20MeV以下n+~(56)Fe核反应kerma系数的模型计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Kerma系数对于确定核工程中材料、元件的辐照损伤,热工系统的传热、载热,中子辐射保护以及核医学中确定放射治疗的辐照剂量等方面,都起着关键的作用。铁作为一种重要的核材料,在核能开发和利用方面有着重要的应用,如洁净核能驱动系统(ADS)的设计,裂变、聚变、中子反应堆等装置的设计。铁元素主要由54Fe(丰度占5.845%)、56Fe(丰度占91.754%)、57Fe(丰度占2.119%)、58Fe(丰度占0.282%)4种同位素组成,所以精确地评价铁元素的中子kerma系数必须同时对其所有的同位素进行精确评价。然而,4种同位素的实验数据(包括中子kerma系数以及对中子kerma系数有着非常大影响的弹性截面、弹性角分布、非弹性截面、非弹性角分布、中子及带电粒子的双微分截面等)都非常缺乏,特别是在20MeV以下的入射能区。所以在这个能区范围内,对n + 56Fe核反应的kerma系数进行精确的模型计算具有非常重要的参考价值。
     尽管铁的中子Kerma系数非常重要,但实验数据比较缺乏,而且测量的误差比较大,特别是在20MeV以下的入射能区。如P.M.DeLuca等人所说,在测量kerma系数时,实验方法中的计数器气体影响铁的能量分布,所以必须考虑其对铁的中子kerma系数测量结果的影响。在15MeV以上,铁的中子kerma系数的误差有随着入射能量的增大而增大的趋势,有时误差竟达到90.9%。所以,R.S.Caswll等人说过,在应用15MeV以上铁的中子kerma系数时要特别谨慎。20MeV以下kerma系数的评价通常是利用数据处理程序对现有数据库进行处理,这些程序都是利用现有数据库能给出详细的出射中子和光子的能谱这样的事实。但是这种方法得到的kerma系数的精确性很大程度上取决于所处理数据库的好坏。而且56Fe的中子kerma系数只有M.B.Chadwick等人在1999年评价过。在14.5MeV以下,他们的结果是利用NJOY程序对ENDF/B-VI数据库进行处理得到的,在14.5MeV到20MeV之间,他们的评价值是通过线性插值得到的。然而在20MeV以下,ENDF/B-VI没有完整的带电粒子的信息。
     本文利用统一的Hanser-Feshbach和激子模型,分析了20MeV以下n + 56Fe核反应开放的反应道,在严格保证能量守恒的前提下,给出了各反应道各出射的带电粒子在实验室系中的能量表示。在此基础上利用改进的UNF程序(2009版),得到了与实验数据符合很好的中子弹性散射角分布、总截面、弹性散射截面、(n,p)和(n,α)反应道截面,由此确定中子、质子和α等带电粒子的光参。由这些光参计算得到了与实验数据符合很好的中子、质子和α粒子的出射双微分截面。由此利用新的、包含更多参数信息的kerma系数计算公式(Phys.Rev.C,2008(78),054610)很自然的得到了20MeV以下n + 56Fe核反应总的kerma系数。在14.5MeV以下本文的结果较好的符合了实验数据,也和M.B.Chadwick等人的结果很接近,虽然在14.5MeV以上,本文的结果低于实验数据及M.B.Chadwick等人的结果,但本文给出了较为详细的与实验符合的较好的中子、带电粒子的信息,且本文所用的kerma系数的计算公式包含了更加全面详细的信息。故本文得到的20MeV以下n + 56Fe核反应的kerma系数的评价值具有一定的合理性,可为核技术及核工程等提供一定的参考。
Kerma coe?cients are important in many ?elds, such as determining the radia-tion damage in nuclear engineering, and the thermal conduction, and determining thedose delivery in therapy beams. iron is the main nuclear structural material, the datais of great signi?cance to the development of nuclear energy and nuclear engineeringconstruction. Such as accelerator driven clean power system (ADS) designs, ?ssiondesigns, fusion designs, neutron reactor designs and so on. Elemental iron consists offour isotopes, 54Fe (5.845% abundant), 56Fe (91.754% abundant), 57Fe (2.119% abun-dant), 58Fe (0.282% abundant). So each isotopes must be evaluated in order to obtainthe accurate kerma coe?cients of iron. However, the experimental data of four iso-topes (consist of neutron kerma coe?cients and others that have signi?cant in?uenceon neutron kerma coe?cients, such as elastic cross sections, elastic-scattering angu-lar distributions, inelastic cross sections, inelastic- scattering angular distributions,neutron double-di?erential cross sections and charged-particle double-di?erential crosssections) are very scarce, especially the incident neutron energy below 20 MeV. So atthis energy rang, it is signi?cantly referential value to accurately calculate the neutronkerma coe?cients using theory model for n + 56Fe reaction.
     Despite the neutron kerma coe?cients of Fe is very important, the experimentaldata are absent, and the uncertainties of experimental data are relative big, especiallythe incident neutron energy below 20 MeV. As mentioned by P. M. DeLuca et al, thegas contribution changes the energy deposition spectrum for Fe and must be taken intoaccount in determining the kerma coe?cients. There is a general tendency that theuncertainties increase with increasing neutron energy for Iron element above 15 MeVincident neutron energy. sometimes, the uncertainty is up to 90.9%. Therefore, caremust be taken when the data are applied above 15 MeV, as mentioned by R. S. Caswell.The evaluated kerma coe?cients below 20 MeV were usually derived from ENDF/B-VIformat libraries using the data processing codes. These codes take advantage of the facts that many evaluation libraries give explicit energy distributions for the emittedneutrons and photons. The limitation using data processing codes on the accuracyof neutron kerma calculation is determined by the availability and accuracy of theevaluation libraries. Furthermore, the kerma coe?cients of Iron element were onlyevaluated by M. B. Chadwick in 1999. These kerma coe?cients below 14.5 MeVwere obtained from existing ENDF/B-VI evaluated library using NJOY code, and thevalues in 14.5-20 MeV region were linearly interpolated, However Below 20 MeV, theENDF/B-VI information on charged-particle emission is incomplete.
     In this work, the reaction channels of n + 56Fe reaction are analyzed, on the basisof the Uni?ed Hauser-Feshbach and Excition Model, the energy formulas of all kindsof emitted particles in diversi?ed channels are given, and the energy balance is heldstrictly simultaneously. On the basis of this, the elastic scattering angle distributionsand cross section, total cross section, cross sections of (n,α) and (n, p) are calculatedused UNF(2009) code, these results are agree well with the experimental datas. So theoptical potential parameters of neutron, proton and charged particle are obtained. Anduseing these optical potential parameters, the double-di?erential cross sections of n, pandαparticle for n + 56Fe reaction below 20MeV are calculated. The calculations areagree well with the experimental data, so the total kerma coe?cient of n + 56Fe below20MeV is obtained naturally using the new formula of kerma coe?cient, which consistsmore parameter information. Below 14.5 MeV, the result of this work is agree withthe experimental data and the result of M. B. Chadwick. Although above 14.5 MeV,the result of this work is lower than the result of M. B. Chadwick and the measureddata. But, the more detailed information of neutron, proton and charged particlesare given in this work, and these information are agree well with the experimentaldata. Furthermore the formula of kerma coe?cient used in this work contains moredetailed, comprehensive information. So the result of total kerma coe?cients for n +56Fe nuclear reaction is reasonable to some extent, and these parameters can providesome reference to nuclear technology and nuclear engineering.
引文
[1] ISO. Quantities and units-part 0: General principles[R]. International Stan-dards Organization (International Standards Organization, Geneva, Switzerland,1992), ISO Report 31-0:1992(E).
    [2] Mcaulay I R, Barlett D T, Dietze G, Menzel H G, Schnuer K and Schrewe U J.Exposure of air crew to cosmic radiation EURADOS Report[R].1996-01
    [3] Schrewe U J. Radiation exposure monitoring in civil aircraft[J]. Nucl. Instrum.Methods,1999,A(442):621.
    [4] DeLuca P M Jr, Barschall H H, Sun Y and Haight R C. Kerma factor of oxy-gen, aluminum, and silicon for 15-and 20-MeV neutrons Radiat. Prot. Dosim.1988(23):27-30.
    [5] Newhause W D and Schrewe U J. Gas-to-wall absorbed dose conversion factorsat neutron energies of 25 to 250MeV[J]. Data Nucl. Date Tables, 1997(65):37-53.
    [6] U J Schrewe, W D Newhause, H J Brede and P M Deluca Jr.Experimental kermacoe?cients and dose distributions of C, N, O, Mg, Al, Si, Fe, Zr, A-150 plastic,Al2O3, AlN, SiO2, and ZrO2 for neutron energies up to 66 MeV[J]. Phys. Med.Biol. 2000(45):651–683.
    [7] Robert C. Haight. Kerma-factor determination by charged-particle spec-troscopy[R]. 4th International Conference on Applications of Nuclear Techniques”Neutrons and their Applications”.
    [8] M C Schell, D W Pearson, P M Deluca Jr and R C Haight. Measurement of dosedistributions of linear energy transfer in matrer irradiated by fast neutrons[J].Med. Phys. 1990(17):1-9.
    [9] Mcdonald J C. Calorimetric Measurement of the Carbon Kerma Factor for 14.6-MeV Neutrons[J]. Radiat.Res,1987(109):28-35.
    [10] P M DeLuca Jr, H H Barschall, C L Hartmann and D W Pearson. Corrections tokerma factor measurements made by integral techniques[J]. Nuclear Instrumentsand Methods in Physics Research Section B: Beam Interactions with Materialsand Atoms,1989(1279):40-41.
    [11] Schrewe U J, Newhauser W D, Brede H J, Deluca P M. Neutron kerma factormeasurements in the energy range between 5 MeV and 66 MeV[R]. Proc. of theInternational Conference on Nuclear Data for Science and Technoloby. Trieste,Italy, 1997(1643).
    [12] E Goldberg, D R Slaughter and R H Howell. Experimental determination ofkerma factors at En=15 MeV[R]. Technical Report UCID-17789. Lawrence Liv-ermore National Laboratory, Livermore, 1978.
    [13] W D Newhauser. Neutron kerma factor measurements in the 25 MeV to 85 MeVneutron energy range[R]. Ph.D. thesis,University of Wisconsin, Madison. 1995.
    [14] C Wuu and L Milavickas. Determination of the kerma factors in tissue-equivalentplastic, C, Mg, and Fe for 14.7MeV neutrons[J]. Med. Phys, 1987(14):1007-1014.
    [15] C L Hartmann. Measurements of neutron kerma factors at 18, 23 and 25 MeV[R].Ph.D.thesis,University of Wisconsin, Madison, 1991.
    [16] R E MacFarlane, The NJOY Nuclear Data Processing System, Version 91[R].Los Alamos National Laboratory report, Los Alamos, NM, 1994.
    [17] Li zhang and M A Abdo. Kerma factor evaluation and its application in nuclearheating experiment analysis[J]. Fusion Engineering and Design. 1997:(36)479-503.
    [18] Zhenzhou Liu and Jinxiang Chen. New calculations of neutron kerma coe?cientsand dose equivalent[J].Radiol.Prot, 2008(28):185-193.
    [19] H H Barschall et al. Nuclear data for neutron and proton radiotherapy and forradiation protection[R]. ICUR Report 63, 1999
    [20] M B Chadwick, H H Barschall et al. A consistent set of neutron kerma coe?cientsfrom thermal to 150 MeV for biologically important materials[J]. Med.Phys.1999(26):974-991.
    [21] Walter Hauser, Herman Feshbach. The Inelastic scattering of Neutrons[J]. Phys-ical Review,1952(87):366-373.
    [22] P G Young, E D Arthur, M B Chadwick. Comprehensive nuclear model calcula-tion: Introduction to theory and use of the GNASH code[R]. Technical ReportNo.LA-12343-MS, Los Alammos National laboratory, Los Alammos, NM,1992
    [23] Arthur E D, Young P G. Evaluated Neutron-induced Cross Sections for 54,56Feto 40MeV[R]. LA-8626-MS(ENDF-304):University of California,1980:19-24.
    [24] M Blann, H Gruppelaar, P Nagel, J Rodens. International Code Comparison forIntermediate Energy Nuclear Data, Organization for Economic Cooperation andDevelopment[R]. Nuclear Energy Agency, Paris, France, 1994:1-126.
    [25] Jingshang Zhang. A Uni?ed Hauser-Feshbach and Exciton Model for Calcula-tion Double-di?erential Cross Sections of Neutron- Induced Reactions Below20MeV[J]. Nucl.Sci.Eng,1993(114):55-63.
    [26] Xiaojun Sun, Wenjing Qu,Junfeng Duan and Jingshang Zhang. New calculationmethod of neutron kerma coe??cients for carbon and oxygen below 30MeV[J].Phys.Rev.C,2008(78):054610,1-12
    [27] Jingshang Zhang. UNF Code for Fast Neutron Reaction Data Calculations[J].Nucl.Sci.Eng, 2002(142):207-219.
    [28] Jingshang Zhang, Yinlu Han, Ligang Cao. Model Calculation of n + 12C Reac-tions from 4.8 to 20MeV[J]. Nucl.Sci.Eng, 1999(133):218-234.
    [29] Zhang Jingshang, Han Yinlu. Model Calculation of n + 6Li Reactions Below20MeV[J]. Commun.Theor.Phys, 2001(36):437-442.
    [30] Zhang Jingshang, Han Yinlu. Calculation of Double-di?erential Cross Sectionsof n + 7Li Reactions Below 20MeV[J]. Commun.Theor.Phys, 2002(37):465-474.
    [31] Zhang Jingshang, Han Yinlu, Shen Guangren Shen Qingbiao. Progress report onthe model Calculation of n + 9Be Reactions Below 20MeV[J]. Communicationof Nuclear Data Progress,1998(20):5-17.
    [32] Zhang Jingshang, Yu Baosheng, Han Yinlu.γ+ 9Be Reaction Below 30MeV[J].Communication of Nuclear Data Progress,1999(21):35-41.
    [33] Zhang Jingshang. Theory Analysis of Neutron Double-di?erential Cross Sectionsof n + 10Be at 14.2MeV[J]. Commun.Theor.Phys, 2002(39):433-438.
    [34] Wang Jimin, Duan Junfeng, Yan Yuliang, Sun Xiaojun, Zhang Jingshang. 5HeEmission in Neutron-induced Reactions[J]. Commun.Theor.Phys, 2006(46):527-532.
    [35] Zhang Jingshang. Theory Analysis of Neutron Double-di?erential Cross Sectionsof n + 11Be at 14.2MeV[J]. Commun.Theor.Phys, 2002(39):83-88.
    [36] Yan Yuliang, Duan Junfeng, Sun Xiaojun, Wang Jimin, Zhang Jingshang.Theory Analysis of Neutron Double-di?erential Cross Sections of n + 14N at14.2MeV[J]. Commun.Theor.Phys, 2005(44):128-132.
    [37] Duan Junfeng, Yan Yuliang, Wang Jimin, Sun Xiaojun, Zhang Jingshang. FutherAnalysis of Neutron Double-di?erential Cross Sections of n + 16O at 14.1MeVand 18MeV[J]. Commun.Theor.Phys, 2005(44):701-706.
    [38] Duan Junfeng, Yan Yuliang, Sun Xiaojun, Zhang Yue, Zhang Jingshang. FutherAnalysis of Neutron Double-di?erential Cross Sections of n + 19F at 14.2MeVand 18MeV[J]. Commun.Theor.Phys, 2007(47):102-106.
    [39]张竞上.中子诱发轻核反应的统计理论[M].科学出版社,2009.
    [40] SHEN Qing-Biao. A program for automatically searching optimal optical poten-tial parameters in the E≤300 MeV energy region[J]. Nucl.Sci.Eng, 2002(141):78-84.
    [41]申庆彪.低能和中能核反应理论(上册)[M].科学出版社,2005.
    [42] Kunz P D. Distorted Wave Code DWUCK4. University of Colorada, Boulder,Colorada, 1974.
    [43] Yinlu Han, Yue Zhang, and Hairui Guo. Calculation and Evaluations for n +54,56,57,58,natFe Reactions[J]. Nucl.Sci.Eng,2009(161):1-21.
    [44] F D Becchetti,Jr and G W Greenlees. Nucleon-nucleus optical-model parameters,A?40, E?50MeV. Phys.Rev, 1969(182):1190-1209.
    [45] Kineo Tsukada, Shigeya Tanaka, Yoshiaki Tomita and Michio Maruyama. Elasticand inelastic scattering of fast neutrons from iron, nickel and tungsten[J]. NuclearPhysics A,1969(125):641-653.
    [46] W E Kinney, F G Perey. Neutron elastic- and inelastic-scattering cross sectionsfor 56Fe in the energy range 4.19 to 8.56 MeV[R].ORNL-4515, 1970.
    [47] A B Smith. Neutron scattering and models: iron[J]. Nuclear Physics A,1996(605):269-289.
    [48] W Bucher, C E Hollandsworth. Small-angle scattering of 7-14 mev neutrons bynuclei[J]. Physics Letters B, 1975(58):277-278.
    [49] J C Ferrer, J D Carlson, J Rapaport. Nucleon elastic scattering at 11MeV and the isospin dependence of the neutron-nucleus[J]. Nuclear PhysicsA,1977(275):325-341.
    [50] Hyakutake M, Matoba M, Tonat T, Nidome J, Nakamura S. Scattering of 14.1MeV neutrons from Fe[J]. Journal of the Physical Society of Japan,1975(38):606-610.
    [51] Li Jingde,Xie Daquan,Ma Gonggui,Zou Yiming, Wang Shiming,ChenShuying. Small Angle Elastic Scattering of 14.2 Mev Neutrons ByAl,Ti,Fe,Cu,Mo,Cd,W,Pb,Bi and U-238. J,CNP, 1989(11):19.
    [52] Coon J H, Davis R W, Felthauser H E, Nicodemus D B. Scattering of 14.5-MeVneutrons by complex nuclei[J]. Physical Review,1958(111):250-260.
    [53] Qi Huquan, Chen Qiankun, Chen Yingtang, Chen Hongbin, Chen Zhenpeng,Deng Jingkang, Chen Zemin, Tang Hongqing, Qi Bujia. Small angle scatteringcross section of 12 MeV neutron from U-238 and Fe[J]. CNP,1991(13):343
    [54] E G Christodoulou, N C Tsirliganis, G F Knoll. Measurements of the di?erentialcross section for elastic and inelastic scattering of 14-MeV neutrons in naturalchromium, Iron, Nickel, and Niobium[J]. Nucl.Sci.Eng,1999(132):273-275.
    [55] J D Anderson, C C Gardner, M P Nakada, C Wong. Back-angle elastic scatteringof 14.6-mev neutrons[J]. Phys. Rev, 1958(110):160-163.
    [56] L.F.Hansen, F.S.Dietrich, B.A.Pohl, C.H.Poppe, C.Wong. Test of microscopicoptical model potentials for neutron elastic scattering at 14.6 MeV over a widemass range[J].Phys.Rev.C, 1985(31):111-119.
    [57] Dai Yunsheng, Wan Dairong, Cao Jianhua, Liang Xuecai. Measurement of small-angle elastic scattering of Fe by the 14.7MeV neutrons using position-sensitivedetector[J]. NTC,1988(12):662.
    [58] Qi Huiquan, Chen Hongbin, Chen Yingtang, Chen Qiankun, Chen Zhenpeng,Chen Zemin. Small angle scattering cross sections of 14.8 MeV neutrons fromFe, Ni and Cr[J]. Nucl.Sci.Eng, 1992(111):309-313.
    [59] A.Begum, R.B.Galloway, F.K.Mcniel-Watson. The polarization of 16 mev neu-trons due to elastic scattering by C, Fe, Cu, I, W, Hg and Pb[J]. Nuclear PhysicsA, 1979(332):349-364.
    [60] C.D.Bowman, E.G.Bilpuch, H.W.Newson. S- and p-wave neutron spectroscopy,part VIII, subshell e?ect of nuclear level spacing near A=50[J]. Annals of physics,1962(17):319.
    [61] H.I.Liou, R.E.Chrien, R.C.Block, U.N.Singh. The transmission of neutronsthrough Fe-56 at 24.37-KeV[J]. Nucl.Sci.Eng, 1979(70):150-154.
    [62] A.A.Sarkisov, I.N.Martem’Janov, A.M.Boguslavskij, V.N.Ivanov, G.N.Ivanov.Resonance e?ects in the interaction of 0.2–0.8-MeV neutrons with 56 Fe nu-clei[J]. Atomic Energy, 1984(57):179–182.
    [63] E.Cornelis, L.Mewissen, F.Poortmans. Total neutron cross section of Fe-54 andFe-56 in the energy range 500 KeV to 19 MeV[C]. Conference on Nuclear Datafor Science and Technology, Antwerp 1982
    [64] P.Boschung, J.T.Lindow, E.F.Shrader. Scattering of fast neutrons by 12C, 54Fe,56Fe, 58Ni and 60Ni[J]. Nuclear Physics A, 1971(161):593-609.
    [65] S.M.El-Kadi, C.E.Nelson, F.O.Purser, R.L.Walter, A.Beyerle, C.R.Gould,L.W.Seagondollar. Elastic and inelastic scattering of neutrons from 54, 56Feand 63, 65Cu : (I). Measurements from 8 to 14 MeV and a spherical opticalmodel analysis[J]. Nuclear Physics A, 1982(390):509-540.
    [66] W.L.Rodgers, E.F.Shrader, J.T.Lindow. Neutron scattering from C12, Fe54,Fe56, Cu65, Ni58, and Ni60[R]. Chicago Oper. Report, COO-1573-33.
    [67] W.E.Kinney. Neutron elastic and inelastic scattering from Fe56 from 4.60 to 7.55MeV[C]. ORNL Reports No. ORNL-TM-2052
    [68] A.H.Mohamed, T.Schweitzer, D.Seeliger, K.Seidel, S.Unholtzer. Elastic and In-elastic Scattering of Neutrons Having an Energy of 3.4 MeV by Na, Mg, Al, Si,P, V, Mn, Fe, Co, Pb, and Bi Isotopes[J]. Izv.Rossiiskoi Akademii Nauk,Ser.Fiz,1976(40):2277.
    [69] I.A.Korzh, V.A.Mishchenko, E.N.Mozhzhukhin, N.M.Pravdivy, I.E.Sanzhur.Di?erential Cross Sections of 1.5-3.0 MeV Neutron Scattering by the Titanium,Iron and Bismuth[J]. Ukrainskii Fizichnii Zhurnal, 1977(22):87.
    [70] Santry D, Butler J. Excitation curves for the reactions 56Fe(n,p)56Mn and59Co(n,α)56Mn[J]. Canadian Journal of Physics, 1964(42):1030-1035.
    [71] Liskien H, Paulsen A. Cross-section measurement for the threshold reactions56Fe(n,p)56Mn, 59Co(n,α) 56Mn and 63Cu(n,2n)62Cu between 12.6 and 19.6MeVneutron energy[J]. Journal of Nuclear Energy. Parts A/B. Reactor Science andTechnology, 1965(19):73-80.
    [72] Cuzzocrea P, perillo E, Notarrigo S. Some Excitation Functions of Neutron-Induced Reactions Around 14MeV[J]. Nuovo Cimento B, 1968(54):53-60.
    [73] Smith D L, Meadows J W. Cross-section measurement of (n,p) reactions for27Al,46,47,48Ti,54,56Fe, 58Ni,59Co, and 64Zn from near threshold to 10MeV[J].Nucl.Sci.Eng, 1975(58):314-320.
    [74] Chichou L, Hanlin L, Peikuo F, Hungchang M, Yehsha L. Cross section mea-surement for the reaction Fe-56(n,p)Mn-56[R]. Tech.Rep. No.INDC(CPR)-16,International Nuclear Data Committee, 1989.
    [75] P Fuga. Study of the excitation function of the 56Fe(n,p)56Mn threshold re-action[J]. Nuclear Instruments and Methods in Physics Research Section A,1991(309):500-502.
    [76] Saraf S K, Brient C E, Egun P M, Grimes S M, Mishra V, Pedroni R S. Crosssections and spectra for the 54Fe and 56Fe(n,xp) and (n,a) reactions between 8and 15MeV[J]. Nucl.Sci.Eng, 1991(107):365-372.
    [77] Paulsen A, Liskien H, Arnotte F, Widera R. Measurement of (n,a) cross sec-tions on chromium,iron,and nickel in the 5- to 10-MeV neutron energy range[J].Nucl.Sci.Eng, 1981(78):377-385.
    [78] Wattecamps E, Liskien H, Arnotte F. Measurement of (n,a) cross sectionsfor Cr,Fe and Ni at 14MeV neutron energy[R]. Tech.Rep.No.INDC(EUR)-15,International Nuclear Data Committee, 1982.
    [79] A G Beyerle, C Gould, W Seagondollar, P Thambidurai, S El-Kadi, G Glendin-ning, C E Nelson, F O Purser, R L Walter. Double di?erential neutron scatteringcross sections for Fe, Cu, Ni and Pb between 8 and 12 MeV[C].In: Fowler J L,Johnson C H, Bowman C D ed. Proceedings of the International Conference.Knoxville: US Department of Commerce National Bureau of Standards. 1980:139
    [80]阮锡超,黄翰雄,蒋婧,李霞,仲启平,鲍杰,陈国长,周祖英,祁步嘉,唐洪庆,聂阳波,兰长林,刘阳。8.17MeV中子与天然铁作用的次级中子双微分截面测量[J]。原子能科学技术,2009(43):793-797.
    [81] N S Biryukov, B V Zhuravlev, N Kornilov, V I Plyaskin, A P Rudenko, O ASal’nikov, V I Trykova. Inelastic scattering of neutrons with initial energy 9.1MeV[C]. In: Conf on neutron physics, kiev,1975(4):118.
    [82]祁步嘉,唐洪庆,周祖英,周陈维,柯尊建,孙振强,沈冠仁,夏海鸿. 10MeV中子引起的238U、209Bi和Fe的次级中子双微分截面测量[J].原子能科学技术,1999(33):497-504.
    [83] D Soda, S Matsuyama, I Masanobu, M Baba, S Iwasaki, N Hirakawa. Mea-surements of double-di?erential neutron emission cross sections for 18 and 11.5MeV neutrons[R]. Report of Japan Atomic Energy Research Institute, ReportNo.JAERI-M-96-008,1995
    [84] Takahashi A, Gotoh M, Sasaki Y, Sugimoto H. Double and single di?erentialneutron emission and integral cross sections at 14.1MeV for iron,nickel and oxi-gen[R]. Tech.Rep. No.OKTAV-A-92-01,OKTAVIAN Reports of Original Papersand Data Tables,Japen, 1992.
    [85] Yabuta N, Baba M, Kikuchi T, Ishikawa M, Wakabayashi H, Hirakawa N.Double-di?erential neutron emission cross sections of Cr, Fe, Ni and Al[C]. Con-ference on Nuclear Data for Science and Technology, Mito, Japan, 1988.
    [86] Matsuyama S, Ito T, Baba M, Ito N, Iide H, Okubo T, Hirakawa N. Measurementof double-di?erential and energy di?erential neutrone mission cross sections forFenat at En=14.1MeV neutron energy[R]. Tech.Rep. No.JAERI-M-92-027, JapanAtomic Energy Research Institute, Japan, 1992.
    [87] Voignier J, Clayeux G, Bertrand F. Nelastic neutron scattering cross sec-tions in several elements with 14.1MeV neutrons[C]. Tech.Rep.No.71KNOX-1-196,Conference Neutron Cross Sections & Techology,Knoxville, 1971.
    [88] Lychagin A A, Lunev V P, Zhuravlev B V, Salnikov O A, Titarenko N N.14MeV neutron inelastic statterig on ironnuclei[C]. Tech.Rep.No.87KIEV-3-231,Conference on Neutron Physics, Kiev, 1987.
    [89] Vilaithong T, Boonyawan D, Konklong S, Paisuwan W, Singkarat S. Measure-ment of double di?erential neutron emission cross sections of Fe induced by14.1MeV neutrons[J]. Nucl. Instrum. Meth. A, 1993(332):561-572.
    [90] Degtjarev A P, Leshchenko B E, Phyuyko V A, Prokopets G A. Angular distri-bution of neutron groups from (n,xn) reactions on 56Fe,59Co,93Nb,115In,209Bi and238U at incident energy En=14.6MeV[J]. Yad.Fiz, 1981(34):299-312.
    [91] Takahashi A, Yamamoto J, Ohshima K, Oda H, Fujimoto K, Ueda M, FukazawaM, Yanagi Y, Sumita K. Double di?erential neutron emission cross sections with14MeV neutronsource[R]. Tech.Rep.No.OKTAV-A-83-01,International Confer-ence on Nuclear Data For Science and Technology, Antwerp, 1982.
    [92] Takahashi A, Yamamoto J, Ohshima K, Fukazawa M, Yanagi Y, Ueda M,Miyaguchi J, Kohno S, Yugami K, Nonaka H, Ichimura E, Sugimoto H, SumitaK. Double di?erential neutron emission cross sections around 14MeV neutronsource[R]. Tech.Rep.No.OKTAV-A-87- 01,International Conference on NuclearData For Science and Technology, Japen, 1987.
    [93] Kokooo, Murata I, Takahashi A. Measurement of double-di?erential crosssections of charged-particle emission reactions for several structural elementsof fusion power reactors by 14.1MeV incident neutrons[J]. Nucl.Sci.Eng,1999(132):16-29.
    [94] Takahashi A, Kokooo, Ogino S, Murakami Y, Nishizawa H, Kondo T, Mu-rata I. A time-of-?ght spectrometer with pulse-shape discrimination for themeasurement of double-di?erential charged-particle emission cross sections[J].Nucl.Instrum.Meth.A, 1997(401):93-105.
    [95] Bangjiao Y, Yangmei F, Zhongmin W, Rongdian H. Proton emission in reactionof 14.6MeV neutrons with natural iron[J]. Nucl.Sci.Eng, 1996(122):136-143.
    [96] Goldberg E, Slaughter D R, Howell R H. Experimental determination of kermafactors at En=15MeV[R]. Tech.Rep.No.UCID-17789, Lawrence Livermore Na-tional Laboratory, Livermore, 1978.
    [97] Wuu C, Milavickas L. Determination of the kerma factors in tissue equivalentplastic, C, Mg, and Fe for 14.7MeV neutrons[J]. Med.Phys, 1987(14):1007-1014.
    [98] Hartmann C L. Measurements of neutron kerma factors at 18, 23 and 25MeV[R].Ph.D.thesis, University of Wisconsin, Madison, 1991.
    [99] Newhauser W D. Neutron kerma factor measurements in the 25MeV to 85MeVneutron energy range[R]. Ph.D.thesis, University of Wisconsin, Madison, 1995.
    [100] Schrewe U J, Newhauser W D, Brede H J, Deluca P M. Neutron kerma fac-tor measurements in the energy range between 5MeV and 66MeV[R]. Tech.rep,Proceeding of the International Conference on Nuclear Data for Science andTechnoloby, Trieste, Italy 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700