多通道低频超宽带SAR/GMTI系统长相干积累STAP技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不同于高频SAR/GMTI系统,低频UWB SAR/GMTI系统的波束角很大,运动目标信号能量散布于较大角度范围内,输入信杂噪比很低;波长较长,对运动目标径向速度的敏感程度较低,这些因素的存在,给低频UWB SAR/GMTI系统下的运动目标检测带来了很大困难。
     本文采用结合了“长相干积累间隔”(Long Coherent Processing Intervals,长CPI)思想和“空时自适应处理”(Space Time Adaptive Processing, STAP)思想的长CPI STAP技术,作为低频UWB SAR/GMTI系统的运动目标检测手段。长CPI STAP技术是传统STAP技术的推广,它突破了传统STAP“一个CPI之内运动目标和载机之间的距离走动不超过一个距离采样单元”的限制,可利用更长CPI,达到更高的输出信杂噪比和更强的运动目标检测能力。本论文对长CPI STAP的理论和方法进行了系统的研究。
     在长CPI STAP的基本理论方面,本文分析了运动目标和地杂波的长CPI STAP空时谱,指出当观测角度变化范围较大时,运动目标的长CPI空时谱则可能为非线性的;提出了长CPI STAP基本模型,和传统短CPI STAP模型仅包含空间-慢时间二维采样不同,本文的长CPI STAP基本模型包含空间维-慢时间维-快时间维的三维采样,可适应运动目标的跨距离单元走动;分析了长CPI STAP降维处理和短CPI STAP降维处理的差异,指出了长CPI STAP降维滤波器的设计原则。
     本文第三章将长CPI STAP基本模型变换到频率-多普勒域,设计了频率-多普勒域的最优长CPI STAP滤波器,并根据不同频率-多普勒单元的杂波统计独立性,对其进行降维处理。降维处理后,频率-多普勒域长CPI STAP分为“频率-多普勒域局部STAP”和“频率-多普勒域局部STAP结果相干积累”两大步骤。其中,“频率-多普勒局部STAP”对每一个频率-多普勒单元进行,“频率-多普勒域局部STAP后结果相干积累”要求先取出一定速度对应的频率-多普勒STAP结果,然后采用ω-k成像算法完成相干积累,这两个步骤均可设计为与运动目标位置参数无关的形式,从而可对场景中所有位置的运动目标同时进行长CPI STAP。在以上基础上,提出了频率-多普勒域长CPI STAP运动目标检测流程,并对其性能进行了预测。本文第四章将长CPI STAP基本模型变换到图像域,设计了图像域最优长CPI STAP滤波器,该模型包含空间-方位向-距离向三维,能够适应运动目标可能在UWB SAR图像上的散焦。然后利用不同像素间的杂波单元的统计独立性,设计了基于单像素和基于多像素的降维长CPI STAP模型。降维处理后,图像域长CPI STAP可分为“图像域局部STAP”和“图像域局部STAP结果相干积累”两大步骤,且这两个步骤均可设计为与运动目标位置参数无关的形式。其中,图像域局部STAP对每一个像素的多通道观测值进行。本文提出了理想情况下、存在非均匀杂波情况下、通道失配情况下的图像域局部STAP技术。“图像域局部STAP结果相干积累”要求取出一定速度对应的图像域局部STAP结果,然后将其作二维FFT变换到二维波数域进行散焦补偿。在此基础上,提出了基于图像域长CPI STAP的运动目标检测流程,并对其性能进行了预测。
     本文第五章将长CPI STAP基本模型变换到多子孔径图像域,设计了多子孔径图像域最优长CPI STAP滤波器,并利用不同子孔径杂波的统计独立性,将多子孔径图像域最优长CPI STAP降维表示为“子孔径STAP”和“子孔径STAP结果相干叠加”两个独立的步骤。这两个步骤均可表示为与运动目标位置参数无关的形式。提出了基于多子孔径图像域STAP的多分辨运动目标检测方法,该方法通过综合不同数目的子孔径,进行多分辨运动目标检测。该方法能够结合短CPI和长CPI的优点,可兼顾快速运动目标检测“检测速度快”和慢速运动目标检测“输出信杂噪比高”的要求。
     在第三至五章,基于同一批半实测三通道低频超宽带SAR数据,对这三种长CPI STAP方法分别进行了验证,并对其性能进行了评估。结果表明:频率-多普勒域长CPI STAP方法,除了可适应运动目标沿慢时间维的跨距离单元走动之外,还可适应运动目标沿通道维的距离走动,并能够利用系统的大相对带宽,消除天线稀疏放置引起的盲速和重复检测现象;图像域长CPI STAP方法对非均匀杂波环境具有更好的适应能力;而基于多子孔径图像域长CPI STAP能够进行多分辨运动目标检测,可以很好的兼顾了短CPI STAP时间分辨率高和长CPI运动目标检测性能好的优点。
     基于长CPI STAP直接对运动目标参数进行估计时,参数估计精度受到搜索参数的选取间隔或者基线长度的限制。本文第六章对基于长CPI STAP的运动目标参数估计技术进行了研究,提出了一种完整的长CPI STAP运动目标参数估计方案。该方案结合了长CPI STAP、自聚焦、ATI的思想,可在采用较稀疏的搜索间隔和较短基线的情况下,达到较高的参数估计精度。
Unlike high frequency SAR/GMTI systems, low frequency UWB SAR/GMTI system has large beamwidth, which makes moving target signal disperse to a large angle range and results in a low input SINR. Besides, its long wavelength is less sensitive to range velocity of the moving target. So it is difficult to detect moving target using UWB SAR/GMTI system.
     This paper invested the long CPI STAP technique for moving target detection using low frequency UWB SAR/GMTI. Unlike traditional short CPI STAP, the long CPI STAP can endure the range walk between range bins, thus can achieve higher output SINR and better performance of moving target detection.
     The long CPI space-time spectrum of moving target and clutter is first analyzed, which can serve as the basic principle of long CPI STAP. Then a basic long CPI STAP model is proposed, which involves three-dimension samples from space, slow time, and fast time.
     By transforming the basic long CPI STAP model to frequency-Doppler domain, the optimal frequency-Doppler domain long CPI STAP filter is introduced In Chapter 3 of the dissertation. Then the dimension of the model is optimal reduced based on the statistic independence characteristic of clutter in different frequency-Doppler bins. After this operation, the frequency-Doppler domain long CPI STAP can be reduced to two steps:“local STAP”and“coherent integration of local STAP”in frequency-Doppler domain. The former step is done in each frequency-Doppler unit, while the latter one requires selecting the output of frequency-Doppler local STAP corresponding to certain velocity and then coherent integration is realized applyingω-k imaging algorithm. Both the two steps can be designed as forms independent of position parameter of the moving target, which make it possible to calculate the output long CPI STAP simultaneously for all moving target in different position of the scene. Moreover, a moving target detection flow for frequency-Doppler domain long CPI STAP is proposed.
     By transforming the basic long CPI STAP model to image domain, the optimal image domain long CPI STAP filter is introduced in Chapter 4 of the dissertation. This model involves three-dimension of space-azimuth-range, thus can adapt the defocusing phenomenon of the moving target in UWB SAR image. Based on the statistic independent characteristic of clutter in different pixels, the optimal image domain long CPI STAP filter can be reduced to single-pixel or multi-pixel reduced-dimension filters.
     After this operation, the image domain long CPI STAP contains two steps as“local STAP”and“coherent integration the output local STAP”in image domain. Both the two steps can be designed as forms independent of position parameter of the moving target. The local STAP is done in each pixel along its multi-channel observations. We propose image domain local STAP technology in ideal environments, nonhomogeneous environments.“Coherent integration local STAP in image domain”requires is done by first selecting the output of image domain local STAP corresponding to certain velocity, and then transforming to two-dimension wavenumber domain to compensated defocusing. Building on the ground work above, a moving target detection flow for image domain long CPI STAP is proposed. Its predictive performance is also given.
     By transforming the basic long CPI STAP model to subaperture-image domain, the optimal subaperture- image domain long CPI STAP filter is proposed in Chapter 5 of the dissertation. Using the statistic independent characteristic of clutter in different subaperture, this model has its reduced-dimension form, which contains two independent steps as“subaperture STAP”and“coherent integration the output of subaperture STAP”. Both the two steps can be designed as forms independent of position parameter of the moving target. A multi-resolution moving target detection method based on subaperture image domain STAP is proposed, which combines different number of subapertures to realize moving target detection. The method combines the merits of short CPI for fast moving target detection and long CPI for slow moving target detection.
     Throughout Chapter 3 to Chapter 5, the three long CPI STAP methods are validated and their performances are valuated based on the same half-real triple-channel low frequency UWB SAR data. The results show that the frequency-Doppler domain long CPI STAP method can be applied to the conditions that the moving target’s range walk across range cell both in slow time domain and channel-dimension. The method also exploits the large relative bandwidth of the system to eliminate blind velocity and repeated detection caused by sparse placed antennae. The image domain long CPI STAP method has better adaptability for nonhomogeneous clutter environment. The subaperture image domain long CPI STAP method gets the ability of multi-resolution moving target detection, having the advantages of high time-resolution from short CPI STAP and good moving target detection performance from long CPI STAP.
     When estimate the moving target’s parameters directly based on long CPI STAP, the estimation accuracy is limited by sample interval of search parameters and length of baseline. In Chapter 6 of the dissertation, we research on the parameter estimation technology and propose a complete method for moving target parameter estimation based on long CPI STAP. Combining long CPI STAP with the concept of auto-focusing and ATI, this method can reach high parameter estimation accuracy when using sparse research interval and short baseline.
引文
[1] Lars M.H.Ulander, Hans Hellsten, and G. Stenstrom, "Synthetic-aperture radar processing using fast factorized back-projection," IEEE Transaction on Aerospace and Electronic Systems, vol. 39, 2003.
    [2]国防科技大学电子科学与工程学院超宽带课题组, "机载阵列孔径超宽带SAR GMTI系统与信息处理技术项目论证报告,"技术报告, 2006.
    [3] Lar Ulander and M. Blom, "The VHF UHF-band LORA SAR and GMTI Systems," Proceedings of SPIE, vol. 5095, pp. 206~215, 2003.
    [4] J C Curlander and R. N. McDonough, "Synthetic aperture radar: System and signal processing," USA,New York: John Wiley & Sons Inc., 1991.
    [5]张直中, "微波成像术,"北京:科学出版社, 1990.
    [6]张澄波, "综合孔径雷达原理、系统分析与应用"北京:科学出版社, 1989.
    [7] Fennell M.T. and W. R.P., "Battlefield awareness via synergistic SAR and MTI exploitation," IEEE Aerospace and Electronic Systems Magazine, vol. 13, pp. 39~43, 1998.
    [8] Perry R.P., Dipietro R.C., and F. R.L., "SAR imaging of moving targets," IEEE Trans. Aerosp. Electron. Syst., vol. 35, pp. 188–200, 1999.
    [9] Nohara T.J., Weber P., Premji A., and L. C., "SAR-GMTI processing with Canada's Radarsat 2 satellite," IEEE Adaptive Systems for Signal Processing, Communications, and Control Symposium, vol. 10, pp. 379~384, 2000.
    [10] A. Farina and F. A. Studer, "Detection with High Resolution Radar: Advanced Topics & potential Applications," Chinese Journal of Systems Engineering and Electronics, vol. 3, pp. 21-34, 1992.
    [11] C. Fowler, Entzminger, J. and Corum, J., "Assessment of ultra-wideband (UWB) technology," IEEE Aerospace and Electronic Systems Magazine, vol. 5, pp. 45-49, 1990.
    [12] J. D. Taylor, "Ultra-wideband radar technology," New York:CRC press, 2001.
    [13] W.J. Miccli and L. A. Gross, "Test result from AN/APY-6 SAR/GMTI surveillance, tracking targeting radar," IEEE radar conference pp. 13~17, 2001.
    [14] Entzminger J.N., Fowler C.A., and K. W.J, "JointSTARS and GMTI: past, present and future," IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(2): 748~761.
    [15] S.I.Tsunoda, F.Pace, J.Stence, M.Woodring, W.H.Hensley, A.W.Doerry, and B.C.Walker, "Lynx:A high-resolution synthetic aperture radar," SPIE Aerosense, vol. 3704, pp. 1~8, 1999.
    [16] J. Hollowell and S.Tsunoda, "Lynx: a small GMTI radar for manned aircraft and unmanned aerial vehicle(UAV) applications," Workshop on synthetic aperture radar technology,Redstone Arsenal,AL, October 16&17,2002, 2002.
    [17] Lars Wells and A. W.Doerry, "Synthetic aperture radar: not just a sensor of last resort," Proceedings of SPIE, vol. 5109, pp. 98~109, 2003.
    [18] Melvin W.L. and W. M.C., "Transform domain localized processing using measured steering vectors and non-homogeneity detection," Proc. of the IEEE National Radar Conf.,Boston,MA,USA,April 1999:285~290, 1997.
    [19] William L.Melvin, Gregory A. Showman, and R. K.Hersey, "Adaptive radar:beyond the RMB rule," IEEE Radar Conference, vol. 670~677, 2008.
    [20] Bayma R.W. and Trujillo E., "HISARTM COTS-based synthetic aperture radar," Digital Avionics Systems Conference, 15th AIAA/IEEE , 1996: 319–325.
    [21] A.R. Brenner and J. H. G. Ender, "First experiment results achieved with the new very wideband SAR system PAMIR," Proceedings of EUSAR2002,Cologne, Germany,2002, pp. 81-86, 2002.
    [22] A.R. Brenner and J. H. G. Ender, "Very wideband radar imaging with the airborne SAR sensor PAMIR," IEEE Proceedings, 2003.
    [23] J. H. G. Ender and A.R.Brenner, "PAMIR - a wideband phased array SAR MTI system," IEE Radar,Sonar and Navigation, vol. 150, pp. 165~172, 2003.
    [24] A. Moreira, G. Krieger, I. Hajnsek, D. Hounam, M. Werner, S. Riegger, and E. Settelmeyer, "TanDEM-X: A TerraSAR-X Add-On Satellite for Single-Pass SAR Interferometry," 2004.
    [25] G. P. S.Suchandt, H.Runge, "Latest results from the TerrasSAR-X traffic monitoring project," 6th DLR-CNES Workshop,Oberpaffenhofen,15.November 2005, 2005.
    [26] Ishuwa Sikaneta and J. Campbell, "The Convari 580 along-track InSAR processor," Technical Memorandum, Defence Research Establishment Ottawa, 2001.
    [27] Stacy-N.J.S., Badger-D.P., GoH-A.S., Preiss-M., and Williams-M.L, "The DSTP Ingara airborne X-band SAR polarimetric upgrade:first results," IEEE International Geoscience and Remote Sensing Symposium, vol. 7, pp. 4474-4476, 2003.
    [28] R. T. Bing Deng, Lu Ma, "Novel long-term coherent integration method for moving target detection," Proc. 2006 CIE Inf. Conf. Radar,Shanghai,China, pp. 1266-1268, Oct. 2006.
    [29] P. Dubois-Fernandez, "The ONERA RAMSES SAR:status in 2004," Radar2004 symposium,Toulouse, 2004.
    [30] P. Dreuillet, "The ONERA RAMSES SAR: Lastest significant results and future developments," RADAR2006 symposium, Verona 2006, 2006.
    [31] Hélène Oriot and B. Vaizan, "Preliminary results on ground moving target detection with L band data acquired with RAMSES sensor," EUSAR 2006,Dresden,Germany, 16-18 May 2006.
    [32] A GUstavsson, L M H Ulander, and P. Martineau, "Some results on detecition of targets depployed in hide under foliage," Proceedings of EUSAR'2002 Conference,June 2002, pp. 57~60, 2002.
    [33] A. GUstavsson, "Radar imaging of forested areas during the RAMXAR'98 SAR experiment," Proceedings of 5th International Conference on Radar Systems,Brest, France,May,1999.
    [34]常文革, "UWB SAR系统设计与实现,"长沙:国防科学技术大学博士学位论文, vol. 10, 2001.
    [35]祝明波, "UWB-SAR信号设计与产生技术研究,"长沙:国防科学技术大学博士学位论文, vol. 10, 1999.
    [36]黎向阳, "UWB-SAR接收技术研究,"长沙:国防科学技术大学博士学位论文, vol. 3, 2000.
    [37]王顺华, "机载大处理角SAR成像理论及算法研究,"长沙:国防科技大学博士学位论文, 1998.
    [38]刘光平, "超宽带合成孔径雷达高效成像算法,"长沙:国防科学技术大学博士学位论文, vol. 3, 2003.
    [39]李肖东, "基于相参子孔径机载SAR高分辨成像技术研究,"长沙:国防科学技术大学博士学位论文, vol. 10, 2003.
    [40]董臻, "UWB-SAR信息处理中的若干问题研究,"长沙:国防科学技术大学博士学位论文, 2001.
    [41]蒋咏梅, "叶簇穿透超宽带SAR目标检测方法研究,"长沙:国防科学技术大学博士学位论文, vol. 10, 1998.
    [42]方学立, "UWB SAR图像中的目标检测与鉴别,"长沙:国防科技大学博士学位论文, 2005.
    [43]王岩, "机载SAR目标特征提取与识别方法研究,"长沙:国防科学技术大学博士学位论文, vol. 10, 2003.
    [44]黄晓涛, "UWB-SAR抑制RFI方法研究,"长沙:国防科学技术大学博士学位论文, vol. 11, 1999.
    [45]郭微光, "机载超宽带合成孔径雷达运动补偿技术研究,"长沙:国防科学技术大学博士学位论文, vol. 4, 2003.
    [46]郭汉伟, "合成孔径雷达地面运动目标检测与成像技术研究,"长沙:国防科技大学博士学位论文, 2003.
    [47]王亮, "机载超宽带合成孔径雷达实测数据成像处理技术研究,"长沙:国防科技大学博士学位论文, 2007.
    [48]常玉林, "多波段SAR图像配准及融合算法研究,"长沙:国防科技大学硕士学位论文, 2004.
    [49] U. S. D. o. Commerce, "U.S. National Spectrum Requirements: Rrojecitons and Trends. ," NITA Special Publication, pp. 94-31, 1995.
    [50]姬国良, "雷达反隐身技术发展探讨,"电子科技导报, vol. 3, pp. 13-16, 1994.
    [51]沈晓华,樊元东, "俄罗斯雷达技术的发展动态和启示,"半导体情报, vol. 36, 1999.
    [52]王被德, "军用雷达的近期发展,"电子科技导报, vol. 1994, pp. 14-15, 1994.
    [53]孙娜,周荫清,李景文, "基于DPCA技术的星载SAR/GMTI处理方法,"电子与信息学报, vol. 27, pp. 1564~1568, 2005.
    [54] R.S.Blum, W. L. Melvin, and M. C. Wicks, "An analysis of adaptive DPCA," IEEE Radar Conf., pp. 303~308, 1996.
    [55] Jiang Chaoshu, Wang Xuegang, and C. Zhuming, "DPCA processing based on digital all-pass interpolation of array elements," pp. 912~915, 2006.
    [56] P. J. Fielding, "GMTI performance estimation for airborne E-SCAN radar employing DPCA motion compensation," IEE Proceedings: Radar, Sonar and Navigation, pp. 286~290, 2002.
    [57]郑明洁, "合成孔径雷达动目标检测和成像研究,"北京:中国科学院电子学研究所博士学位论文, 2003.
    [58] S. Chiu, "Performance of Radarsat2 SAR-GMTI processors at high SAR resolutions," Technical Report, Defence Research Establishment Ottwa,Canada, 2001.
    [59] S. Chiu, "Clutter effects on ground moving target velocity estimation with SAR along-track interferometry," presented at IEEE International Geoscience and Remote Sensing Symposium, Space-Based Radar Group, Defence R&D Canada, Ottawa, Ont., Canada, 2003.
    [60]Christoph H.Gierull, "Moving target detection with along-track SAR interferometry: a theoretical analysis," Technical Report, Defence Research Establishment Ottwa,Canada, 2002.
    [61] Christoph H.Gierull, "Ground moving target parameter estimation for two-channel SAR," IEE Proc-Radar Sonar Navig, vol. 153, pp. 224~233, 2006.
    [62] Chritoph H.Gierull and Ishuwa C.Sikaneta, "Raw data based two-aperture SAR ground moving target indication," presented at IGARSS'03, Toulouse,France, 2003.
    [63] Curtis W.Chen, "Performance assessment of along-track interferometry for detecting ground moving targets," presented at IEEE Radar Conference,26-29,April, 2004.
    [64] Elaine Chapin and Curtis W.Chen, "Preliminary results from an airborne experiment using along-track interferometry for ground moving target indication," IEEE Radar Conference 2005,Arlington, Virginia, May 9-72, 2005.
    [65] Zhengfan Yang and Mehrdad Soumekh, "Adaptive along-track multi-channel SAR interferometry for moving target detection and tracking," presented at IEEE International Radar Conference,9-12,May, 2005.
    [66] B.Friedlander and B.Porat, "VSAR:a high-resolution radar system for moving target," IEE Proc.-Radar,Sonar and Navig., vol. 144, pp. 205-218, 1997.
    [67] B.Friedlander and B.Porat, "VSAR:a high-resolution radar system for ocean imaging," IEEE Transactions on Aerospace and Electronic System, vol. 34, pp. 755-776, 1998.
    [68] William L.Melvin, Gregory A.Showman, and R. K.Hersey, "Adaptive radar: beyond the RMB rule," IEEE Radar Conference 2008, pp. 670~677, 2008.
    [69] H. K. S. a. P. Li, "Space-time adaptive processing(STAP) for low sample support applications," AD报告May 2004.
    [70] HONG WANG and Lujing Cai, "On adaptive spatial-temporal processing for airborne surveillance radar systems," IEEE Transactions on Aerospace and Electronic Systems, vol. 30, pp. 660~670, JULY,1994.
    [71] B. Friedlandar, "A subspace method for space time adaptive processing," IEEE Transactions on Signal Processing, vol. 53, pp. 74~82, 2005.
    [72]王永良,彭应宁,空时自适应信号处理.北京:清华大学出版社, 2000.
    [73]陈建文,王永良,皇甫堪,周良柱, "基于机载雷达的空时自适应处理方法,"数据采集与处理, vol. 15, pp. 44~47, 2000.
    [74] Geoffrey M.Herbert, DERA, Malvern, and Worcs, "Space-time adaptive processing(STAP) for wide-band airborne radar " presented at IEEE International Radar Conference, 2000.
    [75] C. D. Peckham, A. M. Haimovich, T. F. Ayoub, J. S. Goldstein, and I. S. Reed, "Reduced-rank STAP performance analysis," IEEE Transactions on Aerospace and Electronic Systems, vol. 36, pp. 664~676, 2000.
    [76] R. S. Blum and K. F. McDonald, "Analysis of STAP algorithms for cases with mismatched steering and clutter statistics," IEEE Transactions on Signal Processing, vol. 48, pp. 301~310, 2000.
    [77]张良, "机载相控阵雷达降维STAP研究," vol.博士学位论文.西安:西安电子科技大学, 1999, pp. 11~14.
    [78] Sergio Barbarossa and Alfonso Farina, "Space-time-frequency processing of synthetic aperture radar," IEEE Transactions on Aerospace and Electronic Systems, vol. 30, pp. 341~358, 1994.
    [79] J. Ward, "Space-time adaptive processing for airborne radar," Lexington,Massachussetts, Technical Report 13 December 1994.
    [80] R. C.DiPietro, "Extended factored space-time processing for airborne radarsystems," presented at the 26th Asilomar conference on signals, systems,and computing, Pacific Grove,CA, 1992.
    [81] M. I. Skolnik, "Radar Handbook(2nd Edition)," New York:McGraw-Hill, 1990.
    [82] L. J. Cantafio, "Space-Based Radar Handbook," Chapter 11,Dedham,MA:Artech House, 1989.
    [83] R.K.Raney, "Synthetic Aperture Radar and Moving Targets," IEEE Transactions on Aerospace and Electronic System, vol. 7, pp. 499-505, May,1971.
    [84] Freeman A and Gurrie A, "Synthetic aperture radar images of moving targets," The GEC Journal or Research, vol. 5, pp. 106-115, 1987.
    [85]王彤, "机载雷达简易STAP方法及其应用,"博士学位论文,西安:西安电子科技大学, 2001.
    [86] Mehrdad Soumekh, "Moving target detection in foliage using along track monopulse synthetic aperture radar imaging," IEEE Transactions On Image Processing, vol. 6, pp. 1148~1163, 1997.
    [87] Xu Jia, Li Gang, Peng Ying-Ning, Xia Xiang-Gen, and Wang Yong-Liang, "Parametric velocity synthetic aperture radar:signal modeling and optimal methods," IEEE Transactions on Aerospace and Electronic System, 2008.
    [88] R. Klemm, Space-time adaptive processing: principles and applications: The Institution of Electrical Engineers, 1998.
    [89] Moo P. and Wang Hong, "GMTI performance ofΣΔ-STAP for a forward-looking radar," Proc of the IEEE National Radar Conference,Altanta,GA,USA, pp. 258~263, May,2001.
    [90]王永良,吴志文,彭应宁, "适于非均匀杂波环境的空时自适应处理方法,"电子学报, vol. 27, pp. 56~58, 1999.
    [91] Goldstein J.S., Zulch P.A., and Reed I.S., "Reduced rank space-time adaptive radar processing," In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP'96,1996, pp. 597~601, 1996.
    [92]谢文冲, "非均匀杂波环境下的机载雷达STAP方法与目标检测技术研究,"长沙:国防科技大学博士学位论文, 2006.
    [93]保铮,廖桂生,吴仁彪,张玉洪,王永良, "相控阵机载雷达杂波抑制的时空二维自适应滤波,"电子学报, vol. 21, pp. 1~7, 1993.
    [94] Cerutti-Maori, W. D.; Burger, J. H. G. Ender, and A. R. Brenner, "Experimental Results of Ground Moving Target Detection Achieved with the Multi-Channel SAR/MTI System PAMIR," European Radar Conference, 2005, pp. 61-64.
    [95] A. Damini, B. Balaji, G. Haslam, and M. Goulding, "X-band experimental airborne radar - phase II: synthetic aperture radar and ground moving target indication," Radar, Sonar and Navigation, IEE Proceedings, pp. 144-151, April 2006.
    [96] J. H. G. Ender, "Space-time processing for multichannel synthetic aperture radar," Electronics & Communication Engineering Journal, pp. 29~38, 1998.
    [97] Ali F.Yegulalp, "Wideband, Long-CPI GMTI," presented at 12th Annual ASAP Workshop, Lincoln Laboratory, Lexington, Massachusetts, 2004.
    [98] J.K.Jao, A.F.Yegulalp, and S.Ayasli, "Unified synthetic aperture space time adaptive radar ( USASTAR ) concept," Project Report , NTI-4, Lincoln Laboratory, Massachusetts Institute of Technology, Lexington,Massachusetts, 24 May 2004.
    [99] MATS I.PETTERSSON, "Detection of moving targets in wideband SAR," IEEE Transactions on Aerospace and Electronic Systems, vol. 40, pp. 780~795, July 2004.
    [100] M. I.PETTERSSON, "Optimum relative speed discretisation for detection of moving objects in wide band SAR," IET Radar Sonar Navig., vol. 1, pp. 213-220, June, 2007.
    [101] J. H.G.Ender, "Subspace transformation techniques applied to multi-channel SAR/MTI," pp. 38~40, 1999.
    [102] J.Franz, A.F.Yegulalp, J.K.Jao, and Serpil Ayasli, "Adaptive airborne radar detection of moving targets under foliage," Proc. 2001 MSS Tri-Service Radar Sym. John Hopkins Univ.,Mayrland, May 2001(Secret), May 2001.
    [103] J.K.Jao and T.J.Murphy, "Results of the foliage penetration radar and electroic support measures synergy for targeting(FOREST) test bed point desigh study," Lincoln Laboratory project report FPR-9, October 2001.
    [104] J.K.Jao, A.F.Yegulalp, J.R.Franz, and S.Ayasli, "New results of airborne multi-channel radar detection of moving targets under foliage," 48th Tri-service Radar Sym., Naval Post-Graduate School, Monterey, California, June 2002(Secret). 2002.
    [105]李真芳,保铮,杨凤凤, "基于成像的分布式卫星SAR系统地面运动目标检测(GMTI)及定位技术,"中国科学(E辑), vol. 35, pp. 597~609, 2005.
    [106]李真芳,保铮,王彤, "分布式小卫星SAR系统地面运动目标检测方法,"电子学报, vol. 33, pp. 1664~1666, 2005年9月.
    [107] Zhenfang Li, Zheng Bao, and Fengfeng Yang, "Ground moving target detection and location based on SAR images for distributed spaceborne SAR," Science in China(series F), vol. 48, pp. 632~646, 2005.
    [108] F. Zhou, R. Wu, M. Xing, and Z. Bao, "Approach for single channel SAR ground moving target imaging and motion parameter estimation," IET Radar Sonar Navig., vol. 1, pp. 59–66, 2007.
    [109] Ian G. Gumming and Frank H.Wong, "合成孔径雷达成像——算法与实现,"电子工业出版社[译著], 2007.
    [110]保铮,邢孟道,王彤,雷达成像技术.北京:电子工业出版社, 2005.
    [111] J. K. Jao, "Theory of synthetic aperture radar imaging of a moving target," IEEE Transactions On Geoscience and Remote Sensing, vol. 39, pp. 1984~1991, 2001.
    [112]常玉林,黄晓涛,周红,周智敏, "运动目标在阵列孔径UWB SAR图像上的表征及其在图像域GMTI方法中的应用,"宇航学报,已录待刊, 2008.
    [113] Chang Yulin, Zhou Hong, Huang Xiaotao, and Zhou Zhimin, "The representation of moving targets in multi-channel UWB SAR images and its application in the generalization of image domain GMTI methods," 9th International Confereance on Signal Processing (ICSP'08), Oct,26-29,20008,Beijing,China, 2008.
    [114] R. D.J. and S. A.O., "Improving the performance of adaptive arrays in nonstationary environments through data-adaptive training," Proc. of the 30th Asilomar Conf. On Signals, Systems and Computers,Pacific Grove,CA,USA, pp. 75~79, 1996.
    [115]吴洪,王永良,武文, "非均匀杂波环境下线性预测类空时自适应处理性能分析,"自然科学进展, vol. 17, pp. 86-92, 2007.
    [116] J. K. Jao, "SAR image processing for moving target focusing," Proc. of the 2001 IEEE Radar Conference, Altanta,GA, 58-63(1-3 May 2001), 2001.
    [117] A. F.Yegulalp, "Fast back projection algorithm for synthetic aperture radar," 1999.
    [118]常玉林,黄晓涛,周红,周智敏, "基于ATI的双通道UWB SAR运动目标检测和距离向速度估计,"信号处理, vol. 24, pp. 742-746, 2008.
    [119] L. Rosenberg, "Multichannel Synthetic Aperture Radar," doctor dissertation, The University of Adelaide, Australia, March 2007.
    [120] A. O. Steinhardt and N. B. Pulsone, "Subband STAP processing, the fifth generation," presented at IEEE Sensor Array and Multichannel Signal Processing Workshop. 2000, 16-17 March 2000.
    [121] Marta Bucciarelli, Matteo Sedehi, and Pierfrancesco Lombardo, "Wideband adaptive antenna nulling schemes for synthetic aperture radar," IEEE Radar Conference 2008, pp. 597~602, 2008.
    [122] Nathan A. Goodman, "SAR and MTI Processing of Sparse Satellite Clutters," PhD Dissertation, the University of Kansas, Lawrence, KS, US, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700