大肠癌中Annexin A1表达与K-ras基因突变的相关性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     大肠癌是结肠癌和直肠癌的总称,是消化系统最常见的恶性肿瘤之一。近年来,建立在分子生物学基础上的靶向治疗,已经取得了实质性的疗效,以表皮生长因子受体(EGFR)为靶点的单克隆抗体治疗晚期大肠癌为标志,预示着大肠癌进入了分子靶向治疗的新纪元。作为抗EGFR单抗的靶点,EGFR目前受到高度的关注。研究表明Annexin A1(简称ANXA1)起到抑癌基因作用,其可以调节EGFR的内吞及降解,促进凋亡,抑制肿瘤形成。本研究通过检测大肠癌组织中ANXA1在K-ras、BRAF基因野生型及K-ras、BRAF基因突变型大肠癌组织的转录及表达水平,及相应癌旁正常粘膜组织ANXA1的表达情况,分析不同组织中ANXA1的转录和表达的异同,旨在探讨ANXA1与大肠癌的临床、病理及分子生物学特征的关系,分析ANXA1表达情况与K-ras及BRAF基因突变的相关性,为大肠癌的诊断、治疗及预后判断提供客观的参考指标。同时,探讨ANXA1的表达水平是否可以替代K-ras基因突变检测,作为分子靶向药物应用于大肠癌临床治疗的参考指标。
     研究方法
     1、收集大肠癌及相应癌旁正常粘膜组织,部分液氮保存,部分石蜡包埋。同时收集样本临床病理资料。
     2、抽提基因组DNA,通过基因测序方法检测大肠癌的基因突变情况。
     3、应用免疫组织化学、Real-time PCR及Western blot蛋白印迹等方法检测ANXA1在K-ras、BRAF基因野生型及K-ras、BRAF基因突变型大肠癌组织及对应正常粘膜组织的转录及表达水平,分析不同组中ANXA1的转录和表达水平的异同。
     结果
     1、在20例大肠癌标本中,检测出K-ras基因突变6例,突变率为30%,正常粘膜均未检测出K-ras基因突变。然而在20例标本及正常粘膜中均未检测出BRAF突变。
     2、在K-ras基因野生型组,大肠癌组织中ANXA1 mRNA的转录水平较癌旁正常组织显著下降,是癌旁正常组织的0.122±0.057倍,其差异具有统计学意义(单样本t检验,t=10.61,P<0.001),大肠癌组织中ANXA1蛋白的表达水平较癌旁正常组织显著下降,是癌旁正常组织的0.729±0.034倍,其差异具有统计学意义(单样本t检验,t=5.953,P<0.001);在K-ras基因突变型组,大肠癌组织中ANXA1 mRNA的表达水平显著高于自身对照的癌旁正常组织,是癌旁正常组织的168.60±46.67倍,其差异具有统计学意义(单样本t检验,t=5.865,P<0.01),大肠癌组织中ANXA1蛋白的表达水平显著高于自身对照的癌旁正常组织,是癌旁正常组织的1.854±0.216倍,其差异具有统计学意义(单样本t检验,t=3.790,P<0.05)。因此,在K-ras基因野生型大肠癌组织中ANXA1表达下调;而在K-ras基因突变型大肠癌组织中ANXA1表达上调;与K-ras基因野生型标本相比,ANXA1在K-ras基因突变型标本中无论在转录水平还是在蛋白表达水平都显著增加。
     3、大肠癌伴有K-ras基因突变者肿瘤的浸润深度较深,病理学分型较差,且出现淋巴结转移及远端转移的比例较高;在ANXA1表达上调的样本中肿瘤发生淋巴结转移及远端转移的比例明显高于ANXA1表达下调的样本(P>0.05)。且在ANXA1表达上调的样本中K-ras基因的突变率明显高于ANXA1表达下调的样本(P<0.001)。
     结论
     1、本研究首次阐述了ANXA1在大肠癌中的表达与K-ras基因突变的关系。数据显示在K-ras基因野生型大肠癌样本中,ANXA1表达下调;而在K-ras基因突变型大肠癌样本中,ANXA1表达显著上调。ANXA1的表达水平可能成为潜在的预测大肠癌基因型,替代K-ras基因突变检测,实现临床筛查,指导临床应用分子靶向药物的参考指标,具有广泛的临床应用价值。
     2、研究中发现在ANXA1表达上调的样本中肿瘤发生淋巴结转移及远端转移的比例高于ANXA1表达下调的样本(P>0.05),且在ANXA1表达上调的样本中K-ras基因的突变率明显高于ANXA1表达下调的样本(P<0.001),提示在大肠癌中ANXA1表达上调可能与肿瘤的转移有关,ANXA1表达情况是否可能成为预测肿瘤预后的指标还需进一步论证。
     3、ANXA1对EGFR及下游Ras/Raf/MEK/ERK/MAPK细胞信号通路的调控作用是通过调节EGFR的内吞及降解实现的。并且ERK/MAPK对EGFR具有负反馈作用,ERK/MAPK通过负反馈作用下调EGFR,而这种下调可能是通过上调ANXA1,加速EGFR的内吞及降解而实现的。当K-ras基因突变时,Raf/MEK/ERK/MAPK细胞信号通路的激活将不依赖EGFR的活化,因此ANXA1的上调及EGFR的下调将失去调节作用,无法抑制该通路的激活。对于ERK/MAPK对ANXA1是否有正反馈作用,还需要进一步研究。
Objective
     Colorectal cancer, also called cancer of the colon or rectum, is one of most frequently digestive system malignant tumor. In recent years, targeted therapies depending on molecular biology have acquired therapeutic effect. Cetuximab and panitumumab are monoclonal antibodies to treat final stage colorectal cancer that block the ligand binding site of the EGFR, thus inhibiting intracellular signaling. As a target of anti-EGFR monoclonal antibodies, EGFR is currently subject to a high degree of attention. Annexin A1 is a kind of tumor suppressor genes. Studies have shown that Annexin A1 could regulate endocytosis and degradation of EGFR, promote apoptosis and inhibit tumor formation. In this study, we investigated the expression of ANXA1 in colorectal cancer, explored the relationship of clinical, pathological and molecular biological characteristics between ANXA1 and colorectal cancer, and analyzed whether the expression of ANXA1 is correlated with K-ras mutation and BRAF mutation in Colorectal Cancer. Research into this area can enhance our understanding of the possible role of ANXA1 in diagnosis, treatment and prognosis. At the same time, such investigations can also perhaps lead to the possible identification of ANXA1 as a potential reference index in colorectal cancer molecular target treatment.
     Method
     1. Colorectal cancer and corresponding adjacent normal mucosa were collected. Samples were saved in liquid nitrigen or processed for paraffin-embeding. Clinical and pathological data were also collected.
     2. Genomic DNA was extracted. Colorectal cancer gene mutations were detected by gene sequencing.
     3. By using immunohistochemical, real-time PCR and Western blot, the transcription and expression of ANXA1 were examined from K-ras gene mutation colorectal cancer and K-ras wild-type colorectal cancer.
     Results
     1. Twenty patients were included in this study. K-ras mutation were found in 6 of 20 colorectal cancers. The frequency of K-ras mutation was 6/20 (30%). All of the normal mucosa were wild type for K-ras. None of 20 cases of colorectal cancers and normal mucosa specimens were detected with a BRAF mutation.
     2. In K-ras gene Wild-Type group, mRNA transcription of ANXA1 in colorectal cancer tissues were decreased significantly (0.122±0.057 fold, t= 10.61, P< 0.001) than that in normal mucosa tissues. Protein expression of ANXA1 in colorectal cancer tissues were decreased significantly (0.729±0.034 fold, t= 5.953, P< 0.001) than that in normal mucosa tissues. In K-ras gene mutation group, mRNA transcription of ANXA1 in colorectal cancer tissues were increased significantly (168.60±46.67 fold, t= 5.865, P< 0.01) than that in normal mucosa tissues. Protein expression of ANXA1 in colorectal cancer tissues were increased significantly (1.854±0.216 fold, t= 3.790, P< 0.05) than that in normal mucosa tissues. Thus, the transcription and expression of ANXA1 in the K-ras gene mutation group were significantly increased than that in the K-ras gene Wild-Type group.
     3. The colorectal cancers containing K-ras mutation could infiltrate deeper and have worse pathological types than those of K-ras Wild-Type. The frequencies of lymph node metastasis and distant metastasis in K-ras gene mutation group were higher than those in K-ras gene Wild-Type group. The frequencies of lymph node metastasis and distant metastasis in ANXA1 up-regulation group were higher than those in ANXA1 down-regulation group.
     Conclusion
     1. Our study describes for the first time that ANXA1 expression in colorectal cancer are related to K-ras gene mutation. The expression of ANXA1 decreases in K-ras gene Wild-Type colorectal cancer. The expression of ANXA1 increases in K-ras gene mutation colorectal cancer. The level of ANXA1 expression can predict colorectal cancer genetype, implement clinical survey and guide clinical use of molecular targeted drugs.
     2. The study has found that the frequencies of lymph node metastasis and distant metastasis in ANXA1 up-regulation group are higher than those in ANXA1 down-regulation group (P> 0.05). The frequency of K-ras mutation in the sample of ANXA1 express up-regulation are higher than those of ANXA1 express down-regulation (P<0.001). The result suggest that ANXA1 express up-regulation may be related with tumor metastasis. It needs further proof that whether ANXA1 expression can be used as indicators of tumor prognosis.
     3. By regulating EGFR endocytosis and degradation, ANXA1 can regulate EGFR and the Ras/Raf/MEK/ERK/MAPK signaling pathway. K-ras mutation can active the Raf/MEK/ERK/MAPK signaling pathway independent of EGFR. ERK/MAPK negative feedback effect can down-regulate the expression of EGFR. This kind of down-regulation is achieved through up-regulating ANXA1 expression and accelerating EGFR endocytosis or degradation. It needs for further research that whether ERK/MAPK positive feedback effect can up-regulate the expression of ANXA1.
引文
[1]KIM JC, KIM SY, ROH SA, et al. Gene expression profiling:canonical molecular changes and clinicopathological features in sporadic colorectal cancers[J]. World J Gastroenterol,2008,14(43): 6662-6672.
    [2]ARNOLD CN, GOEL A, BLUM HE, et al. Molecular pathogenesis of colorectal cancer: implications for molecular diagnosis[J]. Cancer,2005,104(10):2035-2047.
    [3]FEARON ER, VOGELSTEIN B. A genetic model for colorectal tumorigenesis[J]. Cell,1990,61(5): 759-767.
    [4]KINZLER KW, VOGELSTEIN B. Lessons from hereditary colorectal cancer[J]. Cell,1996,87(2): 159-170.
    [5]JIN L, JUN C. Progression of monocolonal antibodies for colorectal cancer in 2008[J]. Chinese Clinical Oncology,2009,14(1):
    [6]REITER JL, THREADGILL DW, ELEY GD, et al. Comparative genomic sequence analysis and isolation of human and mouse alternative EGFR transcripts encoding truncated receptor isoforms[J]. Genomics,2001,71(1):1-20.
    [7]JIAN-HONG W, QIU-LING X, XIAO-JIA C. Epidermal growth factor receptor (EGFR) and its signal transduction[J]. Chinese Bulletin of Life Sciences,2006,18(116-122.
    [8]CIARDIELLO F, TORTORA G. EGFR antagonists in cancer treatment[J]. N Engl J Med,2008, 358(11):1160-1174.
    [9]HAYASHI Y, WIDJONO YW, OHTA K, et al. Expression of EGF, EGF-receptor, p53, v-erb B and ras p21 in colorectal neoplasms by immunostaining paraffin-embedded tissues[J]. Pathol Int,1994, 44(2):124-130.
    [10]XUEMING W, GUOLI G, LI R. Expression of EGFR, HER-2,VEGF in tumour tissues and their directive significance for the molecular targeting therapy of colorectal carcinoma[J]. World Chinese Journal of Digestology,2009,17(18):1836-1841.
    [11]SHEN D, NOORAIE F, ELSHIMALI Y, et al. Decreased expression of annexin Al is correlated with breast cancer development and progression as determined by a tissue microarray analysis[J]. Hum Pathol,2006,37(12):1583-1591.
    [12]MIN Z, YUNSHAN C. Annexin A1 in Cancer[J]. Foreign Medical Sciences Section of Pathophysiology and Clinical Medicine,2005,25(2):140-142.
    [13]GERKE V, MOSS SE. Annexins:from structure to function[J]. Physiol Rev,2002,82(2):331-371.
    [14]ROSENGARTH A, GERKE V, LUECKE H. X-ray structure of full-length annexin 1 and implications for membrane aggregation[J]. J Mol Biol,2001,306(3):489-498.
    [15]KIM SW, RHEE HJ, KO J, et al. Inhibition of cytosolic phospholipase A2 by annexin I. Specific interaction model and mapping of the interaction site[J]. J Biol Chem,2001,276(19):15712-15719.
    [16]FERLAZZO V, D'AGOSTINO P, MILANO S, et al. Anti-inflammatory effects of annexin-1: stimulation of IL-10 release and inhibition of nitric oxide synthesis[J]. Int Immunopharmacol,2003, 3(10-11):1363-1369.
    [17]PARENTE L, SOLITO E. Annexin 1:more than an anti-phospholipase protein[J]. Inflamm Res, 2004,53(4):125-132.
    [18]MUIMO R, HORNICKOVA Z, RIEMEN CE, et al. Histidine phosphorylation of annexin I in airway epithelia[J]. J Biol Chem,2000,275(47):36632-36636.
    [19]ALLDRIDGE LC, BRYANT CE. Annexin 1 regulates cell proliferation by disruption of cell morphology and inhibition of cyclin Dl expression through sustained activation of the ERK1/2 MAPK signal[J]. Exp Cell Res,2003,290(1):93-107.
    [20]LAVOIE JN, L'ALLEMAIN G, BRUNET A, et al. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway[J]. J Biol Chem,1996,271(34): 20608-20616.
    [21]BITTO E, LI M, TIKHONOV AM, et al. Mechanism of annexin I-mediated membrane aggregation[J]. Biochemistry,2000,39(44):13469-13477.
    [22]WHITE IJ, BAILEY LM, AGHAKHANI MR, et al. EGF stimulates annexin 1-dependent inward vesiculation in a multivesicular endosome subpopulation[J]. EMBO J,2006,25(1):1-12.
    [23]DOWNWARD J. Targeting RAS signalling pathways in cancer therapy[J]. Nat Rev Cancer,2003, 3(1):11-22.
    [24]GUTTRIDGE DC, ALBANESE C, REUTHER JY, et al. NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1[J]. Mol Cell Biol,1999,19(8): 5785-5799.
    [25]DE-SEN W, JIN L. NCCN Clinical Practice Guidelines in Oncology.2009:National Comprehensive Cancer Network.
    [26]D1 NICOLANTONIO F, MARTINI M, MOLINARI F, et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer[J]. J Clin Oncol,2008, 26(35):5705-5712.
    [27]IKAWA S, FUKUI M, UEYAMA Y, et al. B-raf, a new member of the raf family, is activated by DNA rearrangement[J]. Mol Cell Biol,1988,8(6):2651-2654.
    [28]DAVIES H, BIGNELL GR, COX C, et al. Mutations of the BRAF gene in human cancer[J]. Nature, 2002,417(6892):949-954.
    [29]SMALLEY KS. A pivotal role for ERK in the oncogenic behaviour of malignant melanoma?[J]. Int J Cancer,2003,104(5):527-532.
    [30]WELLBROCK C, OGILVIE L, HEDLEY D, et al. V599EB-RAF is an oncogene in melanocytes[J]. Cancer Res,2004,64(7):2338-2342.
    [31]PACKHAM D, WARD RL, AP LIN V, et al. Implementation of novel pyrosequencing assays to screen for common mutations of BRAF and KRAS in a cohort of sporadic colorectal cancers[J]. Diagn Mol Pathol,2009,18(2):62-71.
    [32]IKENOUE T, HIKIBA Y, KANAI F, et al. Functional analysis of mutations within the kinase activation segment of B-Raf in human colorectal tumors[J]. Cancer Res,2003,63(23):8132-8137.
    [33]OLIVEIRA C, PINTO M, DUVAL A, et al. BRAF mutations characterize colon but not gastric cancer with mismatch repair deficiency[J]. Oncogene,2003,22(57):9192-9196.
    [34]ROBINSON-BENNETT BL, DEFORD J, DIAZ-ARRASTIA C, et al. Implications of tyrosine phosphoproteomics in cervical carcinogenesis[J]. J Carcinog,2008,7(2.
    [35]LIU Q, WANG CF, ZHOU Z, et al. [Expression of annexin I in human pancreatic cancer and the influence of its down-regulation on biology of this cancer][J]. Zhonghua Zhong Liu Za Zhi,2007, 29(10):738-741.
    [36]OH P, LI Y, YU J, et al. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy[J]. Nature,2004,429(6992):629-635.
    [37]FARIA PC, SENA AA, NASCIMENTO R, et al. Expression of annexin A1 mRNA in peripheral blood from oral squamous cell carcinoma patients[J]. Oral Oncol,46(1):25-30.
    [38]INOKUCHI J, LAU A, TYSON DR, et al. Loss of annexin A1 disrupts normal prostate glandular structure by inducing autocrine IL-6 signaling[J]. Carcinogenesis,2009,30(7):1082-1088.
    [39]CHUTHAPISITH S, BEAN BE, COWLEY G, et al. Annexins in human breast cancer: Possible predictors of pathological response to neoadjuvant chemotherapy[J]. Eur J Cancer,2009,45(7): 1274-1281.
    [40]ALVES VA, NONOGAKI S, CURY PM, et al. Annexin A1 subcellular expression in laryngeal squamous cell carcinoma[J]. Histopathology,2008,53(6):715-727.
    [41]YU G, WANG J, CHEN Y, et al. Tissue microarray analysis reveals strong clinical evidence for a close association between loss of annexin A1 expression and nodal metastasis in gastric cancer[J]. Clin Exp Metastasis,2008,25(7):695-702.
    [42]XIA SH, HU LP, HU H, et al. Three isoforms of annexin I are preferentially expressed in normal esophageal epithelia but down-regulated in esophageal squamous cell carcinomas[J]. Oncogene, 2002,21(43):6641-6648.
    [43]LI CF, SHEN KH, HUANG LC, et al. Annexin-I overexpression is associated with tumour progression and independently predicts inferior disease-specific and metastasis-free survival in urinary bladder urothelial carcinoma[J]. Pathology,42(1):43-49.
    [44]SCHITTENHELM J, TRAUTMANN K, TABATABAI G, et al. Comparative analysis of annexin-1 in neuroepithelial tumors shows altered expression with the grade of malignancy but is not associated with survival[J]. Mod Pathol,2009,22(12):1600-1611.
    [45]DUNCAN R, CARPENTER B, MAIN LC, et al. Characterisation and protein expression profiling of annexins in colorectal cancer[J]. Br J Cancer,2008,98(2):426-433.
    [46]FEARON ER. Molecular genetic studies of the adenoma-carcinoma sequence[J]. Adv Intern Med, 1994,39(123-147.
    [47]ANDREYEV HJ, NORMAN AR, CUNNINGHAM D, et al. Kirsten ras mutations in patients with colorectal cancer:the multicenter "RASCAL" study[J]. J Natl Cancer Inst,1998,90(9):675-684.
    [48]OLIVEIRA C, VELHO S, MOUTINHO C, et al. KRAS and BRAF oncogenic mutations in MSS colorectal carcinoma progression[J]. Oncogene,2007,26(1):158-163.
    [49]VAN CUTSEM E, KOHNE CH, HITRE E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer[J]. N Engl J Med,2009,360(14):1408-1417.
    [50]BOKEMEYER C, BONDARENKO I, MAKHSON A, et al. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer[J]. J Clin Oncol,2009,27(5):663-671.
    [51]DE COUPADE C, GILLET R, BENNOUN M, et al. Annexin 1 expression and phosphorylation are upregulated during liver regeneration and transformation in antithrombin III SV40 T large antigen transgenic mice[J]. Hepatology,2000,31(2):371-380.
    [52]BAI XF, NI XG, ZHAO P, et al. Overexpression of annexin 1 in pancreatic cancer and its clinical significance[J]. World J Gastroenterol,2004,10(10):1466-1470.
    [53]KANG JS, CALVO BF, MAYGARDEN SJ, et al. Dysregulation of annexin I protein expression in high-grade prostatic intraepithelial neoplasia and prostate cancer[J]. Clin Cancer Res,2002,8(1): 117-123.
    [54]VISHWANATHA JK, SALAZAR E, GOPALAKRISHNAN VK. Absence of annexin I expression in B-cell non-Hodgkin's lymphomas and cell lines[J]. BMC Cancer,2004,4(8.
    [55]GARCIA PEDRERO JM, FERNANDEZ MP,MORGAN RO, et al. Annexin A1 down-regulation in head and neck cancer is associated with epithelial differentiation status[J]. Am J Pathol,2004, 164(1):73-79.
    [56]SHEN D, CHANG HR, CHEN Z, et al. Loss of annexin A1 expression in human breast cancer detected by multiple high-throughput analyses[J]. Biochem Biophys Res Commun,2005,326(1): 218-227.
    [57]AHN SH, SAWADA H, RO JY, et al. Differential expression of annexin I in human mammary ductal epithelial cells in normal and benign and malignant breast tissues[J]. Clin Exp Metastasis, 1997,15(2):151-156.
    [58]SHENG KH, YAO YC, CHUANG SS, et al. Search for the tumor-related proteins of transition cell carcinoma in Taiwan by proteomic analysis[J]. Proteomics,2006,6(3):1058-1065.
    [59]XIAO GS, JIN YS, LU QY, et al. Annexin-I as a potential target for green tea extract induced actin remodeling[J]. Int J Cancer,2007,120(1):111-120.
    [60]PAWELETZ CP, ORNSTEIN DK, ROTH MJ, et al. Loss of annexin 1 correlates with early onset of tumorigenesis in esophageal and prostate carcinoma[J]. Cancer Res,2000,60(22):6293-6297.
    [61]HU N, FLAIG MJ, SU H, et al. Comprehensive characterization of annexin I alterations in esophageal squamous cell carcinoma[J]. Clin Cancer Res,2004,10(18 Pt 1):6013-6022.
    [62]SMITHERMAN AB, MOHLER JL, MAYGARDEN SJ, et al. Expression of annexin Ⅰ Ⅱ and Ⅶ proteins in androgen stimulated and recurrent prostate cancer[J]. J Urol,2004,171(2 Pt 1):916-920.
    [63]PATTON KT, CHEN HM, JOSEPH L, et al. Decreased annexin I expression in prostatic adenocarcinoma and in high-grade prostatic intraepithelial neoplasia[J]. Histopathology,2005,47(6): 597-601.
    [64]RODRIGO JP, GARCIA-PEDRERO JM, FERNANDEZ MP, et al. Annexin Al expression in nasopharyngeal carcinoma correlates with squamous differentiation[J]. Am J Rhinol,2005,19(5): 483-487.
    [65]FALINI B, TIACCI E, LISO A, et al. Simple diagnostic assay for hairy cell leukaemia by immunocytochemical detection of annexin Al (ANXA1)[J]. Lancet,2004,363(9424):1869-1870.
    [66]MULLA A, CHRISTIAN HC, SOLITO E, et al. Expression, subcellular localization and phosphorylation status of annexins 1 and 5 in human pituitary adenomas and a growth hormone-secreting carcinoma[J]. Clin Endocrinol (Oxf),2004,60(1):107-119.
    [67]GUZMAN-ARANGUEZ A, OLMO N, TURNAY J, et al. Differentiation of human colon adenocarcinoma cells alters the expression and intracellular localization of annexins A1, A2, and A5[J]. J Cell Biochem,2005,94(1):178-193.
    [68]TABE Y, JIN L, CONTRACTOR R, et al. Novel role of HDAC inhibitors in AML1/ETO AML cells: activation of apoptosis and phagocytosis through induction of annexin A1[J]. Cell Death Differ, 2007,14(8):1443-1456.
    [69]LIU Y, WANG HX, LU N, et al. Translocation of annexin I from cellular membrane to the nuclear membrane in human esophageal squamous cell carcinoma[J]. World J Gastroenterol,2003,9(4): 645-649.
    [70]LUO A, KONG J, HU G, et al. Discovery of Ca2+-relevant and differentiation-associated genes downregulated in esophageal squamous cell carcinoma using cDNA microarray[J]. Oncogene,2004, 23(6):1291-1299.
    [71]ZHI H, ZHANG J, HU G, et al. The deregulation of arachidonic acid metabolism-related genes in human esophageal squamous cell carcinoma[J]. Int J Cancer,2003,106(3):327-333.
    [72]ROTHHUT B. Participation of annexins in protein phosphorylation[J]. Cell Mol Life Sci,1997, 53(6):522-526.
    [73]ALLDRIDGE LC, HARRIS HJ, PLEVIN R, et al. The annexin protein lipocortin 1 regulates the MAPK/ERK pathway[J]. J Biol Chem,1999,274(53):37620-37628.
    [74]GUAN-ZHEN Y, YING C, JUN P, et al. Expression of ANXA1 and EGFR in gastric carcinoma and its relationship with prognosis[J]. CHINESE CLINICAL ONCOLOGY,2008,13(8):
    [75]MIN Z, JIN-SUI W, YUNSHAN C. The Role of Annexin A1 in the Carcinogensis of Breast Cancer[J]. The Practical Journal of Cancer,2005,20(6):571-574.
    [76]LEI Z, XIAO Y, LAI-PING Z, et al. Decr eased expr ession of Annexin A1 in or al squamous cell car cinoma[J]. China Journal of Oral and Maxillofacial Surgery,2008,6(1):22-27.
    [77]GUAN-ZHEN Y, YING C, FANG-GUO C, et al. Heterogeneity between primary colorectal carcinoma and matched metastases as revealed analysis of cDNA microarray[J]. CHINESE CLINICAL ONCOLOGY,2008,13(8):
    [78]BABBIN BA, LEE WY, PARKOS CA, et al. Annexin I regulates SKCO-15 cell invasion by signaling through formyl peptide receptors[J]. J Biol Chem,2006,281(28):19588-19599.
    [79]FENG G, WEIZHONG T, WEI L. K-ras mutation in sporadic colorectal cancer in China[J]. CHINESE JOURNAL OF EXPERIMENTAL SURGERY,2005,22(1):
    [80]SHISHUN Z, ZHENSHU Z, HAIJUN D, et al. Study of p53 and K-ras Gene Mutation in Colorectal Carcinoma by PCR-SSCP[J]. THE PRACTICAL JOURNAL OF CANCER,2002,17(5):
    [81]RUBIN C, ZWANG Y, VAISMAN N, et al. Phosphorylation of carboxyl-terminal tyrosines modulates the specificity of Sprouty-2 inhibition of different signaling pathways[J]. J Biol Chem, 2005,280(10):9735-9744.
    [82]KAMAI T, TSUJII T, ARAI K, et al. Significant association of Rho/ROCK pathway with invasion and metastasis of bladder cancer[J]. Clin Cancer Res,2003,9(7):2632-2641.
    [83]CICEK M, SAMANT RS, KINTER M, et al. Identification of metastasis-associated proteins through protein analysis of metastatic MDA-MB-435 and metastasis-suppressed BRMS1 transfected-MDA-MB-435 cells[J]. Clin Exp Metastasis,2004,21(2):149-157.
    [1]SHEN D, NOORAIE F, ELSHIMALI Y, et al. Decreased expression of annexin A1 is correlated with breast cancer development and progression as determined by a tissue microarray analysis[J]. Hum Pathol,2006,37(12):1583-1591.
    [2]MIN Z, YUNSHAN C. Annexin A1 in Cancer[J]. Foreign Medical Sciences Section of Pathophysiology and Clinical Medicine,2005,25(2):140-142.
    [3]GERKE V, MOSS SE. Annexins:from structure to function[J]. Physiol Rev,2002,82(2): 331-371.
    [4]ROSENGARTH A, GERKE V, LUECKE H. X-ray structure of full-length annexin 1 and implications for membrane aggregation[J]. J Mol Biol,2001,306(3):489-498.
    [5]KIM SW, RHEE HJ, KO J, et al. Inhibition of cytosolic phospholipase A2 by annexin I. Specific interaction model and mapping of the interaction site[J]. J Biol Chem,2001,276(19): 15712-15719.
    [6]FERLAZZO V, D'AGOSTINO P, MILANO S, et al. Anti-inflammatory effects of annexin-1: stimulation of IL-10 release and inhibition of nitric oxide synthesis[J]. Int Immunopharmacol, 2003,3(10-11):1363-1369.
    [7]PARENTE L, SOLITO E. Annexin 1:more than an anti-phospholipase protein[J]. Inflamm Res, 2004,53(4):125-132.
    [8]MUIMO R, HORNICKOVA Z, RIEMEN CE, et al. Histidine phosphorylation of annexin I in airway epithelia[J]. J Biol Chem,2000,275(47):36632-36636.
    [9]ALLDRIDGE LC, BRYANT CE. Annexin 1 regulates cell proliferation by disruption of cell morphology and inhibition of cyclin D1 expression through sustained activation of the ERK1/2 MAPK signal[J]. Exp Cell Res,2003,290(1):93-107.
    [10]LAVOIE JN, L'ALLEMAIN G, BRUNET A, et al. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway[J]. J Biol Chem,1996, 271(34):20608-20616.
    [11]BITTO E, LI M, TIKHONOV AM, et al. Mechanism of annexin I-mediated membrane aggregation[J]. Biochemistry,2000,39(44):13469-13477.
    [12]WHITE IJ, BAILEY LM, AGHAKHANI MR, et al. EGF stimulates annexin 1-dependent inward vesiculation in a multivesicular endosome subpopulation[J]. EMBO J,2006,25(1): 1-12.
    [13]OH P, LI Y, YU J, et al. Subtractive proteomic mapping of the endothelial surface in lung and
    solid tumours for tissue-specific therapy[J]. Nature,2004,429(6992):629-635.
    [14]DE COUPADE C, GILLET R, BENNOUN M, et al. Annexin 1 expression and phosphorylation are upregulated during liver regeneration and transformation in antithrombin Ⅲ SV40 T large antigen transgenic mice[J]. Hepatology,2000,31(2):371-380.
    [15]BAI XF, NI XG, ZHAO P, et al. Overexpression of annexin 1 in pancreatic cancer and its clinical significance[J]. World J Gastroenterol,2004,10(10):1466-1470.
    [16]XIA SH, HU LP, HU H, et al. Three isoforms of annexin I are preferentially expressed in normal esophageal epithelia but down-regulated in esophageal squamous cell carcinomas[J]. Oncogene,2002,21(43):6641-6648.
    [17]KANG JS, CALVO BF, MAYGARDEN SJ, et al. Dysregulation of annexin I protein expression in high-grade prostatic intraepithelial neoplasia and prostate cancer [J]. Clin Cancer Res,2002,8(1):117-123.
    [18]VISHWANATHA JK, SALAZAR E, GOPALAKRISHNAN VK. Absence of annexin I expression in B-cell non-Hodgkin's lymphomas and cell lines[J]. BMC Cancer,2004,4(8.
    [19]GARCIA PEDRERO JM, FERNANDEZ MP, MORGAN RO, et al. Annexin A1 down-regulation in head and neck cancer is associated with epithelial differentiation status[J]. Am J Pathol,2004,164(1):73-79.
    [20]SHEN D, CHANG HR, CHEN Z, et al. Loss of annexin A1 expression in human breast cancer detected by multiple high-throughput analyses[J]. Biochem Biophys Res Commun,2005, 326(1):218-227.
    [21]AHN SH, SAWADA H, RO JY, et al. Differential expression of annexin I in human mammary ductal epithelial cells in normal and benign and malignant breast tissues[J]. Clin Exp Metastasis, 1997,15(2):151-156.
    [22]SHENG KH, YAO YC, CHUANG SS, et al. Search for the tumor-related proteins of transition cell carcinoma in Taiwan by proteomic analysis[J]. Proteomics,2006,6(3):1058-1065.
    [23]XIAO GS, JIN YS, LU QY, et al. Annexin-I as a potential target for green tea extract induced actin remodeling[J]. Int J Cancer,2007,120(1):111-120.
    [24]PAWELETZ CP, ORNSTEIN DK, ROTH MJ, et al. Loss of annexin 1 correlates with early onset of tumorigenesis in esophageal and prostate carcinoma[J]. Cancer Res,2000,60(22): 6293-6297.
    [25]HU N, FLAIG MJ, SU H, et al. Comprehensive characterization of annexin I alterations in esophageal squamous cell carcinoma[J]. Clin Cancer Res,2004,10(18 Pt 1):6013-6022.
    [26]SMITHERMAN AB, MOHLER JL, MAYGARDEN SJ, et al. Expression of annexin Ⅰ, Ⅱ and Ⅶ proteins in androgen stimulated and recurrent prostate cancer[J]. J Urol,2004,171(2 Pt 1): 916-920.
    [27]PATTON KT, CHEN HM, JOSEPH L, et al. Decreased annexin I expression in prostatic adenocarcinoma and in high-grade prostatic intraepithelial neoplasia[J]. Histopathology,2005, 47(6):597-601.
    [28]RODRIGO JP, GARCIA-PEDRERO JM, FERNANDEZ MP, et al. Annexin A1 expression in nasopharyngeal carcinoma correlates with squamous differentiation[J]. Am J Rhinol,2005, 19(5):483-487.
    [29]FALINI B, TIACCI E, LISO A, et al. Simple diagnostic assay for hairy cell leukaemia by immunocytochemical detection of annexin A1 (ANXA1)[J]. Lancet,2004,363(9424): 1869-1870.
    [30]MULLA A, CHRISTIAN HC, SOLITO E, et al. Expression, subcellular localization and phosphorylation status of annexins 1 and 5 in human pituitary adenomas and a growth hormone-secreting carcinoma[J]. Clin Endocrinol (Oxf),2004,60(1):107-119.
    [31]DUNCAN R, CARPENTER B, MAIN LC, et al. Characterisation and protein expression profiling of annexins in colorectal cancer[J]. Br J Cancer,2008,98(2):426-433.
    [32]GUZMAN-ARANGUEZ A, OLMO N, TURNAY J, et al. Differentiation of human colon adenocarcinoma cells alters the expression and intracellular localization of annexins A1, A2, and A5[J]. J Cell Biochem,2005,94(1):178-193.
    [33]TABE Y, JIN L, CONTRACTOR R, et al. Novel role of HDAC inhibitors in AML1/ETO AML cells:activation of apoptosis and phagocytosis through induction of annexin A1[J]. Cell Death Differ,2007,14(8):1443-1456.
    [34]LIU Y, WANG HX, LU N, et al. Translocation of annexin I from cellular membrane to the nuclear membrane in human esophageal squamous cell carcinoma[J]. World J Gastroenterol, 2003,9(4):645-649.
    [35]LUO A, KONG J, HU G, et al. Discovery of Ca2+-relevant and differentiation-associated genes downregulated in esophageal squamous cell carcinoma using cDNA microarray[J]. Oncogene, 2004,23(6):1291-1299.
    [36]ZHI H, ZHANG J, HU G, et al. The deregulation of arachidonic acid metabolism-related genes in human esophageal squamous cell carcinoma[J]. Int J Cancer,2003,106(3):327-333.
    [37]ROTHHUT B. Participation of annexins in protein phosphorylation[J]. Cell Mol Life Sci,1997, 53(6):522-526.
    [38]ALLDRIDGE LC, HARRIS HJ, PLEVIN R, et al. The annexin protein lipocortin 1 regulates the MAPK/ERK pathway[J]. J Biol Chem,1999,274(53):37620-37628.
    [39]CICEK M, SAMANT RS, KINTER M, et al. Identification of metastasis-associated proteins through protein analysis of metastatic MDA-MB-435 and metastasis-suppressed BRMS1 transfected-MDA-MB-435 cells[J]. Clin Exp Metastasis,2004,21(2):149-157.
    [40]MIN Z, JIN-SUI W, YUNSHAN C. The Role of Annexin A1 in the Carcinogensis of Breast Cancer[J]. The Practical Journal of Cancer,2005,20(6):571-574.
    [41]LEI Z, XIAO Y, LAI-PING Z, et al. Decr eased expr ession of Annexin A1 in or al squamous cell car cinoma[J]. China Journal of Oral and Maxillofacial Surgery,2008,6(1):22-27.
    [42]KAMAI T, TSUJII T, ARAI K, et al. Significant association of Rho/ROCK pathway with invasion and metastasis of bladder cancer[J]. Clin Cancer Res,2003,9(7):2632-2641.
    [43]CIARDIELLO F, TORTORA G EGFR antagonists in cancer treatment[J]. N Engl J Med,2008, 358(11):1160-1174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700