含亲水性链结构的聚苯乙烯基螯合吸附剂
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分别设计和制备了带有ⅰ)由聚乙二醇键联硫、氮杂环化合物形成的直链型,ⅱ)由聚二乙醇胺型和聚酰胺-胺型超支化分子形成的树枝型和交联网络型,ⅲ)由氨基葡萄糖形成的环型等四类亲水性链结构的功能基的交联聚苯乙烯基螯合吸附剂。采用红外光谱、元素分析、扫描电镜、孔径分析、光电子能谱等方法对吸附剂进行了表征;研究了其对常见重金属离子的吸附性能、吸附机理。提出了微环境结构体的概念;探讨了微环境结构体的结构特别是其中的亲水性链结构对吸附剂的性质及吸附行为的影响原理。
     以不同链长的聚乙二醇、含硫聚乙二醇与杂环化合物2-氨基吡啶、2-氨基-5-甲硫基-1,3,4-噻二唑、2-氨基-5-乙基-1,3,4-噻二唑、2-巯基苯并噻唑为原料,制备了14种亲水性不同的含直链亲水性链结构的交联聚苯乙烯基螯合吸附剂。研究结果表明,与相应的无亲水性链结构的吸附剂相比,亲水性链结构的引入,能显著改善吸附剂的亲水性,从而使吸附剂对金属离子的吸附能力大大提高。
     以发散合成法制备了含树枝链和交联网络两类亲水性链结构的聚苯乙烯负载低代数聚二乙醇胺型和聚酰胺-胺型超支化分子螯合吸附剂。研究结果表明,树枝链结构型吸附剂具有良好的亲水性,对Hg2+、Ag+和Cu2+具有较强的吸附能力,尤其是含硫的聚苯乙烯负载聚酰胺-胺型吸附剂,其对Hg2+和Ag+的吸附选择性较强。而随着超支化分子代数的增加而得到的交联网络结构型吸附剂对金属离子的吸附性能而有所降低。
     将含有多羟基和氨基的壳聚糖水解产物-氨基葡萄糖负载到交联聚苯乙烯上,得到了具有环状亲水性链结构的吸附剂。对其吸附性能的研究表明,该吸附剂不仅可以有效地富集Au3+,同时还可以利用氨基葡萄糖的还原性,将吸附的Au3+缓慢还原成Au颗粒。
Four series of crosslinked polystyrene-based chelating adsorbents were synthesized in this thesis, which used S, N-containing heterocyclic compound via line-shaped polyethylene glycol, tree-shaped and network-shaped poly(diethanolamine) or poly(amido amine)‘dendrimer-like’hyperbranched molecule, and ring-shaped glucosamine as hydrophilic chain structure in functional groups, respectively. Fourier transform-infrared spectra, elemental analysis, scanning electron microscopy, aperture analysis and X-ray photoelectron spectroscopy were employed to characterize their structures. The adsorption capabilities and mechanism for common heavy metal ions of the adsorbents were studied. The conception“Micro-environmental Structure Part“was first present in the thesis and the effects of it especially the hydrophilic chain structure in it on the adsorption behaviors of the adsorbents were also researched.
     The heterocyclic compounds such as 2-amion-pyridine, 2-amino-5-methylthio-1,3,4-thiadizole, 2-amino-5-ethyl- 1,3,4-thiadizole and 2-mercaptobenzothiazole were used in the preparations. The adsorbents with different hydrophilicity were obtained by anchoring those heterocyclic compounds into PS matrix via hydrophilic chain structure. The results showed that the introduction of the hydrophilic chain structure can increase the hydrophilicity of the adsorbents. Accordingly, the adsorption capacities of the adsorbents towards metal ions increased compared with those having no hydrophilic chain structure.
     The PS supported‘dendrimer-like’hyperbranched molecule chelating adsorbents having tree-shaped hydrophilic chain structure were synthesized by anchoring poly(diethanolamine) and poly(amido amine) into PS matrix using divergent method. The adsorption for metal ions was studied and the results showed that this series of adsorbents could adsorb Hg2+、Ag+ and Cu2+ effectively, especially the adsorbents that have S-containing spacer. But the adsorption capability of the network-shaped adsorbents which were obtained by the increase of the generation of hyperbranched molecule was inferior to that of tree-shaped group.
     The adsorbent having ring-shaped hydrophilic chain structure was prepared by the reaction of chloromethylated polystyrene with glucosamine hydrochlorate. The adsorption results showed that the adsorbent had good adsorption and enrichment capacities for Au3+. Moreover, redox reaction occurred during the adsorption and Au3+ was reduced into Au particles.
引文
[1] 陈义镛,功能高分子,上海科学技术出版社,284-285
    [2] W. S. Wan Ngah, I. M. Isa, Comparison study of copper ion adsorption on chitosan, Dowex A-1, and Zerolit 225, J. Appl. Polym. Sci., 1998,67(6): 1067-1070
    [3] K.H. Chu, Removal of copper from aqueous solution by chitosan in prawn shell: adsorption equilibrium and kinetics, J. Hazar.Mater., 2002,90 (1): 77-95
    [4] O.A.C. Monteiro, C. Airoldi, Some Thermodynamic Data on Copper-Chitin and Copper-Chitosan Biopolymer Interactions, J.Colloid Interface. Sci., 1999, 212(2): 212-219
    [5] A. Burke, E. Yilmaz, N. Hasirci, O. Yilmaz, Iron(III) ion removal from solution through adsorption on chitosan, J. Appl. Polym. Sci., 2002,84(6): 1185-1192
    [6] Ru-Ling Tseng, Feng-Chin Wu, Ruey-Shin Juang, Effect of complexing agents on liquid-phase adsorption and desorption of copper(II) using chitosan , J.Chem.Tech. & Biotech., 1999,74(6), 533-538
    [7] G.C. Steenkamp, K. Keizer, H.W.J.P. Neomagus, H.M. Krieg, Copper(II) removal from polluted water with alumina/chitosan composite membranes, J. Membr. Sci., 2002,197 (1): 147-156
    [8] W.S. Wan Ngah, C.S. Endud , R. Mayanar , Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads, Reactive &Functional Polym. , 2002, 50 (2): 181-190
    [9] R-S. Juang, H-J. Shao, Effect of pH on Competitive Adsorption of Cu(II), Ni(II), and Zn(II) from Water onto Chitosan Beads, Adsorption , 2002, 8 (1): 71-78
    [10] 曲荣君,刘庆俭, 天然高分子吸附剂研究Ⅱ.镍离子模板壳聚糖树脂的合成及特性, 高分子材料科学与工程 , 1996,12(4):140-143
    [11] 曲荣君, 刘庆俭, 镍( Ⅱ) 模板一缩二乙二醇双缩水甘油醚交联壳聚糖的合成及其吸附特性,环境化学 ,1996,15(3):214-220
    [12] 曲荣君, 王春华, 天然高分子吸附剂研究 Ⅹ. 交联壳聚糖树脂的制备及其吸附性能, 水处理技术 ,1997,23(4):230-235
    [13] 曲荣君,王春华,孙慧勇等, 天然高分子吸附剂研究 Ⅳ .铜( Ⅱ )模板壳聚糖树脂的合成及吸附性能, 高分子材料科学与工程 , 1998,14(5):42-45
    [14] 黄晓佳,袁光谱,王爱勤,模板交联壳聚糖对过渡金属离子吸附性能研究, 离子交换与吸附 ,2000,16(3):262-266.
    [15] Tan Tianwei, He Xiaojing, Du Weixia, Adsorption behaviour of metal ions on imprinted chitosan resin, J.Chem.Tech. & Biotech. , 2001,76(2): 191-195
    [16] Shahua Qian, Ganquan Huang, Jianshen Jiang, et al, Studies of adsorption behavior of crosslinked chitosan for Cr(VI), Se(VI), J. Appl. Polym. Sci. , 2000,77(14): 3216-3219
    [17] Eric Guibal, Laurent Dambies, Cine Milot, et al, Influence of polymer structural parameters and experimental conditions on metal anion sorption by chitosan, Polym.Inter. , 1999,48(8), 671-680
    [18] Celine Milot, James McBrien, StepHen Allen, et al,, Influence of physicochemical and structural characte ristics of chitosan flakes on molybdate sorption, J Appl Polym Sci , 1998,68(4): 571-580
    [19] L. Dambies, T. Vincent, E. Guibal, Treatment of arsenic-containing solutions using chitosan derivatives: uptake mechanism and sorption performances, Water Research , 2002, 36(15): 3699-3710
    [20] Malgorzata Jaworska, Karolina Kula, Philippe Chassary, et al, Influence of chitosan characteristics on polymer properties: II. Platinum sorption properties, Polym. Inter. , 2003, 52(2): 206-212
    [21] Montserrat Ruiz, Ana Maria Sastre, Maria Celia Zikan, et al, Palladium sorption on glutaraldehyde-crosslinked chitosan in fixed-bed systems, J. Appl. Polym. Sci. , 2001,81(1): 153-165
    [22] 曲荣君, 天然高分子吸附剂研究 I.乙二醇双缩水甘油醚交联壳聚糖的制备及其对 Cu(II)、Ni(II)的吸附性能, 应用化学 , 1996, 13(2):22-25
    [23] 曲荣君, 刘庆俭, PEG 双缩水甘油醚交联壳聚糖的制备及其对金属离子的吸附性能, 环境化学 , 1996, 15(1):41-46
    [24] Zhikuan Yang, Li Zhuang, Gongrong Tan,Preparation and adsorption behavior for metal of chitosan crosslinked by dihydroxy azacrown ether, J. Appl. Polym. Sci. , 2002,85(3): 530-535
    [25] 曲荣君, 孙言志, 王春华等, 硅胶负载壳聚糖树脂的制备及其对金属离子的吸附性能, 离子交换与吸附,1999,15(4):317-324
    [26] 曲荣君, 刘庆俭, 水杨醛改性壳聚糖对金属离子的吸附性能, 环境化学 , 1997, 16(1):55-59
    [27] M. Weltrowski, B. Martel, M. Morcellet, Chitosan N-benzyl sulfonate derivatives as sorbents for removal of metal ions in an acidic medium, J. Appl. Polym. Sci. , 1996,59(4): 647-654
    [28] Doo Whan Kang, Hoo Rak Choi, Dong Keon Kweon, Stability constants of amidoximated chitosan-g-poly(acrylonitrile) copolymer for heavy metal ions, J. Appl. Polym. Sci. , 1999,73(4): 469-476
    [29] 刘秀芝,肖玲,杜予民等,邻氨基苯酚改性壳聚糖树脂的制备及吸附性能的研究, 离子交换与吸附,2002,18(5):399-405
    [30] Tanjia Becker, Michael Schlaak, Henry Strasdeit, Adsorption of nickel(II), zinc(II) and cadmium(II) by new chitosan derivatives, Reactive Functional Polym. , 2000, 44(3),289-298
    [31] Zhikuan Yang, Yuting Wang, Yurong Tang, Synthesis and adsorption properties for metal ions of mesocyclic diamine-grafted chitosan-crown ether, J. Appl. Polym. Sci. , 2000, 75(10): 1255-1260
    [32] Changhong Peng, Yuting Wang, Yurong Tang, Synthesis of crosslinked chitosan-crown ethers and evaluation of these products as adsorbents for metal ions, J. Appl. Polym. Sci. , 1998,70(3): 501-506
    [33] Zhikuan Yang, Yang Yuan, Yuting Wang, Synthesis and evaluation of chitosan aryl azacrown ethers as adsorbents for metal ions, J. Appl. Polym. Sci. , 2000,77(14): 3093-3098
    [34] Lili Wan, Yuting Wang, Shahua Qian, Study on the adsorption properties of novel crown ether crosslinked chitosan for metal ions, J. Appl. Polym. Sci. , 2002,84(1): 29-34
    [35] Zhikuan Yang, Yang Yuan, Studies on the synthesis and properties of hydroxyl azacrown ether-grafted chitosan, J. Appl. Polym. Sci. , 2001,82(8): 1838-1843
    [36] Shuying Tan, Yuting Wang, Changhong Peng, et al, Synthesis and adsorption properties for metal ions of crosslinked chitosan acetate crown ethers, J. Appl. Polym. Sci. , 1999,71(12): 2069-2074
    [37] Zhikuan Yang, Yuting Wang, Yurong Tang, Preparation and adsorption properties of metal ions of crosslinked chitosan azacrown ethers, J. Appl. Polym. Sci. , 1999,74(13): 3053-3058
    [38] Xin-Hu Tang, Shu-Ying Tan, Yu-Ting Wang, Study of the synthesis of chitosan derivatives containing benzo-21-crown-7 and their adsorption properties for metal ions, J. Appl. Polym. Sc.i , 2002,83(9): 1886-1891
    [39] Zhikuan Yang, Yuan Yang, Synthesis, characterization, and adsorption properties of chitosan azacrown ethers bearing hydroxyl group, J. Appl. Polym. Sci. , 2001,81(7): 1793-1798
    [40] 曲荣君, 刘庆俭, 天然高分子吸附剂研究——羧甲基交联壳聚糖树脂的合成及吸附特性, 环境科学学报 , 1997,17(1):121-125
    [41] 曲荣君,王春华, 唐清华等, 天然高分子吸附剂研究, 水处理技术 , 1996, 22(3):173-176
    [42] David N. S. Hon, Lie-Gui Tang,Chelation of chitosan derivatives with zinc ions. I. O,N-carboxymethyl chitosan, J. Appl. Polym. Sci. , 2000,77(10): 2246-2253
    [43] David N. S. Hon, Lie-Gui Tang,Chelation of chitosan derivatives with zinc ions. II. Association complexes of Zn2+ onto O,N-carboxymethyl chitosan, J. Appl. Polym. Sci. , 2001,79(8): 1476-1485
    [44] 林友文,陈伟,罗红斌,羧甲基壳聚糖对铅离子的吸附性能研究, 离子交换与吸附,2001,17(4):333-338
    [45] Rongjun Qu, Yanzhi Sun, Chunhua Wang, et al, Guoxiang Cheng, Syntheses and properties of carboxymethyl chitosan/urea-formaldehyde snake-cage resins, J. Appl. Polym. Sci. 2002,84(2): 310-317
    [46] Yoshitaka O, Hitoshi K., Combination of cellulosic materials ions.Journal of Polymer Science Part A-1: Polymer Chemistry, 1969, 7(8): 2087-2095.
    [47] Shigeo N, Masato,Yasuo S, Toshihiko S, Preparation of aminoalkyl celluloses and their ddsorption and desorption of heavy metal ions. J. Appl. Polym. Sci., 1992, 45(2): 265-271.
    [48] Shieo N, Masato A., Preparation of hydrazinodexycellulose and carboxyalkyl hydrazinodeoxycelluloses and their adsorption behavior toward heavy metal ions.Journal of Polymer Science Part A:Polymer Chemistry, 1997, 35(16): 3359-3363
    [49] Hitoshi K,Yasumichi S., Introduction of amidoxime groupes into cellulose and its ability to adsorb metal ions. J. Appl. Polym. Sci. , 1995, 56(2): 147-151.
    [50] Rima S, Helence G, Michele P R., Adsorption of copper(II) and chromium(III) ions onto amidoximated cellulose. J. Appl. Polym. Sci., 2000, 75(13): 1624-1631.
    [51] Meng L Z, Du C Q,Chen Y Y, et al, Preparation,characterization,and behavior of cellulose-titanium(IV) oxide modified with organosilicone. J. Appl. Polym. Sci., 2002, 84(1): 61-66。
    [52] Liu M H, Deng Y, Zhan H Y, Adsorption and desorptiion of copper(II) from solutions on new spherical cellulose adsorbent. J. Appl. Polym. Sci., 2002, 84(18) :478-485.
    [53] Mohammad L H, Nahla A E., Heavy metal ion removal by amidoxomated bagasse. J. Appl. Polym. Sci. , 2003, 87(24): 666-670.
    [54] 曲荣君,王春华,阮文举等. 多胺交联纤维素树脂的合成及吸附性能(Ⅺ)—天然高分子吸附剂研究.林产化学与工业,1997,17(3):19-24.
    [55] 纪春暖,王春华,曲荣君等. 蛇笼型螯合树脂 CMC/EDA/B-62 的合成及性能研究.林产化学与工业,2003,23(3):35-38.
    [56] Hwang M C. Chen K M., The removal of from effluents using polyamide –epichlorohydrin-cellulose polymer .I.Preparation and use in direct dye removal. J. Appl. Polym. Sci. , 1993, 48(2): 299-311.
    [57] Eli R,Yue S.Preparation and characteristics of polymer-based large adsorbent particles., J. Appl. Polym. Sci. ,1993, 61(11):108-109.
    [58] Eliahu C,Yair A,Albert Z. Anionic graft polymerization of propylene sulfide on cellulose.II.Absorption of iodine,silver,and mercury on the graft polymers. Joural of Polymer Science Part A-1: Polymer Chemistry , 1971, 9(6): 1481-1492.
    [59] Masahiro T, Tadashi U, Mizuho S., Studies on syntheses and permeabilities of special polymer membranes.XVIII.Ultrafiltration,hydrolysis,and adsorption characteristics of membranes from cellulose nitrate,stylite,and activated charcoal. Angewandte Makromolekulare Chemie, 1979, 79(1): 67-77.
    [60] Shi L Q, Zhang Y Z, He Z B., Novel composite adsorbent for adsorption of urea.Polymers for Advanced Technologies, 1999, 10(1-2): 69-73.
    [61] Siva V, Mohammad N, Indra R, Mansoor K., Preparation and characterization of a customized cellulose acetate butyrate dispersion for controlled drug delivery. Journal of Pharmaceutical sciences , 2002, 91(6): 1512-1522.
    [62] Jiri L, Jan P, Jiri S., Preparation of porous bead cellulose with technical grain size. Angewandte Makromolekulare Chemie, 1992, 197(1): 201-206.
    [63] Daniel H, FrantiSek S, Jean M J F., Preparation and control of surface properties of monodisperse micrometer size beads by dispersion copolymerization of styrene and butyl methacrylate in polar media. Journal of Polymer Science Part A :Polymer Chemistry,1995, 33(14): 2329-2338.
    [64] Willer D O, Wolfgang G Gl., Hydrogels from polysaccharides.I.Cellulose beads for chromatographic support. J. Appl. Polym. Sci. , 1996, 60(1): 63-73.
    [65] Jiri L., Magnetic bead cellulose.Angewandte Makromolekulare Chemie, 1993, 212(1): 147-155.
    [66] William A , John W., Adsorption kinetics in the polyethylenimine-cellulose fiber system. J. Polym. Sci. Part A-2: Polymer Physics, 1971, 9(7): 853-865.
    [67] Margarita P N, Georgi V S., Polyethylenimine adsorption by cellulose. J. Appl. Polym. Sci. , 1976, 20(8): 2131-2141.
    [68] Fumihiko O., Studies on interfacial properties of polyelectrolyte-cellulose systems.I.Formation and structure of adsorber layers of cationic polyelectrolyte-(poly-DMDAAC) on cellulose fibers. J. Appl. Polym. Sci. , 1978, 22(12): 3495-3510.
    [69] Alince B, Robertson A A., Sorption of poly(vinyl acetate) on cellulose.II.The role of the porous structure. J. Appl. Polym. Sci., 1970, 14(10): 2581-2593.
    [70] Shinouda H G, Abdel M., Effect of the fine structure of viscose hydrocellulose on its adsorption properties. J. Appl. Polym. Sci.: Polym Chem Edi, 1979, 17(10): 3329-3336.
    [71] Kiso Y, Kitao T, Nishimura K., Adsorption properties of cyclic compounds on cellulose acetate J. Appl. Polym. Sci. ., 1999, 71(10): 1657-1663.
    [72] 周林成,李彦锋,门学虎等,糠醛系功能高分子材料的研究进展,功能材料,2005,36(4):499-502.
    [73] S. K. Swain, S. Sahoo, D. K. Mohapatra, et al, Polymers from renewable resources. V. Synthesis and characterization of thermosetting resins derived from cashew nut shell liquid (CNSL)-furfural-substituted aromatic compounds, J. Appl. Polym. Sci. , 1994, 54(10):1413-1421
    [74] 李彦锋,马应霞, 周林成等, 糠醛系氮配位螯合树脂对贵金属元素的吸附性能,功能高分子学报, 2001 , 14(2): 221-225.
    [75] 范云鸽,史作清,8-羟基喹啉树脂的制备及应用研究进展,离子交换与吸附, 2001, 17(3): 281-288
    [76] Margot A. Llosa Tanco, David A. Pacheco Tanaka, Veronica C. Flores, et al, P reparation of porous chelating resin containing linear polymer ligand and the adsorption characteristics for harmful metal ions, Reactive & Functional Polymers , 2002, 53: 91–101
    [77] 蒲巧生, 刘 鹏, 吴雄志等, 氨基膦酸羧酸螯合树脂的合成及其对痕量镧系稀土富集分离性能的研究,兰州大学学报(自然科学版),2002,38(3):68-72
    [78] 葛小鹏,张宝文,大孔聚丙烯醛-呋喃-2-硫代酰腙螯合树脂的合成及其性能的初步研究,离子交换与吸附, 2003, 19(2): 111-120
    [79] 张超灿, 庞金兴, 李曦等,核-壳型巯基胺螯合树脂的制备及其吸附性能,武汉大学学报(理学版),2001, 7(2): 189-191
    [80] 崔元臣,陈权,哌嗪氨基二硫代甲酸型螯合树脂的合成及其吸附性能,环境化学,2003, 22(6): 573-577
    [81] 李华, 路建美, 纪顺俊等,微波辐射条件下含硫螯合树脂的合成及性能, 高分子材料科学与工程,2004, 20(4): 81-84
    [82] Bolin Gong, Xueqiang Li, Fengrun Wang, et al, Synthesis of spherical macroporous epoxy-dicyandiamide chelating resin and properties of concentration and separation of trace metal ions from samples, Talanta, 2000, 52 : 217–223
    [83] Economy J, Dominguez L. Polymeric ion-exchange fibers. Ind. Eng. Chem. Res. 2002, 41: 6436-6442
    [84] Deng S, Bai R, Chen JP. Behaviors and mechanisms of copper adsorption on hydrolyzed polyacrylonitrile fibers, J. Colloid Interf. Sci. 2003, 260(2): 265-272
    [85] Deng S, Bai R, Chen JP. Aminated polyacrylonitrile fibers for lead and copper removal. Langmuir , 2003, 19: 5058-5064
    [86] Liu R, Tang H. Removal of Cu(II), Zn(II), Cd(II) and Hg(II) from waste water by poly(acrylaminophosphonic)-type chelating fiber, Chemosphere, 1999, 38: 3169-3179
    [87] Liu R, Li Y, Tang H. Synthesis and characteristics of chelating fibers containing imidazoline group or thioamide group. J. Appl. Polym. Sci., 2002, 83(7): 1608-1616
    [88] Dong Hun Shin, Young Gun Ko, Ung Su Choi, et al, Synthesis and characteristics of novel chelate fiber containing amine and amidine groups,Polym. Adv. Technol. 2004, 15: 459–466
    [89] Sadhan Pramanik, Pulak K. Dhara, Pabitra Chattopadhyay, A chelating resin containing bis(2-benzimidazolylmethyl)amine: synthesis and metal-ion uptake properties suitable for analytical application, Talanta., 2004, 63:485–490
    [90] J.M. Sanchez, M. Hidalgo, V. Salvado,The selective adsorption of gold (III) and palladium (II) on new phosphine sulphide-type chelating polymers bearing different spacer arms:Equilibrium and kinetic characterization, Reactive & Functional Polymers., 2001, 46 : 283–291
    [91] Asem A. Atia, Ahmed M. Donia , Ahmed M. Yousif,Synthesis of amine and thio chelating resins and study of their interaction with zinc(II), cadmium(II) and mercury(II) ions in their aqueous solutions,Reactive & Functional Polymers.,2003,56:75–82
    [92] Asem A. Atia, Ahmed M. Donia, Saeda A. Abou-El-Enein, et al, Studies on uptake behaviour of copper(II) and lead(II) by amine chelating resins with different textural properties, Sep. Purif. Technol.. 2003, 33, 295-301
    [93] A. Syamal , M.M. Singh, D. Kumar,Syntheses and characterization of a chelating resin containing ONNO donor quadridentate Schiff base and its coordination complexes with copper(II), nickel(II), cobalt(II), iron(III), zinc(II), cadmium(II), molybdenum(VI) and uranium(VI), Reactive & Functional Polymers., 1999,39:27–35
    [94] F. Gode, , E. Pehlivan, A comparative study of two chelating ion-exchange resins for the removal of chromium(III) from aqueous solution, Journal of Hazardous Materials ,2003, B100 : 231–243
    [95] P. K. Roy, A. S. Rawat, V. Choudhary, et al,Synthesis and Analytical Application of a Chelating Resin Based on a Crosslinked Styrene/Maleic Acid Copolymer for the Extraction of Trace-Metal Ions, J Appl Polym Sci , 2004, 94: 1771-1779
    [96] Andrzej W. Trochimczuk, Bo_zena N. Kolarz, Dorota Jermakowicz-Bartkowiak, Metal ion uptake by ion-exchange/chelating resins modified with cyclohexene oxide and cyclohexene sulphide, European Polymer Journal , 2001, 37 :559-564
    [97] Andrzej W. Trochimczuk, Bo_zena N. Kolarz,Synthesis and chelating properties of resins with methylthiourea, guanylthiourea and dithiocarbamate groups,European Polymer Journal , 2000,36 :2359-2363
    [98] Smaail Radi, Abdelkrim Ramdani, Yahya Lekchiri, et al, Preparation of pyrazole compounds for attachment to chelating resins, European Polymer Journal , 2000,36:1885-1892
    [99] Won Lee, Si-Eun Lee, Chang-Heon Lee, et al,A chelating resin containing 1-(2-thiazolylazo)-2-naphthol as the functional group: Synthesis and sorption behavior for trace metal ions, Microchemical Journal, 2001, 70: 195-203
    [100] Leonid S. Molochnikov, Elena G. Kovalyova, Andrei A. Zagorodni, et al,Coordination of Cu(II) and Ni(II) in polymers imprinted so as to optimize amine chelate formation, Polymer, 2003, 44: 4805–4815
    [101] M. Akhila Maheswari, M.S. Subramanian, Selective enrichment of U(VI), Th(IV) and La(III) from high acidic streams using a new chelating ion-exchange polymeric matrix, Talanta , 2004, 64: 202–209.
    [102] F.D. Mendes, A.H. Martins,Selective sorption of nickel and cobalt fromsulphate solutions using chelating resins, Int. J. Miner. Process. , 2004, (74) 359– 371
    [103] 刘峥, 向万宏,水杨酰腙螯合树脂的合成及应用, 化工技术与开发, 2005, 34(1):5-8.
    [104] 黄海兰, 徐波, 曲荣君, 巯基树脂吸附重金属离子机理的研究, 青岛大学学报(工程技术版) , 2004,19(1):25-29.
    [105] 黄海兰,曲荣君, 巯基树脂对重金属离子的吸附性能, 离子交换与吸附, 2004 20(2):113-118.
    [106] 曲荣君, 王春华, 孙昌梅等, Hg2+在螯合树脂聚[对乙烯苄基-(2-羟乙基)硫醚]上的吸附机理, 分析化学, 2004, 32(4): 445-450
    [107] 黄海兰, 徐波, 曲荣君, 巯基树脂对 Ag+、Hg 2+、Cr3+的吸附性能的研究,应用科技,2004,31(12):61-62
    [108] QU Rongjun, SUN Changmei, JI Chunnuan, et al, Synthesis of A Novel Chelating Resin with Heterocyclic Ring of S and N, Chinese Journal of Reactive Polymers, 2003, 12(1): 83 -86
    [109] QU Rongjun, SUN Changmei, WANG Chunhua, et al, Characterization of Novel Polymeric Intermediate Poly(p-Bromoacetyl Styrene)Crosslinked by Divinylbezene, Chinese Journal of Reactive Polymers, 2003, 12(1): 78 -82
    [110] Rongjun Qu, Chunhua Wang, Changmei Sun, et al,Syntheses and Adsorption Properties for Hg2+ of Chelating Resin of Crosslinked Polystyrene-Supported 2,5-Dimercapto-1,3,4- thiodiazole,J. Appl. Polym. Sci. , 2004, 92(3):1646-1652
    [111] 曲荣君, 孙昌梅, 纪春暖等, 相转移催化合成二乙烯苯交联聚(2-羟乙基硫甲基苯乙烯)树脂, 催化学报, 2005, 26(3): 183-188
    [112] Rongjun Qu, Chunhua Wang, Chunnuan Ji et al, Preparation, Characterization, and Metal Binding Behavior of Novel Chelating Resins Containing Sulfur and Polyamine, J. Appl. Polym. Sci. , 2005, 95(6):1558-1565
    [113] 魏荣卿, 朱建星, 刘晓宁等,Mannich 反应制备氨基树脂及由其制备的螯合树脂的吸附性能,现代化工, 2005, 25(6): 30-33
    [114] S. Cobianco , A. Lezzi , R. Scotti,A spectroscopic study of Cu(II)-complexes of chelating resins containing nitrogen and sulfur atoms in the chelating groups, Reactive & Functional Polymers , 2000, 43:7–16
    [115] K. Dorfner, Synthetic ion exchange resins, in: K. Dofner (Ed.), Ion Exchangers, Walter de Gruyter, Berlin, 1991, p. 251
    [116] A. Yuchi, T. Sato, Y. Morimoto, H. Mizuno, H. Wada, Adsorption mechanism of trivalent metal ions on chelating resins containing iminodiacetic acid groups with reference to selectivity, Anal. Chem., 1997, 69:2941–2944
    [117] H. Kumagai, Y. Inoue, T. Yokoyama, T.M. Suzuki, Chromatographic selectivity of rare earth elements on imino diacetate-type chelating resins having spacer arms of different lengths: Importance of steric flexibility of functional group in a polymer chelating resin, Anal. Chem., 1998, 70:4070–4073
    [118] T. Yokoyama, S. Asami, M. Kanesato, T.M. Suzuki, Separation of rare earth metals by the chelating resin functionalized with lysine-N ,N -diacetic acid, Chem. Lett., 1993, 383–386
    [119] Y. Inoue, H. Kumagai, Y. Shimomura, T. Yokoyama, T.M. Suzuki, Ion chromatographic separation of rare earth elements using a nitrilotriacetate-type chelating resin as the stationary phase, Anal. Chem., 1996, 68:1517–1520
    [120] H. Kumagai, T. Yokoyama, T.M. Suzuki, T. Suzuki, Liquid chromatographic selectivity and retention behavior of rare earth elements on a chelating resin having a pro pylenediaminetetraacetate type functional group, Analyst, 1999,124: 1595–1597
    [121] D.S. Flett, Resin impregnates: the current position, Chem. Ind., 1977, 6:641–64
    [122] Y. Wakui, H. Matsunaga, T.M. Suzuki, Distribution of rare earth elements between (2-ethylhexyl hydrogen 2-ethylhexylphosphonate)-impregnated resin and acid aqueous solution, Anal. Sci., 1988,4 :325–327
    [123] S. Iida, Interaction of calcium ion and maleic acid copolymer, Biophys. Chem. , 1995, 53:219–225
    [124] B.L. Rivas, G.V. Seguel, Poly(acrylic acid-co-maleic acid) metal complexes with copper(II), cobalt(II), and nickel(II); Synthesis, characterization and structure of its metal chelates, Polyhedron , 1999, 18: 2511–2518
    [125] J. Leong, K.N. Raymond, Coordination isomers of biological iron transport compounds. IV. Geometrical isomers of chromic Desferriferrioxamine B, J. Am. Chem. Soc. , 1975, 97: 293–302
    [126] J.W. Kloepper, J. Leong, M. Teintze, M.N. Schroth, Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria, Nature, 1980,286: 885
    [127] J. M. J. Frechet; M. D. de Smet; M. Jean Farrall, Functionalization of crosslinked polystyrene resins: 2. Preparation of nucleophilic resins containing hydroxyl or thiol functionalities, Polymer, 1979, 20(6): 675-680
    [128] J. M. J. Frychet, D. A. Tomalia, Dendrimers and Other Dendritic Polymers, Angew. Chem. , 2003, 115: 2314-2316
    [129] S. Hecht, J. M. J. Frychet, Dendritisch eingeschlossene aktive Zentren: Anwendung des Isolationsprinzips der Natur in der Biomimetik und den Materialwissenschaften, Angew. Chem., 2001, 113: 76-94
    [130] R. Touzani, H. Alper, PAMAM dendrimer-palladium complex catalyzed synthesis of five-, six- or seven membered ring lactones and lactams by cyclocarbonylation methodology, J. Mol. Catal. A: Chem. , 2005, 227: 197–207
    [131] T. Endo, T. Yoshimur, K. Esumi, Synthesis and catalytic activity of gold–silver binary nanoparticles stabilized by PAMAM dendrimer, J. Colloid. Interface Sci., 2005, 286: 602–609
    [132] J. H. Bu, Q.Y. Zheng, C.F. Chen, Z.T. Huang, The synthesis of calix[4]crown based dendrimer, Tetrahedron, 2005, 61: 897–902
    [133] N. Y. Lee, W. J. Jang, S. H. Yu, J. Im, S. K. Chung, Syntheses of glycodendrimers having scyllo-inositol as the scaffold, Tetrahedron Lett., 2005, 46: 6063–6066.
    [134] Re’gis Laurent, Anne-Marie Caminade, Jean-Pierre Majoral, A third generation chiral phosphorus-containing dendrimer as ligand in Pd-catalyzed asymmetric allylic alkylation, Tetrahedron Lett., 2005, 46 : 6503–6506
    [135] Norio Tsubokawa , Hajime Ichioka, Toshiya Satoh, Grafting of ‘dendrimer-like’ highly branched polymer onto ultrafine silica surface, Reactive & Functional Polymers , 1998, 37:75-82
    [136] Lindsey W. Beakley, Sarah E. Yost, Raymond Cheng, et al, Nanocomposite catalysts: Dendrimer encapsulated nanoparticles immobilized in sol–gel silica, Applied Catalysis A: General , 2005, 292:124–129
    [137] Jan-Martin Heldt, Nathalie Fischer-Durand, Miche`le Salmain, et al, Preparation and characterization of poly(amidoamine) dendrimers functionalized with a rhenium carbonyl complex and PEG as new IR probes for carbonyl metallo immunoassay, J. Organometallic Chem., 2004, 689: 4775–4782
    [138] Krystyna A. Krot, Angela F. Danil de Namor, Adolfo Aguilar-Cornejo, et al, Speciation, stability constants and structures of complexes of copper(II), nickel(II), silver(I) and mercury(II) with PAMAM dendrimer and related tetraamide ligands, Inorganica Chimica Acta , 2005, 358: 3497–3505
    [139] Marjorie Severac, Julien Leclaire, Pierre Sutra, et al, A new way for the internal functionalization of dendrimers, Tetrahedron Lett., 2004, 45: 3019–3022
    [140] Anne M. Arink, Rob van de Coevering, Birgit Wieczorek, et al, A recyclable nanosize aminoarenethiolato copper(I) catalyst for C–C coupling reactions, J. Organometallic Chem., 2004, 689:3813–3819
    [141] Kunio Esumi, Miyuki Ichikawa, Tomokazu Yoshimura, Adsorption characteristics of poly(amidoamine) and poly (propylene imine) dendrimers on gold, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2004, 232: 249–252
    [142] Tomokazu Yoshimura, Shunsuke Abe, Kunio Esumi, Characterization of quaternized poly(amidoamine) dendrimers of generation 1 with multiple octyl chains, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2004, 251:141–144
    [143] B. A. Hermann, U. Hubler, P. Jess, et al, Chiral Dendrimers on a Pt(100) Surface Investigated by Scanning Tunnelling Microscopy, Surf. Interface Anal., 1999, 27, 507-511
    [144] Marc R. Leduc, Wayne Hayes, Jean M. J. Fre′Chet, Controlling Surfaces and Interfaces with Functional Polymers: Preparation and Functionalization of Dendritic–Linear Block Copolymers via Metal Catalyzed ‘‘Living’’ Free Radical Polymerization, J. Polym. Sci. Polym. Chem., 1998, 36:1–10
    [145] Gustavo Larsen, Sandra Noriega, Dendrimer-mediated formation of Cu–CuOx nanoparticles on silica and their physical and catalytic characterization , Appl. Catalysis A: General, 2004, 278:73–81
    [146] Christophe Saudan, Vincenzo Balzani, et al, Marius Gorka, Dendrimers as Ligands: An Investigation into the Stability and Kinetics of Zn2+ Complexation by Dendrimers with 1,4,8,11-Tetraazacyclotetradecane (Cyclam) Cores,Chem. Eur. J. , 2004, 10, 899-905
    [147] A. E. Beezer, A. S. H. King, I. K. Martin, et al, Dendrimers as potential drug carriers; encapsulation of acidic hydrophobes within water soluble PAMAM derivatives, Tetrahedron, 2003, 59:3873–3880
    [148] Young-Min Chung, Hyun-Ku Rhee, Dendrimer-templated Ag–Pd bimetallic nanoparticles, J. Colloid. Interface Sci. , 2004, 271: 131–135
    [149] Peter N. M. Botman, Alessia Amore, Rieko van Heerbeek, et al, Dendritic phosphoramidite ligands in Rh-catalysed asymmetric hydrogenations, Tetrahedron Letters , 2004, 45: 5999–6002
    [150] Holger Frey, Rainer Haag, Dendritic polyglycerol: a new versatile biocompatible material, Reviews in Molecul. Biotech., 2002, 90: 257-267
    [151] George R. Newkome, Anil K. Patri, Luis A. Godínez, Design, Syntheses, Complexation, and Electrochemistry of Polynuclear Metallodendrimers Possessing Internal Metal Binding Loci, Chem. Eur. J. , 1999, 5(5): 1445-1451
    [152] Joon Sig Choi, Kihoon Nab, Jong-yeun Park, et al, Enhanced transfection efficiency of PAMAM dendrimer by surface modification with l-arginine, J. Controlled Release, 2004, 99: 445–456
    [153] G. Eric Oosterom, Joost N. H. Reek, Paul C. J. Kamer, et al, Transition Metal Catalysis Using Functionalized Dendrimers, Angew. Chem. Int. Ed., 2001, 40, 1828-1849.
    [154] G′ eraldine Coullerez, Hans Jorg Mathieu, Stefan Lundmark, et al, Cationization of dendritic macromolecule adsorbates on metals studied by time-of-flight secondary ion mass spectrometry, Surf. Interface Anal. 2003,35: 682–692
    [155] Fernando Pina, Paolo Passaniti, Mauro Maestri, et al, Ground and Excited-State Electronic Interactions in Poly(propylene amine) Dendrimers Functionalized with Naphthyl Units: Effect of Protonation and Metal Complexation, Chem.Phys.Chem., 2004, 5: 473-480
    [156] Mingqi Zhao, Richard M. Crooks, Homogeneous Hydrogenation Catalysis with Monodisperse, Dendrimer-Encapsulated Pd and Pt Nanoparticles, Angew. Chem. Int. Ed., 1999, 38(3): 364-366
    [157] Gregory S. Smith, Selwyn F. Mapolie, Iminopyridyl-palladium dendritic catalyst precursors: evaluation in Heck reactions, J. Molecul. Catal. A: Chem., 2004, 213:187–192
    [158] Chris Zhisheng Chen,Stuart L. Cooper, Interactions between dendrimer biocides and bacterial membranes, Biomaterials, 2002, 23:3359–3368
    [159] Tao Zhou, Robert C. Hider, Zu D. Liu, et al, Iron(III)-selective dendritic chelators, Tetrahedron Lett. , 2004, 45:9393–9396
    [160] E. Canetta, G. Maino, Molecular dynamic analysis of the structure of dendrimers, Nuclear Instruments and Methods in Physics Research B , 2004, 213:71–74
    [161] Jolanta Janiszewska, Joanna Swieton, Andrzej W. Lipkowski, et al, Low Molecular Mass Peptide Dendrimers that Express Antimicrobial Properties, Bioorganic & Medicinal Chemistry Letters, 2003,13:3711-3713
    [162] Tobias Vossmeyer, Berit Guse, Isabelle Besnard, et al, Gold Nanoparticle/ Polyphenylene Dendrimer Composite Films: Preparation and Vapor-Sensing Properties, Adv. Mater. , 2002, 14(3): 238-242
    [163] Zhi-wang Yang, Qiao-xiang Kang, Heng-chang Ma, et al, Oxidation of cyclohexene by dendritic PAMAMSA-Mn(II) complexes, J. Molecul. Catal. A: Chem., 2004, 213:169–176
    [164] Krassimir Vassilev, Warren T. Ford, Poly(propylene imine) Dendrimer Complexes of Cu(II), Zn(II), and Co(III) as Catalysts of Hydrolysis of p-Nitrophenyl Diphenyl Phosphate, J. Polym. Sci.: Part A: Polym. Chem., 1999, 37, 2727–2736
    [165] Jan-Martin Heldt, Nathalie Fischer-Durand, Miche`le Salmain, et al, Preparation and characterization of poly(amidoamine) dendrimers functionalized with a rhenium carbonyl complex and PEG as new IR probes for carbonyl metallo immunoassay, J. Organometallic Chem., 2004, 689: 4775–4782
    [166] L. Merz, J. Hitz, U. Hubler, et al, STM Investigation on Single, Physisorbed Dendrimers, Single Mol., 2002, 5-6 (3): 295-299
    [167] Anthony P. Davis, Gang Ma, Heather C. Allen,Surface vibrational sum frequency and Raman studies of PAMAM G0, G1 and acylated PAMAM G0 dendrimers, Analytica Chimica Acta , 2003, 496:117–131
    [168] Abel Garcia-Bernabe, Michael Kramer, Bela Olah, et al, Syntheses and Phase-Transfer Properties of Dendritic Nanocarriers That Contain Perfluorinated Shell Structures, Chem. Eur. J., 2004, 10: 2822-2830
    [169] Thatavarathy Rama Krishna, Narayanaswamy Jayaraman, Synthesis and catalytic activities of PdII–phosphine complexes modified poly(ether imine) dendrimers, Tetrahedron, 2004, 60:10325–10334
    [170] Mi-Young Hong, Young-Ja Kim, Jae Wook Lee, et al, Synthesis and characterization of tri(ethylene oxide)-attached poly(amidoamine) dendrimer layers on gold, J.Colloid Interface Sci., 2004, 274: 41–48
    [171] Seth M. Cohen, Ste?phane Petoud, Kenneth N. Raymond, Synthesis and Metal Binding Properties of Salicylate-, Catecholate-, and Hydroxypyridinonate- Functionalized Dendrimers, Chem. Eur. J., 2001, 7(1): 272-279
    [172] Ivo Grabcheva, Xuhong Qianb, Vladimir Bojinov, et al, Synthesis and photophysical properties of 1,8-naphthalimide-labelled PAMAM as PET sensors of protons and of transition metal ion, Polymer, 2002,43 : 5731–5736
    [173] L. Henry Bryant, Martin W. Brechbiel, Chuanchu Wu, et al, Synthesis and Relaxometry of High-Generation (G=5, 7, 9and 10) PAMAM Dendrimer- DOTA-Gadolinium Chelates, J. Magnetic Resonance Imaging, 1999, 9:348–352
    [174] Vaclav S tastny, Ivan Stibor, Hana Dvorakovab, et al, Synthesis of (thia)calix[4]arene oligomers: towards calixarene-based dendrimers, Tetrahedron, 2004, 60:3383–3391
    [175] Samaresh Ghosh, Ajit K. Banthia, Synthesis of photoresponsive polyamidoamine (PAMAM) dendritic architecture, Tetrahedron Lett., 2001,42: 501–503
    [176] Ronald C. Hedden, Barry J. Bauer, A. Paul Smith, et al, Templating of inorganic nanoparticles by PAMAM/PEG dendrimer–star polymers, Polymer, 2002, 43: 5473–5481
    [177] Bharathi Devarakonda, Ronald A. Hill, Melgardt M. de Villiers, The effect of PAMAM dendrimer generation size and surface functional group on the aqueous solubility of nifedipine, International J. Pharmaceutics, 2004, 284:133–140
    [178] John L. Burnett, Amy S. H. King, Ian K. Martin, et al, The effect of size on the rate of an aminolysis reaction using a series of amine terminated PAMAM dendrimers, Tetrahedron Lett., 2002, 43: 2431–2433
    [179] R. Jevprasesphant, J. Penny, R. Jalal, et al, The influence of surface modification on the cytotoxicity of PAMAM dendrimers, International J. Pharmaceutics, 2003, 252 : 263–266
    [180] Zhan-Jiang Zheng, Jie Chen, Yue-Sheng Li, et al, The synthesis and catalytic activity of poly(bis(imino)pyridyl) iron(II) metallodendrimer, J. Organometallic Chem., 2004, 689: 3040–3045
    [181] Ian K. Martin, Lance J. Twyman, The synthesis of unsymmetrical PAMAM dendrimers using a divergent:divergent approach, Tetrahedron Lett., 2001, 42: 1119–1121
    [182] Takeshi Endo, Tomokazu Yoshimura, Kunio Esumi, Voltammetric study of sodium hypochlorite using dendrimer-stabilized gold nanoparticles, J. Colloid Interface Sci., 2004, 269:364–369
    [183] Preston A. Chase, Robertus J.M. Klein Gebbink, Gerard van Koten, Where organometallics and dendrimers merge: the incorporation of organometallic species into dendritic molecules, J. Organometallic Chem., 2004, 689: 4016–4054
    [184] N.C. Beck Tana, L. Baloghb, S.F. Trevinoa, A small angle scattering study of dendrimer–copper sulfide nanocomposites, Polymer, 1999, 40: 2537–2545
    [185] M. Elshakre, A.S. Atallah, S. Santos, et al, A structural study of carbosilane dendrimers versus polyamidoamine, Computational and Theoretical Polym. Sci., 2000, 10 : 21–28
    [186] Ian K. Martin, Lance J. Twyman, Acceleration of an aminolysis reaction using a PAMAM dendrimer with 64 terminal amine groups, Tetrahedron Letters, 2001, 42:1123–1126
    [187] Kanjiro Torigoe, Akihiro Suzuki, Kunio Esumi, Au(III)–PAMAM Interaction and Formation of Au–PAMAM Nanocomposites in Ethyl Acetate, J.Colloid .Interface Sci., 2001, 241, 346–356
    [188] Tomoo Mizugaki, Masahiko Ooe, Kohki Ebitani, et al, Catalysis of dendrimer-bound Pd (II )complex Selective hydrogenation of conjugated dienes to monoenes, J. Molecular Catal. A: Chem., 1999, 145: 329–33
    [189] Bai-Yuan Yang, Xiao-Min Chen, Guo-Jun Deng, et al, Chiral dendritic bis(oxazoline) copper(II) complexes as Lewis acid catalysts for enantioselective aldol reactions in aqueous media, Tetrahedron Lett., 2003, 44: 3535–3538
    [190] Herlinde I. Beerens, Peter Wijkens, Johann T.B.H. Jastrzebski, et al, Coordination of a Ru(II)-complex to a tetrafunctional P-ligand: a model for Ru-P carbosilane dendrimers, J. Organometallic Chem., 2000, 603: 244–248
    [191] Yanhui Niu, Richard M. Crooks, Dendrimer-encapsulated metal nanoparticles and their applications to catalysis, C. R. Chimie, 2003, 6:1049–1059
    [192] Mohua Dasgupta, M. Brad Peori, Ashok K. Kakkar, Designing dendritic polymers containing phosphorus donor ligands and their corresponding transition metal complexes, Coordination Chemistry Reviews, 2002, 233-234: 223-235
    [193] Hitoshi Sashiwaa, Shizu Fujishimaa, Naoko Yamano, et al, Enzymatic production of N-acetyl-D-glucosamine from chitin. Degradation study of N-acetylchitooligosaccharide and the effect of mixing of crude enzymes, Carbohydrate Polymers, 2003, 51: 391–395
    [194] F. Vogtle, S. Gestermann, R. Hesse, et al, Functional dendrimers, Prog. Polym. Sci., 2000, 25: 987–1041
    [195] Lingyin Li, Xuebo Cao, Fei Yu, et al, G1 dendrimers-mediated evolution of silver nanostructures from nanoparticles to solid spheres, J. Colloid Interface Sci., 2003, 261: 366–371
    [196] Nadejda Krasteva, Berit Guse, Isabelle Besnard, et al, Gold nanoparticle/PPI-dendrimer based chemiresistors Vapor-sensing properties as a function of the dendrimer size, Sensors and Actuators B, 2003, 92:137–143
    [197] Barbara Klajnerta, Lidia Stanisl Cawskaa, Maria Bryszewska, et al, Interactions between PAMAM dendrimers and bovine serum albumin, Biochimica et Biophysica Acta , 2003, 1648:115–126
    [198] Kunio Esumi, Rina Saika, Munetaka Miyazaki, et al, Interactions of poly(amidoamine)dendrimers having surface carboxyl groups with cationic surfactants, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 166:115–121
    [199] Zhisheng Zhang, Xiaoming Yu, Larry K. Fong, et al, Ligand effects on the phosphoesterase activity of Co(II) Schiff base complexes built on PAMAM dendrimers, Inorganica Chimica Acta , 2001, 317: 72–80
    [200] Mark R. Rauckhorst, Paul J. Wilson, Susan A. Hatcher, et al, ‘Locking’ dendrimer conformation through metal coordination, Tetrahedron, 2003, 59: 3917–3923
    [201] Fiona J. Stoddart, Thomas Welton, Metal-containing dendritic polymers, Polyhedron, 1999, 18 : 3575–3591
    [202] Yitzhak Tor, Metal-containing oligomers, dendrimers and biopolymers, C. R. Chimie, 2003, 6: 755–766
    [203] Didier Astruc, Jean-Claude Blais, Marie-Christine Daniel, et al, Metallodendrimers and dendronized gold colloids as nanocatalysts, nanosensors and nanomaterials for molecular electronics, C. R. Chimie, 2003, 6 : 1117–1127
    [204] Mahesh K. Bhalgat, Jeanette C. Roberts, Molecular modeling of polyamidoamine (PAMAM) Starburst dendrimers, Eur. Polym. J., 2000, 36: 647-651
    [205] Young-Min Chung, Hyun-Ku Rhee, Partial hydrogenation of 1,3-cyclooctadiene using dendrimer-encapsulated Pd–Rh bimetallic nanoparticles, J. Molecul. Catal. A: Chem., 2003, 206: 291–298
    [206] Roseita Esfand, Donald A. Tomalia, Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications, DDT 2001, 6(8): 427-436
    [207] Chunyan Bao, Ming Jin, Ran Lu, et al, Preparation of Au nanoparticles in the presence of low generational poly(amidoamine) dendrimer with surface hydroxyl groups, Mater. Chem. Phy., 2003, 81: 160–165
    [208] Kunio Esumi, Azusa Kameo, Akihiro Suzuki, et al, Preparation of gold nanoparticles in formamide and N,N-dimethylformamide in the presence of poly(amidoamine) dendrimers with surface methyl ester groups, Colloids and Surfaces A: Physicochem. Eng. Aspects , 2001, 189: 155–161
    [209] A. Rether, M. Schuster, Selective separation and recovery of heavy metal ions using water-soluble N-benzoylthiourea modified PAMAM polymers, Reac. & Func. Polym., 2003, 57: 13–21
    [210] Alexandr Sagidullina, Bernd Fritzinger, Ulrich Scheler, et al, Self-diffusion of low-generation PAMAM dendrimers with hydroxyl surface groups in solutions: a general regularity, Polymer, 2004, 45: 165–170
    [211] Y. Shigemasaa, H. Usuia, M. Morimoto, et al, Chemical modification of chitin and chitosan 1: preparation of partially deacetylated chitin derivatives via a ring-opening reaction with cyclic acid anhydrides in lithium chloride/N,N-dimethylacetamide, Carbohydr. Polym., 1999, 39: 237–243
    [212] Hitoshi Sashiwa, Yoshihiro Shigemasa, Chemical modification of chitin and chitosan 2: preparation and water soluble property of N-acylated or N-alkylated partially deacetylated chitins, Carbohydr. Polym., 1999, 39: 127–138
    [213] Sashiwa H, Shigemasa Y, Roy R., Chemical modification of chitosan 8: preparation of s via short spacer, Carbohydr. Polym., 2002, 49:191–199
    [214] Sashiwa H, Shigemasa Y, Roy R., Chemical modification of chitosan 9: reaction of N-carboxyethylchitosan methyl ester with diamines of acetal ending PAMAM dendrimers, Carbohydr. Polym., 2002, 47:201-208
    [215] Sashiwa H, Shigemasa Y, Roy R., Chemical modification of chitosan 11: chitosan-dendrimer hybrid as a tree-like molecule, Carbohydr. Polym., 2002, 49:195–205
    [216] Hitoshi Sashiwa, Norioki Kawasaki, Atsuyoshi Nakayama, Chemical modification of chitosan. Part 15: Synthesis of novel chitosan derivatives by substitution of hydrophilic amine using N-carboxyethylchitosan ethyl ester as an intermediate, Carbohydr. Research, 2003, 338: 557–561
    [217] Hitoshi Sashiwa, Naoki Yamamori, Yoshifumi Ichinose, et al, Chemical Modification of Chitosan, 17a Michael Reaction of Chitosan with Acrylic Acid in Water, Macromol. Biosci., 2003, 3, 231–233
    [218] A. Saeed, M. Iqbal, M. W. Akhtar, Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste(black gram husk), J. Hazar. Mater., 2005, B117:65-73
    [219] 曲荣君, 孙昌梅, 纪春暖等, 相转移催化合成二乙烯苯交联聚(2-羟乙基硫甲基苯乙烯)树脂, 催化学报, 2005, 26(3): 183-188
    [220] Qu, R. J.; Wang, C. H.; Ji, C. N.; Sun, C. M.; Sun, X.R.; Cheng, G. X. J. Appl. Polym. Sci., 2005, 95, 1558-1565
    [221] Garcla-Delgado RA, Cotouelo-Minguez LM, Rodfiguez J J, Equilibrium study of single-solute adsorption of anionic surfactants with polymeric XAD resins, Sep.Sci.Technol. 1992, 27(7): 975-987.
    [222] John P. Bell, Marios Tsezos, Removal of hazardous organic pollutants by biomass adsorption, J. Water. Pollut. Control. Fed., 1987, 59: 191-198
    [223] D. Mohan, V. K. Gupta, S. K. Srivastava, et al, Kinetics of mercury adsorption from wastewater using activated carbon derived from fertilizer waste, Colloids Surfaces A: Physicochem Eng Aspects, 2001, 177: 169-181

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700