拟南芥和盐芥叶片进行了蛋白质组学比较,鉴定分析了二者表达丰度较高的蛋白,目的在找出与盐芥耐逆相关的基础水平因素;对盐芥Shandong型和Xinjiang型的叶及根进行了比较蛋白质组学研究,并结合二者基本生理性状的差异对鉴定的差异蛋白进行了分析,目的在于寻找盐芥不同生态型间进化上的差异在蛋白水平的表现。
     本实验的主要结果如下:
     1、盐芥与拟南芥叶片蛋白质组分析
     水培装置中生长4周的拟南芥叶片及生长6周的盐芥Shandong生态型叶片提取全蛋白进行双向电泳,蛋白谱图显示盐芥、拟南芥在蛋白水平存在显著差异。
     本实验中将二者凝胶图中的蛋白点按体积值排序后,选取了表达量较高的蛋白点进行质谱鉴定,在选点的时候还要求二者凝胶图上可能会有对应关系的点也要选择,拟南芥中选择了87个蛋白点,成功鉴定出属于57个基因的70个蛋白点,盐芥中选择了84个蛋白点,成功鉴定出属于58个基因的67个蛋白点。
     将这些高丰度蛋白按功能分类后发现,盐芥和拟南芥之间还存在很多表达模式一致的蛋白,这些蛋白都属于生命活动必需的、至关重要的持家基因,如光合作用相关的光系统Ⅱ亚基O-2、光系统Ⅱ亚基P-1、磷酸核酮糖激酶、肽基脯氨酰异构酶/叶绿体基质亲环蛋白、类囊体膜结合蛋白、景天庚酮糖-1,7-二磷酸酶、叶绿体茎环结合蛋白、光系统Ⅱ稳定/装配因子及光呼吸系统中的线粒体甘氨酸脱羧酶P蛋白等,与糖酵解相关的果糖二磷酸醛缩酶1、果糖二磷酸醛缩酶3及磷酸丙糖异构酶等,与所用生命活动都相关的核苷二磷酸激酶、硫腺苷甲硫氨酸合成酶及腺苷激酶等,还有最近新报道的At1g13930蛋白等等。
     盐芥和拟南芥的光合碳固定及光呼吸相关酶类蛋白表达模式呈现多样性,RbcL、RbcS及RCA这些与植物光合能力直接相关的酶的表达模式不同;光呼吸中的重要酶类谷氨酸-乙醛酸转氨酶、甘氨酸脱羧酶复合体H蛋白在盐芥中表达量都比拟南芥高。这至少为解释盐芥生长速度比拟南芥慢找到了一个可能的着眼点,盐芥可能会有较高的光呼吸能力使得净光合低,生长较慢,高的光呼吸也是应对各种逆境胁迫的准备,可以减少光系统损伤,为其他保护性物质合成提供前体等。
     拟南芥中许多与逆境相关或者受各种胁迫诱导的蛋白在盐芥中的表达水平都比较高。如受氧化剂及其他胁迫诱导的抗氧化酶类抗坏血酸过氧化物酶1、铜锌超氧化物歧化酶2及几种过氧还蛋白在盐芥中都有很高的组成型表达;与系统防御相关的Jacalin lectin蛋白/JA诱导蛋白/黑芥子酶结合蛋白类似蛋白、MLP328蛋白-主乳胶蛋白类似蛋白及仙茅甜蛋白类植物凝集素家族蛋白在盐芥中表达量很高;与抗病相关的类甜味素病程相关蛋白在盐芥中表达量极高;与抵抗病菌侵染相关的β?1,3-葡聚糖酶1在盐芥中表达量很高;硫代葡萄糖苷-黑芥子酶系统在二者之间也存在差异,盐芥中高表达的黑芥子酶与拟南芥中高表达的该酶是同一个基因家族的不同基因编码的;分子伴侣类蛋白二硫键异构酶、热激蛋白70蛋白在盐芥中的表达量较高。
     这些差异可以概括为盐芥采取了一种“未雨绸缪”的生存方式,在牺牲生长速度的基础上,在正常生长条件下就储备一系列抗逆所需材料,以备不时之需,以免胁迫来临时产生胁迫恐慌,这种生存策略可能是生存环境对进化影响而成的,因为盐芥的生境是山东东营黄河入海口处盐碱地,时刻要面对高盐及沿海地区高紫外线辐射等非生物胁迫。
     2、盐芥Shandong生态型和Xinjiang生态型基础生理指标和叶片及根差异蛋白质组分析
     盐芥Shandong生态型和Xinjiang生态型在水培装置中生长6周后,整体植株表型差异较大。SD型叶色较深、叶片较短、叶的伸展比较平展;根呈现明显直根系模式,主根优势明显而长、侧根稀疏分布于主根上。XJ型叶色较浅、叶片较长、叶的伸展比较竖直;根系为直根系,主根优势不明显、侧根浓密而长、侧根密布于较短的主根上。
     叶片及根分别取材后,测量了最长叶长、根长、鲜重、干重及灰分重量,数据分析显示XJ型单株叶鲜重、灰分重、含水量及灰分含量都比SD型明显高,单株叶干重比SD型稍高,差异不显著;XJ型根单株鲜重、干重与SD型基本一致,根的含水量明显高于SD型,根灰分重、灰分含量都明显比SD型低。总之XJ型与SD型的整体区别为:XJ型整体含水量高、地上部分生物量大,根的生物量与SD型基本一致。无机离子分布(地上、地下部分灰分含量比)方面XJ型主要分布于地上部分,而SD型地上部分与根基本一致。
     将SD、XJ型叶片及根分别取材提取全蛋白进行双向电泳,蛋白谱图显示盐芥SD型、XJ型蛋白表达谱基本一致,叶片的差异蛋白占总蛋白点3.4%,根差异蛋白占2.2%。将差异蛋白点切胶回收后质谱鉴定,叶片差异蛋白的质谱鉴定成功率为比较低,仅为40.9%,而根差异蛋白的质谱鉴定成功率为85.3%,叶片与根质谱鉴定成功率差别的原因可能是地上部分行使的功能复杂、直接面对的选择压力大,不同物种间进化的特异性要强一些;而根功能相对较少,在根部表达的蛋白可能会比较保守一些。
     通过对盐芥SD、XJ生态型叶片及根蛋白表达谱的比较本实验找到了一些差异蛋白点,对这些差异蛋白点的生物功能特性及所涉及的生物过程进行综合分析使我们初步了解了生态型间表型差异背后的蛋白水平控制机制。
     盐芥XJ型叶片伸展比较竖直,主根优势不强侧根浓密,可能与激素水平或者激素应答元件含量不同有关。氨基环丙烷羧酸氧化酶是乙烯生物合成的最后关键酶,XJ型叶片中此酶蛋白表达量很高,叶片中可能会产生更多乙烯,高的乙烯释放量会刺激叶柄伸长和偏下性生长,致使叶片伸展比较竖直、老叶早衰。生长素可以诱导根系形成,受生长素影响的根系主根较短、侧根丰富。XJ型根中黄素氧还蛋白类醌还原酶1、甲基丙二酸半醛脱氢酶两个受生长素诱导蛋白表达量都比较高,而且黄素氧还蛋白类醌还原酶1还是生长素应答主反应蛋白,从受生长素诱导表达蛋白的表达水平看出XJ型根中生长素含量可能比较高,较高的生长素水平致使植物主根短小、侧根浓密发达。
     XJ型叶片中与生长密切相关的酮醇还原酶、蛋白正确折叠所需的分子伴侣表达量都比较高,而SD型叶片中与耐逆防御相关的质膜阳离子结合蛋白、类甜味素病程相关蛋白、几丁质酶及葡聚糖苷酶等表达量很高。SD型叶片将大量的能量用于合成耐逆防御相关蛋白必然会影响生长速度;XJ型叶片中乙烯含量可能会高些,乙烯也有刺激生长的作用。更重要的是XJ型根虽与SD型根生物量基本一致,但根中与呼吸产能相关的磷酸甘油醛歧化酶、丙酮酸激酶、线粒体NADH-辅酶Q氧化还原酶75kDa亚基及丙酮酸脱氢酶E1元件β亚基等表达量都很高,根中可能会产生大量的能量为无机离子的主动运输提供能量保障,使得地上部分(叶片)有足够的无机离子用于生长等生命活动。
     总之,生态型间激素水平及激素应答元件差异可能会是形态差异的原因,但需要进一步实验来检测相关激素在SD、XJ型的含量。根的能量产生差异及叶片的能量分配不同可能是XJ型较SD型具有较大的地上部分(叶片)生物量的原因。
     本研究的主要创新点:
     1、以拟南芥和盐芥为材料,利用蛋白质组学技术分离鉴定了大量高丰度蛋白,通过对高丰度蛋白的功能分析,揭示了正常生长条件下拟南芥和盐芥生长速度及胁迫耐受性差异的可能控制机制,净光合及物质能量分配差异影响了生长速度,物质能量分配偏向于防御耐逆相关蛋白致使盐芥在本底水平具有高胁迫耐受力。
     2、以盐芥Shandong、Xinjiang生态型为材料,对正常生长条件下二者的形态和生理特性进行了分析,明确了二者形态、生物量、含水量及根冠比等具体差异。
     3、对盐芥Shandong、Xinjiang生态型的叶片及根进行了比较蛋白质组学分析,从蛋白水平揭示了不同生态型盐芥的差异,鉴定出一些与盐芥Shandong、Xinjiang生态型形态、生理特性差异相关蛋白,发现生态型间形态差异可能由激素水平差异控制,叶片生物量不同可能由叶片物质能量流向及根部能量供给差异控制。
Salt cress (Thellungiella salsuginea) is a kind of halophyte which belongs to the crucifer family (Brassicaceae), and it is very tolerant to cold, drought, salt and low nitrogen. Meanwhile, it is vey similar to the model species Arabidopsis such as small size, short life cycle, self-fertilization, copious seed production, small genome, and easy to transform and mutagenize. In cDNA level it has 90-95% identity to Arabidopsis, and has emerged as a new model system for abiotic stress study.
     Research of Thellungiella has made enormous progress over the last few years, and the studies were mainly focused on ion transport, expression profiling, gene identification, and some physiological analysis. These studies have got the preliminary knowledge of stress tolerance in Thellungiella. Compared with Arabidopsis, many stress-responsive genes in Thellungiella are constitutively expressed at higher level, ion transport mechanism is more selective to K+ than Na+, and the species and metabolism of protection materials are also different. So the higher stress tolerance of Thellungiella must be regulated by complex process.
     Proteins are the functional machine of cell, and the proteomic analysis can help us to get a further intuitionist and exact knowledge of stress tolerance variation. However, to the best of our knowledge, it has not been reparted that comparing Arabidopsis and Thellungiella at proteomic level, as well as the proteomic comparision between Thellungiella ecotypes.
     In this study, Arabidopsis Columbia ecotype, Thellungiella Shandong ecotype, and Thellungiella Xinjiang ecotype were selected as research materials, and all the materials were cultured in hydroponic system. In the first part of this study, the Arabidopsis and Thellungiella leaf proteome were compared, and many higher abundant protein spots in 2-D gel were selected and then identified by mass spectrum (MS). This part aimed to find the basal element for higher stress tolerance of Thellungiella. In the second part, the proteome of leaves and roots were compared between Shandong ecotype and Xinjiang ecotype. The varied expression protein spots were identified, and the differences were analyzed and compared at the optimal growth status, aiming to discover the evolution differentiation at protein level.
     The main results of this study were summarized below:
     1. Proteome analysis of Thellungiella and Arabidopsis leaves. After grown in hydroponic culture system for several weeks (4 weeks of Arabidopsis, 6 weeks of Thellungiella), leaves were harvested, and then undergone TCA/Acetone procession for total protein extraction. Total protein were separated by 2-D electrophoresis, 24 cm pH 4-7 IPG dry strips were used for IEF and 12.5% SDS-PAG were used for the second dimension. 2-D protein images showed a higher level difference between Arabidopsis and Thellungiella leaves proteome.
     Protein spots were arranged by their volume values. Spots with bigger vol. value were indentified by MS, some smaller value spots were also selected according to their similar relative position in the gel with other specie. 87 spots in Arabidopsis gel were selected to analyze by MS, and 70 spots belonging to 57 genes were successfully indentified. 84 spots in Thellungiella were analyzed by MS, and 67 spots belonging to 58 genes were successfully identified. Then these proteins were classified by their function.
     By comparing the function catalog and spots pattern, we found some proteins had similar expression pattern. All these proteins belong to key housekeep proteins, such as photosynthesis related proteins: PSBO2, PSBP1, Phosphoribulokinase, ROC4, thylakoid membrane binding protein, SBPase, CSP41A, HCF136, and ATGLDP1; glycolysis related proteins: FBA1, FBA3, and TPI; all life activity related proteins: NDPK1, SAMS1, and ADK1; and a new reported At1g13930 protein.
     Some proteins of photosynthesis and photorespiration had diversity between Arabidopsis and Thellungiella. Photosynthesis related several proteins had different expression pattern between these two species, such as RbcL, RbcS, and RCA. Photorespiration related enzymes, GGT1 and glycine cleavage system H protein 2, which were expressed higher in Thellungiella than in Arabidopsis. Based on these facts, at least, we could find a viewpoint to understand the mechanism of lower growth rate in Thellungiella compared with Arabidopsis. Thellungiella may have a higher level photorespiration, which limited the growth rate and reduce photosystem damage, and to provide substrate for protective molecule synthesis.
     Many stress related or stress induced proteins in Arabidopsis had higher expression level in Thellungiella in normal condition. Oxidative reagents or other stresses induced antioxidative enzymes in Arabidopsis, such as Apx1, CZSOD2, and several Prxs, had higher expression level in Thellungiella. System defense related proteins, such as Jacalin lectin family protein, MLP328 protein, and curculin-like lectin family protein, also were expressed at higher level in Thellungiella. Pathogenesis-related protein PR-5 had a much higher expression level in Thellungiella. Beta -1, 3-glucosidase 1, disulfide isomerase 1, and hsp70 were highly expressed in Thellungiella. Myrosinase was highly expressed in both Arabidopsis and Thellungiella, but their pI and sequence similarity were different.
     All these differences could be recapitulated as that Thellungiella took an“against a rainy day”surviving strategy. Based on limited growth rate in normal condition, Thellungiella accumulated many anti-stress materials to prevent stress scare. This strategy may be acquired during evolution according to their habitat
     2. Comparsion of basic physiological characteristics and proteomic analysis of leaves and roots between Shandong ecotype and Xinjiang ecotype.
     After grown in hydroponic culture system for 6 weeks, some differences were shown between Shandong (SD) ecotype and Xinjiang (XJ) ecotype. SD ecotype leaves were green and shorter; roots were tap root system with preponderant tap roots and lateral roots sparsely brached from tap root. In contrast, XJ ecotype leaves were jade-green and longer; roots were tap root system with less preponderant tap roots and very developed lateral roots. XJ leaves outspreaded more upright than SD leaves.
     Leaves and roots were harvested respectively, and then longest leave length, longest root length, fresh weight, dry weight, and ash weight were measured. Data showed that fresh weight, ash weight, water content, and ash content of XJ leaves were higher than that of SD leaves. Dry weight of XJ leaves was a bit higher than SD leaves, but not significantly. Fresh weight and dry weight of XJ roots were similar with SD roots; water content of XJ roots was higher than that of SD roots; ash weight and ash content of XJ roots were lower than that of SD roots. In conclusion, whole plant water content of XJ ecotype was higher than that of SD ecotype; XJ leaves biomass was bigger than SD leaves; roots biomass of XJ was similar with SD roots. Ion content of leaves was higher than that of roots in XJ ecotype, and ion content of leaves was similar with that of roots in SD ecotype.
     2-D protein images showed a higher level similarity between SD and XJ proteome. There were 3.4% of total leaves protein spots and 2.2% of total roots protein spots different between SD and XJ ecotype. These diversity protein spots were picked from the gel and then indentified by MS, using Arabidopsis protein MS database as reference. The successful MS identification ratios were 40.9% of leaves, and 85.3% of roots. The successful ration difference maybe due to that, upground tissues (leaves) must confront higher selective pression than underground organs (roots), thus leaf proteins maybe less conserved compared with Arabidopsis than root proteins. Comparing the 2-D maps of leaves and roots between SD and XJ ecotypes, several expression difference spots were found. According to these proteins functions, we got a glance of the mechanism controlling the phenotype diversity in protein level.
     Compared with SD ecotype, XJ leaves stretched more vertically, rap roots showed less predominant, and lateral roots were dense. These different phenotypes maybe caused by difference in phytohormone content or in phytohormone response elements. ACO, the key enzyme of the last step of ethylene synthesis, expressed higher in XJ leaves, and leaves may release more ethylene. Higher level ethylene may stimulate a more vertical orientation of the petioles (hyponasty), enhance elongation, and induce senescence. Auxin may induce root system formation, and plants had shorter rap root and thicker lateral roots with higher auxin level. In XJ roots, two auxin induced proteins, MMSDH and FQR1, had higher expression level, and FQR1 also was a fast and primary auxin response protein. According to these two auxin response proteins’expression pattern, the auxin level in XJ roots may be higher, and higher level may affect root system architecture.
     Some proteins closely related to growth, such as KARI and Cpn20, were highly expressed in XJ leaves; and some defense related proteins, PCAP1, PR-5, endochitinase, and beta-1, 3-glucanase 1, had higher expression level in SD leaves. More energy and material were used for defense proteins synthesis, which may reduce the growth rate. XJ leaves may have more ethylene, and ethylene could induce growth. The most significant difference was that, although they had similar biomass, XJ roots may produce more energy than SD roots. Some respiration related important proteins, such as PGMI, PK1, Complex I-75kD, and pdh-e1 beta, were highly expressed in XJ roots, which may provide more energy for root metabolism and ion uptake and transportation for upground tissue fast growth.
     In conclusion, differences in phytohormone content or phytohormone response elements may be the reason of different phenotype, and this needed to be further studied. The differences in roots energy production capability and leaves energy/materials distribution may be the explanation why XJ leaves had larger biomass than SD leaves.
     The main innovation points of this study were generalized as follows:
     1. Total protein of Arabidopsis and Thellungiella leaves were separated by 2-D electrophoresis, and some abundant protein spots were selected and identified by MS. According the function catalog and comparision, the mechanism controlling the growth rate and stress tolerance differences was uncovered. Net photosynthesis and energy/materials distribution differences limited Thellungiella growth rate; more energy and materials were used for defense and stress tolerance related protein synthesis, so Thellungiella could have higher stress tolerance in normal condition.
     2. Phenotype and some physiological characters of Shandong ecotype and Xinjiang ecotype, under normal condition, were analyzed and compared. Some different aspects of two ecotypes were quantitatively analyzed, such as biomass, water content, and root-crown ratio.
     3. Total protein of leaves and roots were separated, and comparision between Shandong ecotype and Xinjiang ecotype were conducted. Some differences were discovered for the two ecotypes in protein level, and some proteins were identified, which were related to phenotype and physiological difference. The phenotype differences may be determined by phytohormone level difference, and leaves biomass differences were caused by energy/materials distribution and energy production capability differences.
引文
[1] Munns R. and Tester M. Mechanisms of salinity tolerance [J]. Annu Rev Plant Biol, 2008, 59: 651-681.
    [2] Zhu J. K. , Hasegawa P. M. , et al. Molecular aspects of osmotic stress in plants [J]. Critical reviews in plant sciences, 1997, 16(3): 253-277.
    [3] Somerville C. The twentieth century trajectory of plant biology [J]. Cell, 2000, 100(1): 13-25.
    [4] Zhu J. K.. Genetic analysis of plant salt tolerance using arabidopsis [J]. Plant Physiol., 2000, 124(3): 941-948.
    [5] Zhu J. K. Plant salt tolerance [J]. Trends Plant Sci, 2001, 6(2): 66-71.
    [6] Bressan R. A., Zhang C., et al. Learning from the Arabidopsis experience. The next gene search paradigm [J]. Plant Physiol, 2001, 127(4): 1354-1360.
    [7] Hasegawa M., Bressan R., et al. The dawn of plant salt tolerance genetics [J]. Trends Plant Sci, 2000, 5(8): 317-319.
    [8] Hasegawa P. M., Bressan R. A., et al. Plant cellular and molecular responses to high salinity [J]. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51: 463-499.
    [9] Xiong L. and Zhu J. K. Molecular and genetic aspects of plant responses to osmotic stress [J]. Plant Cell Environ, 2002, 25(2): 131-139.
    [10] Amtmann A., Bohnert H. J., et al. Abiotic stress and plant genome evolution. Search for new models [J]. Plant Physiol, 2005, 138(1): 127-130.
    [11] Inan G., Zhang Q., et al. Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles [J]. Plant Physiol, 2004, 135(3): 1718-1737.
    [12] Taji T., Seki M., et al. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray [J]. Plant Physiol, 2004, 135(3): 1697-1709.
    [13] Kant Surya, Bi Yongmei, et al. The Arabidopsis halophytic relative Thellungiella halophila tolerates nitrogen-limiting conditions by maintaining growth, nitrogen uptake, and assimilation [J]. Plant Physiol, 2008, 147(3): 1168-1180.
    [14] Amtmann Anna. Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants [J]. Mol Plant, 2009, 2(1): 3-12.
    [15] Al-Shehbaz I. The genera of sisymbrieae (cruciferae: Brassicaceae) in the southeastern united states [J]. Journal of the Arnold Arboretum, 1988, 69(3): 213-237.
    [16] Rollins Rc. The cruciferae of continental north america: Sytematics of the mustard family from the arctic to panama [M]. Stanford: Stanford University Press, 1993: 1-383.
    [17] Al-Shehbaz Ihsan A. , O’kane Jr. Steve L. , et al. Generic placement of species excluded from Arabidopsis (brassicaceae) [J]. Novon, 1999, 9(3): 296-307.
    [18] Warwick Suzanne I., Al-Shehbaz Ihsan A., et al. Phylogenetic position of arabis arenicola and generic limits of aphragmus and eutrema (brassicaceae) based on sequences of nuclear ribosomal DNA [J]. Canadian Journal of Botany, 2006, 84: 269-281.
    [19] Sun Zhiying, Zhang Xuejie, et al. Phylogenetic relationship between Arabidopsis and Thellungiella (cruciferae): Evidence from leaf epidermal features and chloroplast sequence analysis (in chinese) [J]. Botanica Yunnanica, 2007, 29(6): 632-638.
    [20] German D.A. Genus thellungiella (cruciferae) [J]. Europe // Bot. Zhurn. (Moscow and St-Petersburg), 2008, 93: 1273-1280.
    [21] Zhao Kefu and Li Fazeng. Halophyte of china (in chinese) [M]. Beijing: Science Press, 1999: 17-75, 173-177.
    [22] Busch N. Thellungiella and Arabidopsis [A]. in: Komarov Vl (Ed). Editor^Editors Fiurss [M]. Leningrad: Academiae Scientirum URSS, 1939: 75-80.
    [23] Al-Shehbaz Ia and O’kane Sl. Placement of Arabidopsis parvula, Thellungiella (brassicaceae) [J]. Novon, 1995, 5: 309-310.
    [24] Dong Meifang, Yuan Wangjun, et al. Relations between anatomic structures of vegetative organs of Thellungiella halophila and its brackish environment (in chinese) [J]. Acta Botanica BorealiI-Occidentalia Sinica, 2005, 25(6): 1077-1082.
    [25] Wang Zenglan. Study on physiological and molecular basis of salt cress (Thellungiella halophila) salt tolerance (in chinese) [D]. Jinan: Shandong Normal University, 2004.
    [26] Volkov V. , Wang B. , et al. Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, possesses effective mechanisms to discriminate between potassium and sodium [J]. Plant Cell Environ, 2003, 27: 1-14.
    [27] Teusink Rebecca S., Rahman Musrur, et al. Cuticular waxes on arabidopsis thaliana close relatives Thellungiella halophila and Thellungiella parvula [J]. Int J Plant Sci, 2002, 163(2): 309-315.
    [28] Griffith M., Timonin M., et al. Thellungiella: An Arabidopsis-related model plant adapted to cold temperatures [J]. Plant Cell Environ, 2007, 30(5): 529-538.
    [29] Maathuis Frans J. M. and Amtmann Anna. K+ nutrition and Na+ toxicity: The basis of cellular K+ / Na+ ratios [J]. Ann Bot, 1999, 84(2): 123-133.
    [30] Vera-Estrella R., Barkla B. J., et al. Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance [J]. Plant Physiol, 2005, 139(3): 1507-1517.
    [31] Wang Bo, Davenport Romola J., et al. Low unidirectional sodium influx into root cells restricts net sodium accumulation in Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana [J]. J Exp Bot, 2006, 57(5): 1161-1170.
    [32] Kant Surya, Kant Pragya, et al. Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of na uptake in T. halophila [J]. Plant Cell Environ, 2006, 29: 1220-1234.
    [33] Kong Xiangqiang. The functional analysis of oskcc gene and the functional analysis of small rnas in Thellungiella halophila (in chinese) [D]. Jinan: Shandong Normal University, 2008.
    [34] M'rah S., Ouerghi Z., et al. Efficiency of biochemical protection against toxic effects of accumulated salt differentiates Thellungiella halophila from Arabidopsis thaliana [J]. J Plant Physiol, 2007, 164(4): 375-384.
    [35] Rogers E. E., Glazebrook J., et al. Mode of action of the Arabidopsis thaliana phytoalexin camalexin and its role in Arabidopsis-pathogen interactions [J]. Mol Plant Microbe Interact, 1996, 9(8): 748-757.
    [36] Pedras M. S. and Adio A. M. Phytoalexins and phytoanticipins from the wild crucifers Thellungiella halophila and Arabidopsis thaliana: Rapalexin A, wasalexins and camalexin [J]. Phytochemistry, 2008, 69(4): 889-893.
    [37] Jenks Matthew A. and Ashworth Edward N. Plant epicuticular waxes: Function, production, and genetics [A]. in: Editor^Editors Horticultural reviews [M]. New York: John Wiley & Sons, Inc., 1999: 1-68.
    [38] Seki M., Narusaka M., et al. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cdna microarray [J]. Plant J, 2002, 31(3): 279-292.
    [39] Maathuis F. J., Filatov V., et al. Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress [J]. Plant J, 2003, 35(6): 675-692.
    [40] Gong Q., Li P., et al. Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana [J]. Plant J, 2005, 44(5): 826-839.
    [41] Wong Chui E., Li Yong, et al. Transcriptional profiling implicates novel interactions between abiotic stress andhormonal responses in Thellungiella, a close relative of Arabidopsis [J]. Plant Physiol, 2006, 140(4): 1437-1450.
    [42] Gao F., Gao Q., et al. Cloning of an H+-ppase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance [J]. J Exp Bot, 2006, 57(12): 3259-3270.
    [43] Duan X. G., Yang A. F., et al. Heterologous expression of vacuolar H+-PPase enhances the electrochemical gradient across the vacuolar membrane and improves tobacco cell salt tolerance [J]. Protoplasma, 2007, 232(1-2): 87-95.
    [44] Li B., Wei A., et al. Heterologous expression of the TsVP gene improves the drought resistance of maize [J]. Plant Biotechnol J, 2008, 6(2): 146-159.
    [45] Lv Sulian, Lian Lijun, et al. Overexpression of Thellungiella halophila H+-ppase ( TsVP ) in cotton enhances drought stress resistance of plants [J]. Planta, 2009.
    [46] Sun Zhibin, Qi Xingyun, et al. Overexpression of a Thellungiella halophila CBL9 homolog, ThCBL9 , confers salt and osmotic tolerances in transgenic Arabidopsis thaliana [J]. Journal of Plant Biology, 2008, 51(1): 25-34.
    [47] Zhang Xia, Guo Shanli, et al. Molecular cloning and identification of a heat shock cognate protein 70 gene, ThHSC70, in Thellungiella halophila [J]. Acta. Bot. Sin., 2004, 46(10): 1212-1219.
    [48] Chen A. P., Wang G. L., et al. Ectopic expression of ThCYP1, a stress-responsive cyclophilin gene from Thellungiella halophila, confers salt tolerance in fission yeast and tobacco cells [J]. Plant Cell Rep, 2007, 26(2): 237-245.
    [49] Xu S., Wang X., et al. Zinc finger protein 1 (ThZF1) from salt cress (Thellungiella halophila) is a cys-2/his-2-type transcription factor involved in drought and salt stress [J]. Plant Cell Rep, 2007, 26(4): 497-506.
    [50] Fang Q., Xu Z., et al. Cloning, characterization and genetic engineering of flc homolog in Thellungiella halophila [J]. Biochem Biophys Res Commun, 2006, 347(3): 707-714.
    [51] Center for Plant Environmental Stress Physiology Purdue University. Thellungiella - an Arabidopsis-like extremophile. Plant growth and transformation [OL] 2005 Available from: http://www.thellungiella.org/.
    [52] Li H.Q., Xu J., et al. Establishment of an efficient agrobacterium tumefaciens-mediated leaf disc transformation of Thellungiella halophila [J]. Plant Cell Rep, 2007, 26(10): 1785-1789.
    [53] Campanoni P., Sutter J. U., et al. A generalized method for transfecting root epidermis uncovers endosomal dynamics in Arabidopsis root hairs [J]. Plant J, 2007, 51(2): 322-330.
    [54] Wang Zenglan, Li Pinghua, et al. Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance [J]. Plant Sci, 2004, 166(3): 609-616.
    [55] Wong C. E., Li Y., et al. Expressed sequence tags from the Yukon ecotype of Thellungiella reveal that gene expression in response to cold, drought and salinity shows little overlap [J]. Plant Mol Biol, 2005, 58(4): 561-574.
    [56] Taji T., Sakurai T., et al. Large-scale collection and annotation of full-length enriched cdnas from a model halophyte, Thellungiella halophila [J]. BMC Plant Biol, 2008, 8: 115.
    [57] Liu Ning, Chen Anping, et al. Functional screening of salt stress-related genes from Thellungiella halophila using fission yeast system [J]. Physiol Plant, 2007, 129(4): 671-678.
    [58] Ni Wansong, Lei Zhiyong, et al. Construction of a plant transformation-ready expression cdna library for Thellungiella halophila using recombination cloning [J]. Journal of Integrative Plant Biology, 2007, 49(9): 1313-1319.
    [59] Initiative the Arabidopsis Genome. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J]. Nature, 2000, 408(6814): 796-815.
    [60] Peck S. C. Update on proteomics in arabidopsis. Where do we go from here? [J]. Plant Physiol, 2005, 138(2):591-599.
    [61] Sun Zhibin. The functional analysis of Thellungiella halophila Trxh and comparative proteomic study of Thellungiella ecotypes (in chinese) [D]. Jinan: Shandong Normal University, 2006.
    [62] Pandey A. and Lewitter F. Nucleotide sequence databases: A gold mine for biologists [J]. Trends Biochem Sci, 1999, 24(7): 276-280.
    [63] Brenner S. E. Errors in genome annotation [J]. Trends Genet, 1999, 15(4): 132-133.
    [64] Gygi Steven P., Rochon Yvan, et al. Correlation between protein and mrna abundance in yeast [J]. Mol Cell Biol, 1999, 19(3): 1720-1730.
    [65] Dunnwald M., Varshavsky A., et al. Detection of transient in vivo interactions between substrate and transporter during protein translocation into the endoplasmic reticulum [J]. Mol Biol Cell, 1999, 10(2): 329-344.
    [66] Wasinger V. C., Cordwell S. J., et al. Progress with gene-product mapping of the mollicutes: Mycoplasma genitalium [J]. Electrophoresis, 1995, 16(7): 1090-1094.
    [67] Anderson N. L. and Anderson N. G. Proteome and proteomics: New technologies, new concepts, and new words [J]. Electrophoresis, 1998, 19(11): 1853-1861.
    [68] Blackstock W. P. and Weir M. P. Proteomics: Quantitative and physical mapping of cellular proteins [J]. Trends Biotechnol, 1999, 17(3): 121-127.
    [69] Pandey A. and Mann M. Proteomics to study genes and genomes [J]. Nature, 2000, 405(6788): 837-846.
    [70] Yang Qiheng and Li Lin. Yeast two-hybrid system and its application on proteomics [J]. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai), 1999, 31(3): 221-225.
    [71] Wilkins M. R., Pasquali C., et al. From proteins to proteomes: Large scale protein identification by two-dimensional electrophoresis and amino acid analysis [J]. Biotechnology (N Y), 1996, 14(1): 61-65.
    [72] Latter Gi, Burbeck S, et al. Identification of polypeptides on two-dimensional electrophoresis gels by amino acid composition [J]. Clin Chem, 1984, 30(12): 1925-1932.
    [73] Wilkins M. R., Sanchez J. C., et al. Progress with proteome projects: Why all proteins expressed by a genome should be identified and how to do it [J]. Biotechnol Genet Eng Rev, 1996, 13: 19-50.
    [74] Emili A. Q. and Cagney G. Large-scale functional analysis using peptide or protein arrays [J]. Nat Biotechnol, 2000, 18(4): 393-397.
    [75] Mackay V. L., Li X., et al. Gene expression analyzed by high-resolution state array analysis and quantitative proteomics: Response of yeast to mating pheromone [J]. Mol Cell Proteomics, 2004, 3(5): 478-489.
    [76] Jorgenson J. W. and Lukacs K. Dearman. Zone electrophoresis in open-tubular glass capillaries: Preliminary data on performance [J]. Journal of High Resolution Chromatography, 1981, 4(5): 230-231.
    [77] Garcia-Campana A. M., Gamiz-Gracia L., et al. Derivatization of biomolecules for chemiluminescent detection in capillary electrophoresis [J]. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 2003, 793(1): 49-74.
    [78] Fields S. Proteomics. Proteomics in genomeland [J]. Science, 2001, 291(5507): 1221-1224.
    [79] Opiteck G. J., Lewis K. C., et al. Comprehensive on-line LC/LC/MS of proteins [J]. Anal Chem, 1997, 69(8): 1518-1524.
    [80] Link Andrew J., Eng Jimmy, et al. Direct analysis of protein complexes using mass spectrometry [J]. Nat Biotechnol, 1999, 17(7): 676-682.
    [81] Washburn Michael P., Wolters Dirk, et al. Large-scale analysis of the yeast proteome by multidimensional protein identification technology [J]. Nat Biotechnol, 2001, 19: 242-247.
    [82] Gygi S. P., Rist B., et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags [J]. Nat Biotechnol, 1999, 17(10): 994-999.
    [83] Gygi S. P., Rist B., et al. Measuring gene expression by quantitative proteome analysis [J]. Curr OpinBiotechnol, 2000, 11(4): 396-401.
    [84] Adam G. C., Sorensen E. J., et al. Chemical strategies for functional proteomics [J]. Mol Cell Proteomics, 2002, 1(10): 781-790.
    [85] Ross P. L., Huang Y. N., et al. Multiplexed protein quantitation in saccharomyces cerevisiae using amine-reactive isobaric tagging reagents [J]. Mol Cell Proteomics, 2004, 3(12): 1154-1169.
    [86] Ong S. E., Blagoev B., et al. Stable isotope labeling by amino acids in cell culture, silac, as a simple and accurate approach to expression proteomics [J]. Mol Cell Proteomics, 2002, 1(5): 376-386.
    [87] Ong S. E. and Mann M. A practical recipe for stable isotope labeling by amino acids in cell culture (silac) [J]. Nat Protoc, 2006, 1(6): 2650-2660.
    [88] Holloway J. W., Beghe B., et al. Comparison of three methods for single nucleotide polymorphism typing for DNA bank studies: Sequence-specific oligonucleotide probe hybridisation, taqman liquid phase hybridisation, and microplate array diagonal gel electrophoresis (madge) [J]. Hum Mutat, 1999, 14(4): 340-347.
    [89] O'dell S. D., Chen X., et al. Higher resolution microplate array diagonal gel electrophoresis: Application to a multiallelic minisatellite [J]. Hum Mutat, 2000, 15(6): 565-576.
    [90] Day I. N., Spanakis E., et al. Microplate array diagonal gel electrophoresis for mutation research in DNA banks [J]. Electrophoresis, 1999, 20(6): 1250-1257.
    [91] Rodríguez Santiago, Chen Xiao-He, et al. Typing dinucleotide repeat loci using microplate array diagonal gel electrophoresis: Proof of principle [J]. Electrophoresis, 2004, 25(7-8): 975-979.
    [92] Rais I., Karas M., et al. Two-dimensional electrophoresis for the isolation of integral membrane proteins and mass spectrometric identification [J]. Proteomics, 2004, 4(9): 2567-2571.
    [93] Sanchez S., Arenas J., et al. Analysis of outer membrane protein complexes and heat-modifiable proteins in neisseria strains using two-dimensional diagonal electrophoresis [J]. J Proteome Res, 2005, 4(1): 91-95.
    [94] Yano H., Wong J. H., et al. A strategy for the identification of proteins targeted by thioredoxin [J]. Proc Natl Acad Sci U S A, 2001, 98(8): 4794-4799.
    [95] Nijtmans L. G., Henderson N. S., et al. Blue native electrophoresis to study mitochondrial and other protein complexes [J]. Methods, 2002, 26(4): 327-334.
    [96] Camacho-Carvajal M. M., Wollscheid B., et al. Two-dimensional blue native/SDS gel electrophoresis of multi-protein complexes from whole cellular lysates: A proteomics approach [J]. Mol Cell Proteomics, 2004, 3(2): 176-182.
    [97] Stegemann J., Ventzki R., et al. Comparative analysis of protein aggregates by blue native electrophoresis and subsequent sodium dodecyl sulfate-polyacrylamide gel electrophoresis in a three-dimensional geometry gel [J]. Proteomics, 2005, 5(8): 2002-2009.
    [98] Chen Fuyi and Peng Xuanxian. Diagonal polyarcylamide gel electrophoresis in proteomics research (in chinese) [J]. Chinese Bulletin of Life Sciences, 2006, 18(1).
    [99] O'farrell P. H. High resolution two-dimensional electrophoresis of proteins [J]. J Biol Chem, 1975, 250(10): 4007-4021.
    [100] Bjellqvist B., Ek K., et al. Isoelectric focusing in immobilized pH gradients: Principle, methodology and some applications [J]. J Biochem Biophys Methods, 1982, 6(4): 317-339.
    [101] Righetti Pier Giorgio. Laboratory techniques in biochemistry and molecular biology: Immobilized pH gradients: Theory and methodolgy v. 20 [M]: Elsevier, 1990.
    [102] Gygi Steven P., Corthals Garry L., et al. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology [J]. Proc Natl Acad Sci U S A, 2000, 97(17): 9390-9395.
    [103] Tonge Robert, Shaw Joanne, et al. Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology [J]. Proteomics, 2001, 1(3): 377-396.
    [104] Alban A., David S. O., et al. A novel experimental design for comparative two-dimensional gel analysis: Two-dimensional difference gel electrophoresis incorporating a pooled internal standard [J]. Proteomics, 2003, 3(1): 36-44.
    [105] Urquhart B. L., Atsalos T. E., et al. 'Proteomic contigs' of mycobacterium tuberculosis and mycobacterium bovis (bcg) using novel immobilised ph gradients [J]. Electrophoresis, 1997, 18(8): 1384-1392.
    [106] Patton Wayne F., Lim Mark J., et al. Protein detection using reversible metal chelate stains [A]. in: Editor^Editors 2-d proteome analysis protocols [M]. Humana Press, 1999: 331-339.
    [107] Swiss Institute of Bioinformatics, Imagemaster 2D platinum software user manual for version 5.0 (edition aa). 2003.
    [108] Henzel W. J., Billeci T. M., et al. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases [J]. Proc Natl Acad Sci U S A, 1993, 90(11): 5011-5015.
    [109] Karas Michael. and Hillenkamp Franz. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons [J]. Anal Chem, 1988, 60(20): 2299-2301.
    [110] Fenn J. B., Mann M., et al. Electrospray ionization for mass spectrometry of large biomolecules [J]. Science, 1989, 246(4926): 64-71.
    [111] Edman P. A method for the determination of amino acid sequence in peptides [J]. Arch Biochem, 1949, 22(3): 475.
    [112] Edman P. Method for determination of the amino acid sequence in peptides [J]. Acta chem scand, 1950, 4(2): 283-293.
    [113] Costa P., Pionneau C., et al. Separation and characterization of needle and xylem maritime pine proteins [J]. Electrophoresis, 1999, 20(4-5): 1098-1108.
    [114] Jorrin J. V., Maldonado A. M., et al. Plant proteome analysis: A 2006 update [J]. Proteomics, 2007, 7(16): 2947-2962.
    [115] Barreneche T., Bahrman N., et al. Two dimensional gel electrophoresis confirms the low level of genetic differentiation between quercus robur l. And quercus petraea (matt.) liebl. [J]. Forest Genetics (Slovakia), 1996, 3(2): 89-92
    [116] David J. L., Zivy M., et al. Protein evolution in dynamically managed populations of wheat: Adaptative responses to macro-environmental conditions [J]. TAG Theoretical and Applied Genetics, 1997, 95: 932-941.
    [117] Wang W., Meng B., et al. Proteomic profiling of rice embryos from a hybrid rice cultivar and its parental lines [J]. Proteomics, 2008, 8(22): 4808-4821.
    [118] Santoni Véronique, Bellini Catherine, et al. Use of two-dimensional protein-pattern analysis for the characterization of arabidopsis thaliana mutants [J]. Planta, 1994, 192(4): 557-566.
    [119] Herbik A., Giritch A., et al. Iron and copper nutrition-dependent changes in protein expression in a tomato wild type and the nicotianamine-free mutant chloronerva [J]. Plant Physiol, 1996, 111(2): 533-540.
    [120] Von Wiren N. , Peltier J.-B., et al. Four root plasmalemma polypeptides under-represented in the maize mutant ys1 accumulate in a Fe-efficient genotype in response to iron-deficiency [J]. Plant Physiol Biochem, 1997, 35(12): 945-950.
    [121] Komatsu S., Muhammad A., et al. Separation and characterization of proteins from green and etiolated shoots of rice (Oryza sativa l.): Towards a rice proteome [J]. Electrophoresis, 1999, 20(3): 630-636.
    [122] Damerval C. and Le Guilloux M. Characterization of novel proteins affected by the o2 mutation and expressed during maize endosperm development [J]. Mol Gen Genet, 1998, 257(3): 354-361.
    [123] Riccardi F., Gazeau P., et al. Protein changes in response to progressive water deficit in maize. Quantitative variation and polypeptide identification [J]. Plant Physiol, 1998, 117(4): 1253-1263.
    [124] Chang W. W., Huang L., et al. Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry [J]. Plant Physiol, 2000, 122(2): 295-318.
    [125] Li K., Xu C., et al. Proteomic analysis of roots growth and metabolic changes under phosphorus deficit in maize (zea mays l.) plants [J]. Proteomics, 2007, 7(9): 1501-1512.
    [126] Salekdeh G. H., Siopongco J., et al. Proteomic analysis of rice leaves during drought stress and recovery [J]. Proteomics, 2002, 2(9): 1131-1145.
    [127] Ke Y., Han G., et al. Differential regulation of proteins and phosphoproteins in rice under drought stress [J]. Biochem Biophys Res Commun, 2009, 379(1): 133-138.
    [128] Cui S., Huang F., et al. A proteomic analysis of cold stress responses in rice seedlings [J]. Proteomics, 2005, 5(12): 3162-3172.
    [129] Hashimoto M. and Komatsu S. Proteomic analysis of rice seedlings during cold stress [J]. Proteomics, 2007, 7(8): 1293-1302.
    [130] Lee D. G., Ahsan N., et al. Chilling stress-induced proteomic changes in rice roots [J]. J Plant Physiol, 2009, 166(1): 1-11.
    [131] Agrawal G. K., Rakwal R., et al. Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa l.) seedlings [J]. Proteomics, 2002, 2(8): 947-959.
    [132] Shen Shihua, Jing Yuxiang, et al. Proteomics approach to identify wound-response related proteins from rice leaf sheath [J]. Proteomics, 2003, 3(4): 527-535.
    [133] Yang P., Chen H., et al. Proteomic analysis of de-etiolated rice seedlings upon exposure to light [J]. Proteomics, 2007, 7(14): 2459-2468.
    [134] Ahsan N., Lee D. G., et al. Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during as stress [J]. Proteomics, 2008, 8(17): 3561-3576.
    [135] Saalbach G., Erik P., et al. Characterisation by proteomics of peribacteroid space and peribacteroid membrane preparations from pea (Pisum sativum) symbiosomes [J]. Proteomics, 2002, 2(3): 325-337.
    [136] Wienkoop Stefanie and Saalbach Gerhard. Proteome analysis. Novel proteins identified at the peribacteroid membrane from Lotus japonicus root nodules [J]. Plant Physiol, 2003, 131(3): 1080-1090.
    [137] Chen Fang, Yuan Yuexing, et al. Proteomic analysis of rice plasma membrane reveals proteins involved in early defense response to bacterial blight [J]. Proteomics, 2007, 7(9): 1529-1539.
    [138] Moons A., Bauw G., et al. Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant indica rice varieties [J]. Plant Physiol, 1995, 107(1): 177-186.
    [139] Shen S., Sharma A., et al. Characterization of proteins responsive to gibberellin in the leaf-sheath of rice (Oryza sativa l.) seedling using proteome analysis [J]. Biol Pharm Bull, 2003, 26(2): 129-136.
    [140] Kim S. T., Kang S. Y., et al. Analysis of embryonic proteome modulation by ga and aba from germinating rice seeds [J]. Proteomics, 2008, 8(17): 3577-3587.
    [141] Rakwal R. and Komatsu S. Role of jasmonate in the rice (Oryza sativa l.) self-defense mechanism using proteome analysis [J]. Electrophoresis, 2000, 21(12): 2492-2500.
    [142] Chan Z., Wang Q., et al. Functions of defense-related proteins and dehydrogenases in resistance response induced by salicylic acid in sweet cherry fruits at different maturity stages [J]. Proteomics, 2008, 8(22): 4791-4807.
    [143] Tsugita A., Kawakami T., et al. Separation and characterization of rice proteins [J]. Electrophoresis, 1994, 15(5): 708-720.
    [144] Komatsu S., Kajiwara H., et al. A rice protein library: A data-file of rice proteins separated by two-dimensional electrophoresis [J]. TAG Theoretical and Applied Genetics, 1993, 86(8): 935-942.
    [145] Komatsu Setsuko, Rakwal Randeep, et al. Separation and characterization of proteins in rice (Oryza sativa) suspension cultured cells [J]. Plant Cell, Tissue and Organ Culture, 1998, 55(3): 183-192.
    [146] Zhong Bx., Karibe H., et al. Screening of rice genes from a cdna catalog based on the sequence data-file of proteins separated by two-dimensional electrophoresis [J]. Breeding Science, 1997, 47(3): 245-251.
    [147] Prime T. A., Sherrier D. J., et al. A proteomic analysis of organelles from arabidopsis thaliana [J]. Electrophoresis, 2000, 21(16): 3488-3499.
    [148] Mayfield J. A., Fiebig A., et al. Gene families from the arabidopsis thaliana pollen coat proteome [J]. Science, 2001, 292(5526): 2482-2485.
    [149] Zhu Mengmeng, Dai Shaojun, et al. Functional differentiation of brassica napus guard cells and mesophyll cells revealed by comparative proteomics [J]. Mol Cell Proteomics, 2009, 8(4):752-66
    [150] Zhao Zhixin, Zhang Wei, et al. Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways [J]. Plant Cell, 2008, 20(12): 3210-3226.
    [151] Kieliszewski M. J., O'neill M., et al. Tandem mass spectrometry and structural elucidation of glycopeptides from a hydroxyproline-rich plant cell wall glycoprotein indicate that contiguous hydroxyproline residues are the major sites of hydroxyproline o-arabinosylation [J]. J Biol Chem, 1995, 270(6): 2541-2549.
    [152] Robertson D., Mitchell G. P., et al. Differential extraction and protein sequencing reveals major differences in patterns of primary cell wall proteins from plants [J]. J Biol Chem, 1997, 272(25): 15841-15848.
    [153] Blee K. A., Wheatley E. R., et al. Proteomic analysis reveals a novel set of cell wall proteins in a transformed tobacco cell culture that synthesises secondary walls as determined by biochemical and morphological parameters [J]. Planta, 2001, 212(3): 404-415.
    [154] Kwon H. K., Yokoyama R., et al. A proteomic approach to apoplastic proteins involved in cell wall regeneration in protoplasts of Arabidopsis suspension-cultured cells [J]. Plant Cell Physiol, 2005, 46(6): 843-857.
    [155] Basu Urmila, Francis Jennafer, et al. Extracellular proteomes of Arabidopsis thaliana and Brassica napus roots: Analysis and comparison by mudpit and LC-MS/MS [J]. Plant and Soil, 2006, 286: 357-376.
    [156] Bhushan D., Pandey A., et al. Extracellular matrix proteome of chickpea (Cicer arietinum l.) illustrates pathway abundance, novel protein functions and evolutionary perspect [J]. J Proteome Res, 2006, 5(7): 1711-1720.
    [157] Chivasa S., Ndimba B. K., et al. Proteomic analysis of the Arabidopsis thaliana cell wall [J]. Electrophoresis, 2002, 23(11): 1754-1765.
    [158] Slabas A. R., Ndimba B., et al. Proteomic analysis of the arabidopsis cell wall reveals unexpected proteins with new cellular locations [J]. Biochem Soc Trans, 2004, 32(Pt3): 524-528.
    [159] Borderies G., Jamet E., et al. Proteomics of loosely bound cell wall proteins of Arabidopsis thaliana cell suspension cultures: A critical analysis [J]. Electrophoresis, 2003, 24(19-20): 3421-3432.
    [160] Bayer E. M., Bottrill A. R., et al. Arabidopsis cell wall proteome defined using multidimensional protein identification technology [J]. Proteomics, 2006, 6(1): 301-311.
    [161] Feiz L., Irshad M., et al. Evaluation of cell wall preparations for proteomics: A new procedure for purifying cell walls from Arabidopsis hypocotyls [J]. Plant Methods, 2006, 2: 10.
    [162] Zhu J., Chen S., et al. Cell wall proteome in the maize primary root elongation zone. I. Extraction and identification of water-soluble and lightly ionically bound proteins [J]. Plant Physiol, 2006, 140(1): 311-325.
    [163] Ndimba B. K., Chivasa S., et al. Proteomic analysis of changes in the extracellular matrix of Arabidopsis cell suspension cultures induced by fungal elicitors [J]. Proteomics, 2003, 3(6): 1047-1059.
    [164] Chivasa S., Simon W. J., et al. Pathogen elicitor-induced changes in the maize extracellular matrix proteome [J]. Proteomics, 2005, 5(18): 4894-4904.
    [165] Oh I. S., Park A. R., et al. Secretome analysis reveals an Arabidopsis lipase involved in defense against alternaria brassicicola [J]. Plant Cell, 2005, 17(10): 2832-2847.
    [166] Watson B. S., Lei Z., et al. Proteomics of Medicago sativa cell walls [J]. Phytochemistry, 2004, 65(12): 1709-1720.
    [167] Boudart G., Jamet E., et al. Cell wall proteins in apoplastic fluids of Arabidopsis thaliana rosettes: Identification by mass spectrometry and bioinformatics [J]. Proteomics, 2005, 5(1): 212-221.
    [168] Charmont S., Jamet E., et al. Proteomic analysis of secreted proteins from Arabidopsis thaliana seedlings: Improved recovery following removal of phenolic compounds [J]. Phytochemistry, 2005, 66(4): 453-461.
    [169] Jamet E., Albenne C., et al. Recent advances in plant cell wall proteomics [J]. Proteomics, 2008, 8(4): 893-908.
    [170] Santoni Véronique, RouquiéDavid, et al. Use of a proteome strategy for tagging proteins present at the plasma membrane [J]. Plant J, 1998, 16(5): 633-641.
    [171] Santoni V., Doumas P., et al. Large scale characterization of plant plasma membrane proteins [J]. Biochimie, 1999, 81(6): 655-661.
    [172] Peskan T., Westermann M., et al. Identification of low-density Triton x-100-insoluble plasma membrane microdomains in higher plants [J]. Eur J Biochem, 2000, 267(24): 6989-6995.
    [173] Alexandersson E., Saalbach G., et al. Arabidopsis plasma membrane proteomics identifies components of transport, signal transduction and membrane trafficking [J]. Plant Cell Physiol, 2004, 45(11): 1543-1556.
    [174] Marmagne A., Rouet M. A., et al. Identification of new intrinsic proteins in arabidopsis plasma membrane proteome [J]. Mol Cell Proteomics, 2004, 3(7): 675-691.
    [175] Marmagne A., Ferro M., et al. A high content in lipid-modified peripheral proteins and integral receptor kinases features in the Arabidopsis plasma membrane proteome [J]. Mol Cell Proteomics, 2007, 6(11): 1980-1996.
    [176] Mongrand S., Morel J., et al. Lipid rafts in higher plant cells: Purification and characterization of Triton X-100-insoluble microdomains from tobacco plasma membrane [J]. J Biol Chem, 2004, 279(35): 36277-36286.
    [177] Borner G. H., Sherrier D. J., et al. Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts [J]. Plant Physiol, 2005, 137(1): 104-116.
    [178] Lefebvre B., Furt F., et al. Characterization of lipid rafts from Medicago truncatula root plasma membranes: A proteomic study reveals the presence of a raft-associated redox system [J]. Plant Physiol, 2007, 144(1): 402-418.
    [179] Kawamura Y. and Uemura M. Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation [J]. Plant J, 2003, 36(2): 141-154.
    [180] Lanquar V., Kuhn L., et al. 15N-metabolic labeling for comparative plasma membrane proteomics in Arabidopsis cells [J]. Proteomics, 2007, 7(5): 750-754.
    [181] Nohzadeh Malakshah S., Habibi Rezaei M., et al. Proteomics reveals new salt responsive proteins associated with rice plasma membrane [J]. Biosci Biotechnol Biochem, 2007, 71(9): 2144-2154.
    [182] Komatsu S. Plasma membrane proteome in Arabidopsis and rice [J]. Proteomics, 2008, 8(19): 4137-4145.
    [183] Shimaoka T., Ohnishi M., et al. Isolation of intact vacuoles and proteomic analysis of tonoplast from suspension-cultured cells of Arabidopsis thaliana [J]. Plant Cell Physiol, 2004, 45(6): 672-683.
    [184] Szponarski W., Sommerer N., et al. Large-scale characterization of integral proteins from Arabidopsis vacuolar membrane by two-dimensional liquid chromatography [J]. Proteomics, 2004, 4(2): 397-406.
    [185] Carter C., Pan S., et al. The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins [J]. Plant Cell, 2004, 16(12): 3285-3303.
    [186] Whiteman S. A., Nuhse T. S., et al. A proteomic and phosphoproteomic analysis of Oryza sativa plasmamembrane and vacuolar membrane [J]. Plant J, 2008, 56(1): 146-156.
    [187] Whiteman S. A., Serazetdinova L., et al. Identification of novel proteins and phosphorylation sites in a tonoplast enriched membrane fraction of Arabidopsis thaliana [J]. Proteomics, 2008, 8(17): 3536-3547.
    [188] Endler A., Reiland S., et al. In vivo phosphorylation sites of barley tonoplast proteins identified by a phosphoproteomic approach [J]. Proteomics, 2009, 9(2): 310-321.
    [189] Baginsky S. and Gruissem W. Chloroplast proteomics: Potentials and challenges [J]. J Exp Bot, 2004, 55(400): 1213-1220.
    [190] Wienkoop S., Glinski M., et al. Linking protein fractionation with multidimensional monolithic reversed-phase peptide chromatography/mass spectrometry enhances protein identification from complex mixtures even in the presence of abundant proteins [J]. Rapid Commun Mass Spectrom, 2004, 18(6): 643-650.
    [191] Lonosky P. M., Zhang X., et al. A proteomic analysis of maize chloroplast biogenesis [J]. Plant Physiol, 2004, 134(2): 560-574.
    [192] Peltier J. B., Ytterberg A. J., et al. New functions of the thylakoid membrane proteome of Arabidopsis thaliana revealed by a simple, fast, and versatile fractionation strategy [J]. J Biol Chem, 2004, 279(47): 49367-49383.
    [193] Goulas E., Schubert M., et al. The chloroplast lumen and stromal proteomes of arabidopsis thaliana show differential sensitivity to short- and long-term exposure to low temperature [J]. Plant J, 2006, 47(5): 720-734.
    [194] Ytterberg A. J., Peltier J. B., et al. Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes [J]. Plant Physiol, 2006, 140(3): 984-997.
    [195] Baginsky S., Grossmann J., et al. Proteome analysis of chloroplast mrna processing and degradation [J]. J Proteome Res, 2007, 6(2): 809-820.
    [196] Blomqvist L. A., Ryberg M., et al. Proteomic analysis of highly purified prolamellar bodies reveals their significance in chloroplast development [J]. Photosynth Res, 2008, 96(1): 37-50.
    [197] Fagioni M., D'amici G. M., et al. Proteomic analysis of multiprotein complexes in the thylakoid membrane upon Cadmium treatment [J]. J Proteome Res, 2009, 8(1): 310-326.
    [198] Bae M. S., Cho E. J., et al. Analysis of the Arabidopsis nuclear proteome and its response to cold stress [J]. Plant J, 2003, 36(5): 652-663.
    [199] Gonzalez-Camacho F. and Medina F. J. Identification of specific plant nucleolar phosphoproteins in a functional proteomic analysis [J]. Proteomics, 2004, 4(2): 407-417.
    [200] Dunkley T. P., Watson R., et al. Localization of organelle proteins by isotope tagging (LOPIT) [J]. Mol Cell Proteomics, 2004, 3(11): 1128-1134.
    [201] Tanaka N., Fujita M., et al. Proteomics of the rice cell: Systematic identification of the protein populations in subcellular compartments [J]. Molecular Genetics and Genomics, 2004, 271(5): 566-576.
    [202] Lister R., Chew O., et al. A transcriptomic and proteomic characterization of the Arabidopsis mitochondrial protein import apparatus and its response to mitochondrial dysfunction [J]. Plant Physiol, 2004, 134(2): 777-789.
    [203] Ito J., Heazlewood J. L., et al. Analysis of the soluble ATP-binding proteome of plant mitochondria identifies new proteins and nucleotide triphosphate interactions within the matrix [J]. J Proteome Res, 2006, 5(12): 3459-3469.
    [204] Eubel H., Heazlewood J. L., et al. Isolation and subfractionation of plant mitochondria for proteomic analysis [J]. Methods Mol Biol, 2007, 355: 49-62.
    [205] Heazlewood J. L. and Millar A. H. Arabidopsis mitochondrial proteomics [J]. Methods Mol Biol, 2007, 372:559-571.
    [206] Winger A. M., Taylor N. L., et al. Identification of intra- and intermolecular disulphide bonding in the plant mitochondrial proteome by diagonal gel electrophoresis [J]. Proteomics, 2007, 7(22): 4158-4170.
    [207] Lee C. P., Eubel H., et al. Heterogeneity of the mitochondrial proteome for photosynthetic and non-photosynthetic Arabidopsis metabolism [J]. Mol Cell Proteomics, 2008, 7(7): 1297-1316.
    [208] Aebersold R. and Goodlett D. R. Mass spectrometry in proteomics [J]. Chem Rev, 2001, 101(2): 269-295.
    [209] Peck S. C., Nuhse T. S., et al. Directed proteomics identifies a plant-specific protein rapidly phosphorylated in response to bacterial and fungal elicitors [J]. Plant Cell, 2001, 13(6): 1467-1475.
    [210] Nuhse Thomas S., Boller Thomas, et al. A plasma membrane syntaxin is phosphorylated in response to the bacterial elicitor flagellin [J]. J Biol Chem, 2003, 278(46): 45248-45254.
    [211] Kersten B., Agrawal G. K., et al. Plant phosphoproteomics: A long road ahead [J]. Proteomics, 2006, 6(20): 5517-5528.
    [212] Kersten B., Agrawal G. K., et al. Plant phosphoproteomics: An update [J]. Proteomics, 2009, 9(4): 964-988.
    [213] Bentem Sergio De La Fuente Van and Hirt Heribert. Using phosphoproteomics to reveal signalling dynamics in plants [J]. Trends Plant Sci, 2007, 12(9): 404-411.
    [214] Borner Georg H.H., Sherrier D. Janine, et al. Prediction of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A genomic analysis [J]. Plant Physiol, 2002, 129(2): 486-499.
    [215] Borner Georg H.H., Lilley Kathryn S., et al. Identification of glycosylphosphatidylinositol-anchored proteins in arabidopsis. A proteomic and genomic analysis [J]. Plant Physiol, 2003, 132(2): 568-577.
    [216] Elortza Felix, Nuhse Thomas S., et al. Proteomic analysis of glycosylphosphatidylinositol-anchored membrane proteins [J]. Mol Cell Proteomics, 2003, 2(12): 1261-1270.
    [217] Denison C., Kirkpatrick D. S., et al. Proteomic insights into ubiquitin and ubiquitin-like proteins [J]. Curr Opin Chem Biol, 2005, 9(1): 69-75.
    [218] Puig O., Caspary F., et al. The tandem affinity purification (tap) method: A general procedure of protein complex purification [J]. Methods, 2001, 24(3): 218-229.
    [219] Ota K., Kito K., et al. A parallel affinity purification method for selective isolation of polyubiquitinated proteins [J]. Proteomics, 2008, 8(15): 3004-3007.
    [220] Nagy J. M. and Brown K. A. Proteomics: New developments in target discovery [J]. Drug News Perspect, 2002, 15(9): 601-603.
    [221] Giavalisco P., Nordhoff E., et al. Extraction of proteins from plant tissues for two-dimensional electrophoresis analysis [J]. Electrophoresis, 2003, 24(1-2): 207-216.
    [222] Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem, 1976, 72: 248-254.
    [223] Kopriva S. and Bauwe H. P-protein of glycine decarboxylase from flaveria pringlei [J]. Plant Physiol, 1994, 104(3): 1077-1078.
    [224] Engel N., Van Den Daele K., et al. Deletion of glycine decarboxylase in arabidopsis is lethal under nonphotorespiratory conditions [J]. Plant Physiol, 2007, 144(3): 1328-1335.
    [225] Racker E. The reductive pentose phosphate cycle. I. Phosphoribulokinase and ribulose diphosphate carboxylase [J]. Arch Biochem Biophys, 1957, 69: 300-310.
    [226] Konishi H., Yamane H., et al. Characterization of fructose-bisphosphate aldolase regulated by gibberellin in roots of rice seedling [J]. Plant Mol Biol, 2004, 56(6): 839-848.
    [227] Yang J., Usack L., et al. The 41 kDa protein component of the spinach chloroplast petd mRNA 3' stem-loop:Protein complex is a nuclear encoded chloroplast RNA-binding protein [J]. Nucleic Acids Symp Ser, 1995(33): 237-239.
    [228] Lundin B., Hansson M., et al. The arabidopsis PSBO2 protein regulates dephosphorylation and turnover of thephotosystem ii reaction centre d1 protein [J]. Plant J, 2007, 49(3): 528-539.
    [229] Yi X., Hargett S. R., et al. The psbp protein is required for photosystemⅡcomplex assembly/stability and photoautotrophy in Arabidopsis thaliana [J]. J Biol Chem, 2007, 282(34): 24833-24841.
    [230] Du J., Huang Y. P., et al. Functional gene-mining for salt-tolerance genes with the power of Arabidopsis [J]. Plant J, 2008, 56(4): 653-664.
    [231] Lippuner V., Chou I. T., et al. Cloning and characterization of chloroplast and cytosolic forms of cyclophilin from Arabidopsis thaliana [J]. J Biol Chem, 1994, 269(11): 7863-7868.
    [232] Dominguez-Solis J. R., He Z., et al. A cyclophilin links redox and light signals to cysteine biosynthesis and stress responses in chloroplasts [J]. Proc Natl Acad Sci U S A, 2008, 105(42): 16386-16391.
    [233] Yano A., Shimazaki T., et al. Molecular cloning and nucleotide sequence cdna encoding nucleoside diphosphate kinase of rice (Oryza sativa l.) [J]. Plant Mol Biol, 1993, 23(5): 1087-1090.
    [234] Cho S. M., Shin S. H., et al. Enhanced expression of a gene encoding a nucleoside diphosphate kinase 1 (OsNDPK1) in rice plants upon infection with bacterial pathogens [J]. Mol Cells, 2004, 18(3): 390-395.
    [235] Espartero J., Pintor-Toro J. A., et al. Differential accumulation of S-adenosylmethionine synthetase transcripts in response to salt stress [J]. Plant Mol Biol, 1994, 25(2): 217-227.
    [236] Lindroth A. M., Saarikoski P., et al. Two S-adenosylmethionine synthetase-encoding genes differentially expressed during adventitious root development in pinus contorta [J]. Plant Mol Biol, 2001, 46(3): 335-346.
    [237] Miernyk Ja Glycolysis, the oxidative pentose phosphate pathway and anaerobic respiration [A]. in: Dennis Dt and Turpin Dh. Editor^Editors Plant physiology, biochemistry and molecular biology [M]. Harlow, UK: Longman Scientific & Technical, 1990: 77-100.
    [238] Xu Y., Harris-Haller L. W., et al. Nuclear gene encoding cytosolic triosephosphate isomerase from rice (Oryza sativa l.) [J]. Plant Physiol, 1993, 102(2): 697.
    [239] Moffatt B. A., Wang L., et al. Adenosine kinase of Arabidopsis. Kinetic properties and gene expression [J]. Plant Physiol, 2000, 124(4): 1775-1785.
    [240] Young L. S., Harrison B. R., et al. Adenosine kinase modulates root gravitropism and cap morphogenesis in Arabidopsis [J]. Plant Physiol, 2006, 142(2): 564-573.
    [241] Miyagawa Y., Tamoi M., et al. Overexpression of a cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth [J]. Nat Biotechnol, 2001, 19(10): 965-969.
    [242] Miller Philip W. (Ballwin, Mo, Us), Staub, Robin L. (Wildwood, Mo, Us), Expression of sedoheptulose 1,7 bisphosphatase in transgenic plants [p]. 2007, Monsanto Technology LLC (St. Louis, MO, US): United States Patent.
    [243] Plucken H., Muller B., et al. The HCF136 protein is essential for assembly of the photosystemⅡreaction center in arabidopsis thaliana [J]. FEBS Lett, 2002, 532(1-2): 85-90.
    [244] Komenda J., Nickelsen J., et al. The cyanobacterial homologue of HCF136/YCF48 is a component of an early photosystemⅡassembly complex and is important for both the efficient assembly and repair of photosystemⅡin synechocystis sp. Pcc 6803 [J]. J Biol Chem, 2008, 283(33): 22390-22399.
    [245] Albertin W., Langella O., et al. Comparative proteomics of leaf, stem, and root tissues of synthetic Brassica napus [J]. Proteomics, 2009, 9(3): 793-799.
    [246] Curmi P. M., Cascio D., et al. Crystal structure of the unactivated form of ribulose-1,5-bisphosphate carboxylase/oxygenase from tobacco refined at 2.0-a resolution [J]. J Biol Chem, 1992, 267(24): 16980-16989.
    [247] Hikosaka K. and Shigeno A. The role of Rubisco and cell walls in the interspecific variation in photosynthetic capacity [J]. Oecologia, 2009.
    [248] Whitney S. M., Kane H. J., et al. Rubisco oligomers composed of linked small and large subunits assemble in tobacco plastids and have higher affinities for CO2 and O2 [J]. Plant Physiol, 2009.
    [249] Portis A. R., Salvucci M. E., et al. Activation of ribulosebisphosphate carboxylase/oxygenase at physiological CO2 and ribulosebisphosphate concentrations by Rubisco activase [J]. Plant Physiol, 1986, 82(4): 967-971.
    [250] Streusand V. J. and Portis A. R. Rubisco activase mediates ATP-dependent activation of ribulose bisphosphate carboxylase [J]. Plant Physiol, 1987, 85(1): 152-154.
    [251] Zielinski R. E., Werneke J. M., et al. Coordinate expression of rubisco activase and rubisco during barley leaf cell development [J]. Plant Physiol, 1989, 90(2): 516-521.
    [252] Sharkey T. D., Badger M. R., et al. Increased heat sensitivity of photosynthesis in tobacco plants with reduced rubisco activase [J]. Photosynth Res, 2001, 67(1-2): 147-156.
    [253] Rokka A., Zhang L., et al. Rubisco activase: An enzyme with a temperature-dependent dual function? [J]. Plant J, 2001, 25(4): 463-471.
    [254] Zhang N., Kallis R. P., et al. Light modulation of rubisco in arabidopsis requires a capacity for redox regulation of the larger rubisco activase isoform [J]. Proc Natl Acad Sci U S A, 2002, 99(5): 3330-3334.
    [255] Igarashi D., Tsuchida H., et al. Glutamate:Glyoxylate aminotransferase modulates amino acid content during photorespiration [J]. Plant Physiol, 2006, 142(3): 901-910.
    [256] Lawyer A. L. and Zelitch I. Inhibition of glutamate:Glyoxylate aminotransferase activity in tobacco leaves and callus by glycidate, an inhibitor of photorespiration [J]. Plant Physiol, 1978, 61(2): 242-247.
    [257] Zelitch I. and Day P. R. Variation in photorespiration. The effect of genetic differences in photorespiration on net photosynthesis in tobacco [J]. Plant Physiol, 1968, 43(11): 1838-1844.
    [258] Wingler A., Lea P. J., et al. Photorespiration: Metabolic pathways and their role in stress protection [J]. Philos Trans R Soc Lond B Biol Sci, 2000, 355(1402): 1517-1529.
    [259] Igamberdiev A. U., Bykova N. V., et al. The role of photorespiration in redox and energy balance of photosynthetic plant cells: A study with a barley mutant deficient in glycine decarboxylase [J]. Physiol Plant, 2001, 111(4): 427-438.
    [260] Noctor G., Veljovic-Jovanovic S., et al. Drought and oxidative load in the leaves of C3 plants: A predominant role for photorespiration? [J]. Ann Bot, 2002, 89: 841-850.
    [261] Rachmilevitch S., Cousins A. B., et al. Nitrate assimilation in plant shoots depends on photorespiration [J]. Proc Natl Acad Sci U S A, 2004, 101(31): 11506-11510.
    [262] Zhao Xin, Wu Yuxia, et al. Response of photosynthesis function of salt cress and Arabidopsis to NaCl salt stress (in chinese) [J]. Chinese Bulletin of Botany, 2007, 24(2): 154-160.
    [263] Chadchawan S., Bishop J., et al. Arabidopsis cDNA sequence encoding myrosinase [J]. Plant Physiol, 1993, 103(2): 671.
    [264] Zhang J., Pontoppidan B., et al. The third myrosinase gene TGG3 in Arabidopsis thaliana is a pseudogene specifically expressed in stamen and petal [J]. Physiol Plant, 2002, 115(1): 25-34.
    [265] Xue J., Jorgensen M., et al. The myrosinase gene family in arabidopsis thaliana: Gene organization, expression and evolution [J]. Plant Mol Biol, 1995, 27(5): 911-922.
    [266] Kliebenstein D., Pedersen D., et al. Comparative analysis of quantitative trait loci controlling glucosinolates, myrosinase and insect resistance in Arabidopsis thaliana [J]. Genetics, 2002, 161(1): 325-332.
    [267] Scutt C. P., Vinauger-Douard M., et al. The identification of candidate genes for a reverse genetic analysis of development and function in the Arabidopsis gynoecium [J]. Plant Physiol, 2003, 132(2): 653-665.
    [268] Zybailov B., Rutschow H., et al. Sorting signals, n-terminal modifications and abundance of the chloroplast proteome [J]. PLoS ONE, 2008, 3(4): e1994.
    [269] Mitra S. K., Gantt J. A., et al. Membrane proteomic analysis of Arabidopsis thaliana using alternative solubilization techniques [J]. J Proteome Res, 2007, 6(5): 1933-1950.
    [270] Jiang Y., Yang B., et al. Comparative proteomic analysis of nacl stress-responsive proteins in Arabidopsis roots [J]. J Exp Bot, 2007, 58(13): 3591-3607.
    [271] Leon J., Rojo E., et al. Jasmonic acid-dependent and -independent wound signal transduction pathways are differentially regulated by Ca2+/calmodulin in arabidopsis thaliana [J]. Mol Gen Genet, 1998, 258(4): 412-419.
    [272] Yan Y., Stolz S., et al. A downstream mediator in the growth repression limb of the jasmonate pathway [J]. Plant Cell, 2007, 19(8): 2470-2483.
    [273] Peumans W. J. and Van Damme E. J. Lectins as plant defense proteins [J]. Plant Physiol, 1995, 109(2): 347-352.
    [274] Bourne Y., Ayouba A., et al. Interaction of a legume lectin with two components of the bacterial cell wall. A crystallographic study [J]. J Biol Chem, 1994, 269(13): 9429-9435.
    [275] Mishina Tatiana E. and Zeier Jügen. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in arabidopsis [J]. Plant J, 2007, 50(3): 500-513.
    [276] Uknes S., Mauch-Mani B., et al. Acquired resistance in Arabidopsis [J]. Plant Cell, 1992, 4(6): 645-656.
    [277] Li S. and Strid A. Anthocyanin accumulation and changes in CHS and PR-5 gene expression in Arabidopsis thaliana after removal of the inflorescence stem (decapitation) [J]. Plant Physiol Biochem, 2005, 43(6): 521-525.
    [278] Savenstrand H., Brosche M., et al. Ultraviolet-b signalling: Arabidopsis brassinosteroid mutants are defective in uv-b regulated defence gene expression [J]. Plant Physiol Biochem, 2004, 42(9): 687-694.
    [279] Marchand C., Le Marechal P., et al. New targets of arabidopsis thioredoxins revealed by proteomic analysis [J]. Proteomics, 2004, 4(9): 2696-2706.
    [280] Zhang X. and Mou Z. Extracellular pyridine nucleotides induce PR gene expression and disease resistance in arabidopsis [J]. Plant J, 2009, 57(2): 302-312.
    [281] Seo P. J., Lee A. K., et al. Molecular and functional profiling of Arabidopsis pathogenesis-related genes: Insights into their roles in salt response of seed germination [J]. Plant Cell Physiol, 2008, 49(3): 334-344.
    [282] Zhu Qun, Maher Eileen A., et al. Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco [J]. Nat Biotechnol, 1994, 12(8): 807-812.
    [283] Amme Steffen, Matros Andrea, et al. Proteome analysis of cold stress response in Arabidopsis thaliana using dige-technology [J]. J Exp Bot, 2006, 57(7): 1537-1546.
    [284] Kung C. C., Huang W. N., et al. Proteomic survey of copper-binding proteins in Arabidopsis roots by immobilized metal affinity chromatography and mass spectrometry [J]. Proteomics, 2006, 6(9): 2746-2758.
    [285] Kleffmann T., Russenberger D., et al. The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions [J]. Curr Biol, 2004, 14(5): 354-362.
    [286] Jones Alexandra M.E., Thomas Vincent, et al. Modifications to the arabidopsis defense proteome occur prior to significant transcriptional change in response to inoculation with pseudomonas syringae [J]. Plant Physiol, 2006, 142(4): 1603-1620.
    [287] Gilliland L. U., Pawloski L. C., et al. Arabidopsis actin gene act7 plays an essential role in germination and root growth [J]. Plant J, 2003, 33(2): 319-328.
    [288] Kandasamy M. K., Gilliland L. U., et al. One plant actin isovariant, ACT7, is induced by auxin and required for normal callus formation [J]. Plant Cell, 2001, 13(7): 1541-1554.
    [289] Mcdowell J. M., An Yq., et al. The Arabidopsis ACT7 actin gene is expressed in rapidly developing tissues and responds to several external stimuli [J]. Plant Physiol, 1996, 111(3): 699-711.
    [290] Koussevitzky S., Suzuki N., et al. Ascorbate peroxidase 1 plays a key role in the response of arabidopsis thaliana to stress combination [J]. J Biol Chem, 2008, 283(49): 34197-34203.
    [291] Rizhsky L., Davletova S., et al. The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in arabidopsis [J]. J Biol Chem, 2004, 279(12): 11736-11743.
    [292] Scioli J. R. and Zilinskas B. A. Cloning and characterization of a cdna encoding the chloroplastic copper/zinc-superoxide dismutase from pea [J]. Proc Natl Acad Sci U S A, 1988, 85(20): 7661-7665.
    [293] Sunkar R., Kapoor A., et al. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of mir398 and important for oxidative stress tolerance [J]. Plant Cell, 2006, 18(8): 2051-2065.
    [294] Dunkley T. P., Hester S., et al. Mapping the Arabidopsis organelle proteome [J]. Proc Natl Acad Sci U S A, 2006, 103(17): 6518-6523.
    [295] Minic Z., Jamet E., et al. A sub-proteome of Arabidopsis thaliana mature stems trapped on concanavalin a is enriched in cell wall glycoside hydrolases [J]. J Exp Bot, 2007, 58(10): 2503-2512.
    [296] Peltier J. B., Emanuelsson O., et al. Central functions of the lumenal and peripheral thylakoid proteome of arabidopsis determined by experimentation and genome-wide prediction [J]. Plant Cell, 2002, 14(1): 211-236.
    [297] Wadahama H., Kamauchi S., et al. A novel plant protein disulfide isomerase family homologous to animal p5 - molecular cloning and characterization as a functional protein for folding of soybean seed-storage proteins [J]. FEBS J, 2008, 275(3): 399-410.
    [298] Suzuki K., Itai R., et al. Formate dehydrogenase, an enzyme of anaerobic metabolism, is induced by iron deficiency in barley roots [J]. Plant Physiol, 1998, 116(2): 725-732.
    [299] Cramer R. A. and Lawrence C. B. Identification of alternaria brassicicola genes expressed in planta during pathogenesis of arabidopsis thaliana [J]. Fungal Genet Biol, 2004, 41(2): 115-128.
    [300] Ascencio-Ibanez Jose Trinidad, Sozzani Rosangela, et al. Global analysis of arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection [J]. Plant Physiol, 2008, 148(1): 436-454.
    [301] He H. and Li J. Proteomic analysis of phosphoproteins regulated by abscisic acid in rice leaves [J]. Biochem Biophys Res Commun, 2008, 371(4): 883-888.
    [302] English P. D. and Albersheim P. Host-pathogen interactions: I. A correlation between alpha-galactosidase production and virulence [J]. Plant Physiol, 1969, 44(2): 217-224.
    [303] Nunan K. J., Davies C., et al. Expression patterns of cell wall-modifying enzymes during grape berry development [J]. Planta, 2001, 214(2): 257-264.
    [304] Pennycooke J. C., Jones M. L., et al. Down-regulating alpha-galactosidase enhances freezing tolerance in transgenic petunia [J]. Plant Physiol, 2003, 133(2): 901-909.
    [305] Lee R. H., Lin M. C., et al. A novel alkaline alpha-galactosidase gene is involved in rice leaf senescence [J]. Plant Mol Biol, 2004, 55(2): 281-295.
    [306] Chrost B., Daniel A., et al. Regulation of alpha-galactosidase gene expression in primary foliage leaves of barley ( Hordeum vulgare l) during dark-induced senescence [J]. Planta, 2004, 218(5): 886-889.
    [307] Chrost B., Kolukisaoglu U., et al. An alpha-galactosidase with an essential function during leaf development [J]. Planta, 2007, 225(2): 311-320.
    [308] Park Y. S., Min H. J., et al. Characterization of salicylic acid-induced genes in Chinese cabbage [J]. Plant Cell Rep, 2003, 21(10): 1027-1034.
    [309] Fan Shoujin. Studies on population genetic diversity and molecular evolution of Thellungiella salsuginea (in Chinese) [D]. Jinan: Shandong Normal University, 2007.
    [310] Schoof H., Zaccaria P., et al. Mips arabidopsis thaliana database (matdb): An integrated biological knowledge resource based on the first complete plant genome [J]. Nucleic Acids Res, 2002, 30(1): 91-93.
    [311] Bleecker Anthony B. and Kende Hans. Ethylene: A gaseous signal molecule in plants [J]. Annual Review ofCell and Developmental Biology, 2000, 16(1): 1-18.
    [312] English P. J., Lycett G. W., et al. Increased 1-aminocyclopropane-1-carboxylic acid oxidase activity in shoots of flooded tomato plants raises ethylene production to physiologically active levels [J]. Plant Physiol, 1995, 109(4): 1435-1440.
    [313] Millenaar Frank F., Cox Marjolein C.H., et al. Ethylene-induced differential growth of petioles in arabidopsis. Analyzing natural variation, response kinetics, and regulation [J]. Plant Physiol, 2005, 137(3): 998-1008.
    [314] Nagasaki Nahoko, Tomioka Rie, et al. A hydrophilic cation-binding protein of Arabidopsis thaliana, AtPCAP1, is localized to plasma membrane via n-myristoylation and interacts with calmodulin and the phosphatidylinositol phosphates ptdins(3,4,5)p(3) and ptdins(3,5)p(2) [J]. FEBS J, 2008, 275(9): 2267-2282.
    [315] Nagasaki-Takeuchi Nahoko, Miyano Masashi, et al. A plasma membrane-associated protein of arabidopsis thaliana atpcap1 binds copper ions and changes its higher order structure [J]. J Biochem, 2008, 144(4): 487-497.
    [316] Ide Yuki, Nagasaki Nahoko, et al. Molecular properties of a novel, hydrophilic cation-binding protein associated with the plasma membrane [J]. J Exp Bot, 2007, 58(5): 1173-1183.
    [317] Mauch F., Hadwiger L. A., et al. Antifungal hydrolases in pea tissue : I. Purification and characterization of two chitinases and two beta-1,3-glucanases differentially regulated during development and in response to fungal infection [J]. Plant Physiol, 1988, 87(2): 325-333.
    [318] Mauch F., Mauch-Mani B., et al. Antifungal hydrolases in pea tissue : Ii. Inhibition of fungal growth by combinations of chitinase and beta-1,3-glucanase [J]. Plant Physiol, 1988, 88(3): 936-942.
    [319] Stressmann M., Kitao S., et al. Calcium interacts with antifreeze proteins and chitinase from cold-acclimated winter rye [J]. Plant Physiol, 2004, 135(1): 364-376.
    [320] Zhang D., Hrmova M., et al. Members of a new group of chitinase-like genes are expressed preferentially in cotton cells with secondary walls [J]. Plant Mol Biol, 2004, 54(3): 353-372.
    [321] Broekaert W. F., Van Parijs J., et al. Comparison of some molecular, enzymatic and antifungal properties of chitinases from thorn-apple, tobacco and wheat [J]. Physiological and molecular plant pathology, 1988, 33(3): 319-331.
    [322] Dumas R., Curien G., et al. Branched-chain-amino-acid biosynthesis in plants: Molecular cloning and characterization of the gene encoding acetohydroxy acid isomeroreductase (ketol-acid reductoisomerase) from arabidopsis thaliana (thale cress) [J]. Biochem J, 1993, 294 ( Pt 3): 821-828.
    [323] Durner J., Knorzer O. C., et al. Ketol-acid reductoisomerase from barley (hordeum vulgare) (purification, properties, and specific inhibition) [J]. Plant Physiol, 1993, 103(3): 903-910.
    [324] Liu X. H., Zhang C. Y., et al. Synthesis, bioactivity and sar study of n'-(5-substituted-1,3,4-thiadiazol-2-yl)-n-cyclopropylformyl-thioureas as ketol-acid reductoisomerase inhibitors [J]. J Enzyme Inhib Med Chem, 2009, 24(2): 545-552.
    [325] Liu X. H., Chen P. Q., et al. Synthesis, bioactivity, theoretical and molecular docking study of 1-cyano-n-substituted-cyclopropanecarboxamide as ketol-acid reductoisomerase inhibitor [J]. Bioorg Med Chem Lett, 2007, 17(13): 3784-3788.
    [326] Pasternak Maciej, Lim Benson, et al. Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development [J]. Plant J, 2008, 53(6): 999-1012.
    [327] Sasaki-Sekimoto Yuko, Taki Nozomi, et al. Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in arabidopsis [J]. Plant J, 2005, 44(4): 653-668.
    [328] Grana X., De Lecea L., et al. Cloning and sequencing of a cDNA encoding 2,3-bisphosphoglycerate-independent phosphoglycerate mutase from maize. Possible relationship to thealkaline phosphatase family [J]. J Biol Chem, 1992, 267(18): 12797-12803.
    [329] Grana X., Perez De La Ossa P., et al. 2,3-bisphosphoglycerate-independent phosphoglycerate mutase is conserved among different phylogenic kingdoms [J]. Comp Biochem Physiol B Biochem Mol Biol, 1995, 112(2): 287-293.
    [330] Grana X., Urena J., et al. Purification, characterization and immunological properties of 2,3-bisphosphoglycerate-independent phosphoglycerate mutase from maize (Zea mays) seeds [J]. Eur J Biochem, 1989, 186(1-2): 149-153.
    [331] Chevalier N., Rigden D. J., et al. Trypanosoma brucei contains a 2,3-bisphosphoglycerate independent phosphoglycerate mutase [J]. Eur J Biochem, 2000, 267(5): 1464-1472.
    [332] Sarry J. E., Kuhn L., et al. The early responses of arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses [J]. Proteomics, 2006, 6(7): 2180-2198.
    [333] Bonshtien Anat L., Weiss Celeste, et al. Significance of the n-terminal domain for the function of chloroplast cpn20 chaperonin [J]. J Biol Chem, 2007, 282(7): 4463-4469.
    [334] Lappartient A. G., Vidmar J. J., et al. Inter-organ signaling in plants: Regulation of atp sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound [J]. Plant J, 1999, 18(1): 89-95.
    [335] Yanagisawa S., Akiyama A., et al. Metabolic engineering with dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions [J]. Proc Natl Acad Sci U S A, 2004, 101(20): 7833-7838.
    [336] Kim K. J., Park C. J., et al. Induction of a cytosolic pyruvate kinase 1 gene during the resistance response to tobacco mosaic virus in capsicum annuum [J]. Plant Cell Rep, 2006, 25(4): 359-364.
    [337] Herz U., Schroder W., et al. Purification of the NADH:Ubiquinone oxidoreductase (complex i) of the respiratory chain from the inner mitochondrial membrane of solanum tuberosum [J]. J Biol Chem, 1994, 269(3): 2263-2269.
    [338] Zou J., Qi Q., et al. Effects of antisense repression of an Arabidopsis thaliana pyruvate dehydrogenase kinase cdna on plant development [J]. Plant Mol Biol, 1999, 41(6): 837-849.
    [339] Chew Orinda, Whelan James, et al. Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants [J]. J Biol Chem, 2003, 278(47): 46869-46877.
    [340] Lisenbee Cayle S., Lingard Matthew J., et al. Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase [J]. Plant J, 2005, 43(6): 900-914.
    [341] Wilce M. C. and Parker M. W. Structure and function of glutathione s-transferases [J]. Biochim Biophys Acta, 1994, 1205(1): 1-18.
    [342] Dixon D. P., Lapthorn A., et al. Plant glutathione transferases [J]. Genome Biol, 2002, 3(3): REVIEWS3004.
    [343] Kiyosue T., Yamaguchi-Shinozaki K., et al. Characterization of two cDNAs (erd11 and erd13) for dehydration-inducible genes that encode putative glutathione s-transferases in arabidopsis thaliana l [J]. FEBS Lett, 1993, 335(2): 189-192.
    [344] Wagner U., Edwards R., et al. Probing the diversity of the Arabidopsis glutathione s-transferase gene family [J]. Plant Mol Biol, 2002, 49(5): 515-532.
    [345] Sappl P. G., Onate-Sanchez L., et al. Proteomic analysis of glutathione s -transferases of Arabidopsis thaliana reveals differential salicylic acid-induced expression of the plant-specific phi and tau classes [J]. Plant Mol Biol, 2004, 54(2): 205-219.
    [346] Pre M., Atallah M., et al. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense [J]. Plant Physiol, 2008, 147(3): 1347-1357.
    [347] Bray Elizabeth A. Classification of genes differentially expressed during water-deficit stress in Arabidopsisthaliana: An analysis using microarray and differential expression data [J]. Ann Bot, 2002, 89(7): 803-811.
    [348] Kirch H. H., Bartels D., et al. The ALDH gene superfamily of Arabidopsis [J]. Trends Plant Sci, 2004, 9(8): 371-377.
    [349] Kirch H. H., Schlingensiepen S., et al. Detailed expression analysis of selected genes of the aldehyde dehydrogenase (ALDH) gene superfamily in Arabidopsis thaliana [J]. Plant Mol Biol, 2005, 57(3): 315-332.
    [350] Sweetlove L. J., Heazlewood J. L., et al. The impact of oxidative stress on Arabidopsis mitochondria [J]. Plant J, 2002, 32(6): 891-904.
    [351] Tanaka N., Takahashi H., et al. Proteome approach to characterize the methylmalonate-semialdehyde dehydrogenase that is regulated by gibberellin [J]. J Proteome Res, 2005, 4(5): 1575-1582.
    [352] Oguchi K., Tanaka N., et al. Methylmalonate-semialdehyde dehydrogenase is induced in auxin-stimulated and zinc-stimulated root formation in rice [J]. Plant Cell Rep, 2004, 22(11): 848-858.
    [353] De La Fuente Van Bentem S., Anrather D., et al. Site-specific phosphorylation profiling of Arabidopsis proteins by mass spectrometry and peptide chip analysis [J]. J Proteome Res, 2008, 7(6): 2458-2470.
    [354] Plant Genomes Central. Available from: http://www.ncbi.nlm.nih.gov/genomes/PLANTS/PlantList.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700