碳纳米管负载Pd基复合阳极催化剂的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲酸作为甲醇和氢气的替代燃料,在聚合物电解质膜燃料电池中的应用,越来越受到关注。特别是作为便携式电源装置,燃料甲酸具有很多不可比拟的优点:甲酸无毒,常温下不易燃;由于HCOO-离子和SO3-离子之间存在排斥作用,所以甲酸透过Nafion膜的渗透率远低于甲醇;在DFAFCs中甲酸的最高操作浓度可达到20 M,使得整个体系的能量密度增大,弥补了甲酸单位体积能量密度比甲醇小的缺点,提高了燃料电池的性能;此外,甲酸的理论开路电位(1.45 V)高于氢气和甲醇。有研究显示,Pd催化甲酸氧化反应的电活性高于Pt,这是因为甲酸在Pd催化剂上是通过直接途径被氧化的,不生成COads毒性中间产物,提高了催化剂的效率。所以,近年来,有一些课题组致力于Pd和Pd基复合金属催化剂对甲酸氧化的催化性能研究。
     在本论文的工作中,以Au和Ru为第二种金属,分别加入到Pd催化剂中,用浸渍法合成了Pd/MWCNTs, PdAu/MWCNTs, PdRu/MWCNTs三种不同组分的纳米催化剂。与Pd催化剂做对比,研究Pd-Au、Pd-Ru复合催化剂对甲酸氧化反应的催化性能。
     (1)以功能化的多壁碳纳米管为载体,采用温和的液相还原法合成了不同质量比的PdAu纳米催化剂,并研究了其对甲酸氧化反应的催化性能。制得的电催化剂用XRD和TEM表征了其元素组成、形态、分散度和粒径大小。电化学方法测试了其催化活性,数据显示,4Pd1Au/f-MWCNTs催化剂比单一金属Pd/f-MWCNTs催化剂拥有更高的电化学活性表面积、更好的催化氧化性能和更优的催化稳定性。
     (2)以羧化的多壁碳纳米管为载体,采用传统的浸渍还原法合成了纳米Pd、纳米Pd-Ru催化剂。TEM图显示出Pd和Ru纳米粒子很好的附着在碳纳米管的侧壁,分散状况良好。XRD图谱证实了Pd和Ru两种金属粒子以合金的形式共存。而电化学测试结果显示,4Pd1Ru/MWCNTs催化剂的电催化活性和稳定性都好于Pd/MWCNTs催化剂。
As an attractive candidate to replace methanol and hydrogen, formic acid (FA) has considerable advantages in polymer electrolyte membrane (PEM) fuel cells for powering portable devices. FA is nontoxic, nonflammable and has lower penetration efficiency through the Nafion membrane to methanol due to the repulsion between HCOO- and SO3- ions. These extraordinary properties of FA make it possible to use highly concentrated fuel solutions in DFAFCs, which compensates the low volumetric energy density of FA and improves the overall cell efficiency. In addition, FA has a higher electronic motive force (EMF,1.45 V) than either hydrogen or methanol. Recent studies showed that the electrocatalytic activity of Pd for FA oxidation is higher than that of Pt, because Pd catalysts can overcome the CO poisoning effect mainly through the direct pathway. In many studies, considerable effort has been made to develop the Pd and Pd-based binary metallic catalyst.
     In present work, Pd/f-MWCNTs, a series of bimetallic PdAu/f-MWCNTs catalysts and Pd/MWCNTs, PdRu/MWCNTs were synthesized by a mild impregnation reduction method. FA oxidation reaction of the catalysts were investigated, and compared with that of Pd catalyst.
     (1) PdAu nanocatalysts with different weight ratio of Pd and Au supported on functional multi-walled carbon nanotubes (f-MWCNTs) were prepared, and their electrocatalytic activity for the oxidation of formic acid was also studied. The electrocatalysts were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The electrochemical results showed that the 4PdlAu/f-MWCNTs (by weight) catalyst, exhibited distinctly higher activity and better stability in formic acid electrooxidation than the Pd/f-MWCNTs catalyst. So the suitable addition of Au to Pd/f-MWCNTs can promote the catalytic activity and poisoning tolerance of Pd catalyst for the electrooxidation of formic acid. The Au nanoparticles show potential in further improving the performance of Pd-based electrocatalysts for the direct formic acid fuel cells (DFAFCs).
     (2) We have developed nano-Pd, nano-PdRu catalysts supported on multi-walled carbon nanotubes. TEM and XRD studies indicated that so many fine Pd and Ru nanoparticles with well uniformed dispersion formed on the outer walls of the CNTs, and the coexistence of Pd and Ru particles in the catalyst. Further more, electrochemical results showed that the 4Pd1Ru/MWCNTs catalyst, weight ratio of 4Pd to 1Ru, exhibited distinctly higher catalytic activity and better stability on formic acid electrooxidation than the Pd/MWCNTs catalyst. So the nano-Ru improves potentially the performance of Pd-based electrocatalysts for the DFAFCs.
引文
[1]Martin Winter, Ralph J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors? Chemical Reviews,2004, 104 (10):4245-4270.
    [2]L. Carrette, K. A. Friedrich, U. Stimming, Fuel cells:Principles, types, fuels, and applications. ChemPhysChem,2000,1 (4):162-193.
    [3]陆天虹,孙公权,我国燃料电池发展概况.电源技术,1998,22(4):182-184.
    [4]杨辉,卢文庆,应用电化学,科学技术出版社,北京,2001.
    [5]Hari P. Dhar, On solid polymer fuel cells. Journal of Electroanalytical Chemistry, 1993,357 (1-2):237-250.
    [6]M. Waidhas, W. Drenckhahn, W. Preidel, H. Landes, Direct-fuelled fuel cells. Journal of Power Sources,61 (1-2):91-97.
    [7]郭志东,清洁能源汽车的开发动向—燃料电池汽车.汽车电器,1999,(1):4-7.
    [8]韩明,徐洪峰,衣宝廉,质子交换膜燃料电池新结构.电化学,1999,5(1):111-114.
    [9]侯明,吴金锋,衣宝廉,曲天锡,质子交换膜燃料电池新型静态排水结构.电源技术,2002,26(3):131-133.
    [10]Hongmei Yu, Zhongjun Hou, Baolian Yi, Zhiyin Lin, Composite anode for CO tolerance proton exchange membrane fuel cells. Journal of Power Sources,2002,105 (1):52-57.
    [11]张海峰,侯明,洪有陆,林治银,唐倩,焦玉野,衣宝廉,张华民,千瓦级质子交换膜燃料电池.电源技术,2003,27(4):348-350.
    [12]Yongmin Liang, Huamin Zhang. Hexiang Zhong, Xiaobing Zhu, Zhiqun Tian, Dongyan Xu, Baolian Yi, Preparation and characterization of carbon-supported PtRuIr catalyst with excellent CO-tolerant performance for proton-exchange membrane fuel cells. Journal of Catalysis,2006,238 (2):468-476.
    [13]Cheng Bi, Huamin Zhang, Yu Zhang, Shaohua Xiao, Hydrophilic treatment poly(tetrafluoroethylene) reinforced sulfonated poly(ether ether ketone) composite membrane for proton exchange membrane fuel cell application. Journal of Power Sources,2009,194(2):838-842.
    [14]张胜涛,温彦,燃料电池发展及其应用.世界科技研究与发展,2003,25(3): 57-66.
    [15]A. J. Appleby, Fuel cell technology and innovation. Journal of Power Sources,1992, 37 (1-2):223-239.
    [16]衣宝廉,燃料电池的原理、技术状态与展望.电池工业,2003,8(1):16-22.
    [17]查全性,燃料电池技术的发展与我国应有的对策.应用化学1993,(105):38-42.
    [18]S. Surampudi, S. R. Narayanan, E. Vamos, H. Frank, G. Halpert, A. LaConti, J. Kosek, G. K. Surya Prakash, G. A. Olah, Advances in direct oxidation methanol fuel cells. Journal of Power Sources,1994,47 (3):377-385.
    [19]刘晓霞,屈睿,燃料电池的研究与应用.广州化工,2007,35(4):21-26.
    [20]张扬健,毛宗强,谢晓峰,王诚,再生燃料电池的研究与应用.化学进展,2006,18(5):635-640.
    [21]Tsutomu Yamaguchi, Recent progress in solid superacid. Applied Catalysis,1990,61 (1):1-25.
    [22]Vincenzo Antonucci, Direct methanol fuel cells for mobile applications:A strategy for the future. Fuel Cells Bulletin,1999,2(7):6-8.
    [23]Claude Lamy, Alexandre Lima, Veronique LeRhun, Fabien Delime, Christophe Coutanceau, Jean-Michel Leger, Recent advances in the development of direct alcohol fuel cells (DAFC). Journal of Power Sources,2002,105(2):283-296.
    [24]Xiaoming Ren, Piotr Zelenay, Sharon Thomas, John Davey, Shimshon Gottesfeld, Recent advances in direct methanol fuel cells at Los Alamos National Laboratory. Journal of Power Sources,2000,86 (1-2):111-116.
    [25]Sang Hern Seo, Chang Sik Lee, Impedance Characteristics of the Direct Methanol Fuel Cell under Various Operating Conditions. Energy & Fuels,2008,22 (2): 1204-1211.
    [26]K. Scott, P. Argyropoulos, K. Sundmacher, A model for the liquid feed direct methanol fuel cell. Journal of Electroanalytical Chemistry,1999,477 (2):97-110.
    [27]B. D. McNicol, D. A. J. Rand, K. R. Williams, Direct methanol-air fuel cells for road transportation. Journal of Power Sources,1999,83(1-2):15-31.
    [28]A. K. Shukla, R. K. Raman, N. A. Choudhury, K. R. Priolkar, P. R. Sarode, S. Emura, R. Kumashiro, Carbon-supported Pt-Fe alloy as a methanol-resistant oxygen-reduction catalyst for direct methanol fuel cells. Journal of Electroanalytical Chemistry,2004,563(2):181-190.
    [29]A. K. Shukla, C. L. Jackson, K. Scott, G. Murgia, A solid-polymer electrolyte direct methanol fuel cell with a mixed reactant and air anode. Journal of Power Sources, 2002,111(1):43-51.
    [30]W. J. Zhou, B. Zhou, W. Z. Li, Z. H. Zhou, S. Q. Song, G. Q. Sun, Q. Xin, S. Douvartzides, M. Goula, P. Tsiakaras, Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts. Journal of Power Sources, 2004,126(1-2):16-22.
    [31]T. Shobba, S. M. Mayanna, C. A. C. Sequeira, Preparation and characterization of Co-W alloys as anode materials for methanol fuel cells. Journal of Power Sources, 2002,108 (1-2):261-264.
    [32]H. G. Haubold, Th Vad, H. Jungbluth, P. Hiller, Nano structure of NAFION:a SAXS study. Electrochimica Acta,2001,46 (10-11):1559-1563.
    [33]Wenzhen Li, Weijiang Zhou, Huanqiao Li, Zhenhua Zhou, Bing Zhou, Gongquan Sun, Qin Xin, Nano-stuctured Pt-Fe/C as cathode catalyst in direct methanol fuel cell. Electrochimica Acta,2004,49 (7):1045-1055.
    [34]L. J. Hobson, Y. Nakano, H. Ozu, S. Hayase, Targeting improved DMFC performance. Journal of Power Sources,2002,104 (1):79-84.
    [35]Xin Wang, Ji-Ming Hu, I. Ming Hsing, Electrochemical investigation of formic acid electro-oxidation and its crossover through a Nafion(?) membrane. Journal of Electroanalytical Chemistry,2004,562 (1):73-80.
    [36]杨苏东,新疆大学硕士学位论文,2008.
    [37]C. Rice, S. Ha, R. I. Masel, P. Waszczuk, A. Wieckowski, Tom Barnard, Direct formic acid fuel cells. Journal of Power Sources,2002,111 (1):83-89.
    [38]Melissa F. Mrozek, Hai Luo, Michael J. Weaver, Formic Acid Electrooxidation on Platinum-Group Metals:Is Adsorbed Carbon Monoxide Solely a Catalytic Poison? Langmuir,2000,16 (22):8463-8469.
    [39]S. G. Sun, J. Clavilier, A. Bewick, The mechanism of electrocatalytic oxidation of formic acid on Pt (100) and Pt (111) in sulphuric acid solution:an emirs study. Journal of Electroanalytical Chemistry,1988,240 (1-2):147-159.
    [40]Andrew Capon, Roger Parson, The oxidation of formic acid at noble metal electrodes:I. Review of previous work. Journal of Electroanalytical Chemistry,1973, 44(1):1-7.
    [41]A. Hamnett, Mechanism and electrocatalysis in the direct methanol fuel cell. Catalysis Today,1997,38 (4):445-457.
    [42]J. Munk, P. A. Christensen, A. Hamnett, E. Skou, The electrochemical oxidation of methanol on platinum and platinum+ruthenium particulate electrodes studied by in-situ FTIR spectroscopy and electrochemical mass spectrometry. Journal of Electroanalytical Chemistry,1996,401 (1-2):215-222.
    [43]Dawn Kardash, Jimin Huang, Carol Korzeniewski, Surface Electrochemistry of CO and Methanol at 25-75℃ Probed in Situ by Infrared Spectroscopy. Langmuir,1999, 16 (4):2019-2023.
    [44]Andrew Capon, Roger Parsons, The oxidation of formic acid at noble metal electrodes:Part 4. Platinum+palladium alloys. Journal of Electroanalytical Chemistry,1975,65 (1, Part 1):285-305.
    [45]E. Rach, J. Heitbaum, Electrochemically induced surface modifications of Pt-Au alloy. Electrochimica Acta,1987,32 (8):1173-1180.
    [46]X. H. Xia, New insights into the influence of upd Sn on the oxidation of formic acid on platinum in acidic solution. Electrochimica Acta,1999,45(7):1057-1066.
    [47]A. Pavese, V. Solis, Comparative investigation of formic acid and formaldehyde oxidation on palladium by a rotating ring-disc electrode and on-line mass spectroscopy in acidic solutions. Journal of Electroanalytical Chemistry,1991,301 (1-2):117-127.
    [48]Zhaolin Liu, Liang Hong, Mun Pun Tham, Tze Han Lim, Huixin Jiang, Nanostructured Pt/C and Pd/C catalysts for direct formic acid fuel cells. Journal of Power Sources,2006,161(2):831-835.
    [49]S. Ha, R. Larsen, R. I. Masel, Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells. Journal of Power Sources,2005,144 (1):28-34.
    [50]A. Kabbabi, R. Faure, R. Durand, B. Beden, F. Hahn, J. M. Leger, C. Lamy, In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum-ruthenium bulk alloy electrodes. Journal of Electroanalytical Chemistry, 1998,444(1):41-53.
    [51]J. Prabhuram, R. Manoharan, Investigation of methanol oxidation on unsupported platinum electrodes in strong alkali and strong acid. Journal of Power Sources,1998, 74(1):54-61.
    [52]K. Persson, A. Ersson, K. Jansson, N. Iverlund, S. Jaras, Influence of co-metals on bimetallic palladium catalysts for methane combustion. Journal of Catalysis,2005, 231(1):139-150.
    [53]Robert F. Service, MATERIALS SCIENCE:Superstrong Nanotubes Show They Are Smart, Too. Science,1998,281 (5379):940-942.
    [54]Carter T. White, Tchavdar N. Todorov, Quantum electronics:Nanotubes go ballistic. Nature,2001,411 (6838):649-651.
    [55]Adrian Bachtold, Christoph Strunk, Jean-Paul Salvetat, Jean-Marc Bonard, Laszlo Forro, Thomas Nussbaumer, Christian Schonenberger, Aharonov-Bohm oscillations in carbon nanotubes. Nature,1999,397 (6721):673-675.
    [56]Sander J. Tans, Alwin R. M. Verschueren, Cees Dekker, Room-temperature transistor based on a single carbon nanotube. Nature,1998,393 (6680):49-52.
    [57]D. L. Carroll, Ph Redlich, X. Blase, J. C. Charlier, S. Curran, P. M. Ajayan, S. Roth, M. Ruhle, Effects of Nanodomain Formation on the Electronic Structure of Doped Carbon Nanotubes. Physical Review Letters,1998,81 (11):2332.
    [58]R. S. Lee, H. J. Kim, J. E. Fischer, A. Thess, R. E. Smalley, Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature, 1997,388(6639):255-257.
    [59]A. M. Rao, P. C. Eklund, Shunji Bandow, A. Thess, R. E. Smalley, Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature, 1997,388(6639):257-259.
    [60]Min-Feng Yu, Bradley S. Files, Sivaram Arepalli, Rodney S. Ruoff, Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties. Physical Review Letters,2000,84 (24):5552.
    [61]Eric W. Wong, Paul E. Sheehan, Charles M. Lieber, Nanobeam Mechanics:Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science,1997,277 (5334): 1971-1975.
    [62]朱赞赞,兰州大学硕士学位论文,2008.
    [63]Jian Chen. Mark A. Hamon, Hui Hu, Yongsheng Chen, Apparao M. Rao, Peter C. Eklund, Robert C. Haddon, Solution Properties of Single-Walled Carbon Nanotubes. Science,1998,282 (5386):95-98.
    [64]Jason E. Riggs, Zhixin Guo, David L. Carroll. Ya-Ping Sun, Strong Luminescence of Solubilized Carbon Nanotubes. Journal of the American Chemical Society,2000,122 (24):5879-5880.
    [65]S. C. Tsang, P. J. F. Harris, M. L. H. Green, Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature,1993,362 (6420):520-522.
    [66]P. M. Ajayan, T. W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, H. Hiura, Opening carbon nanotubes with oxygen and implications for filling. Nature,1993,362 (6420): 522-525.
    [67]Jeffrey L. Bahr, Jiping Yang, Dmitry V. Kosynkin, Michael J. Bronikowski, Richard E. Smalley, James M. Tour, Functionalization of Carbon Nanotubes by Electrochemical Reduction of Aryl Diazonium Salts:A Bucky Paper Electrode. Journal of the American Chemical Society,2001,123(27):6536-6542.
    [68]Vasilios Georgakilas, Konstantinos Kordatos, Maurizio Prato, Dirk M. Guldi, Michael Holzinger, Andreas Hirsch, Organic Functionalization of Carbon Nanotubes. Journal of the American Chemical Society,2002,124 (5):760-761.
    [69]E. T. Mickelson, C. B. Huffman, A. G. Rinzler, R. E. Smalley, R. H. Hauge, J. L. Margrave, Fluorination of single-wall carbon nanotubes. Chemical Physics Letters, 1998,296(1-2):188-194.
    [70]P. J. Boul, J. Liu, E. T. Mickelson, C. B. Huffman, L. M. Ericson, I. W. Chiang, K. A. Smith, D. T. Colbert, R. H. Hauge, J. L. Margrave, R. E. Smalley, Reversible sidewall functionalization of buckytubes. Chemical Physics Letters,1999,310 (3-4):367-372.
    [71]Jie Liu, Michael J. Casavant, Michael Cox, D. A. Walters, P. Boul, Wei Lu, A. J. Rimberg, K. A. Smith, Daniel T. Colbert, Richard E. Smalley, Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates. Chemical Physics Letters,1999,303(1-2):125-129.
    [72]Baizeng Fang, Minsik Kim, Sohee Hwang, Jong-Sung Yu, Colloid-imprinted carbon with tailored nanostructure as an unique anode electrocatalyst support for formic acid oxidation. Carbon,2008,46(6):876-883.
    [73]Zhaolin Liu, Xuanhao Lin, Jim Yang Lee; Weide Zhang. Ming Han. Leong Ming Gan, Preparation and Characterization of Platinum-Based Electrocatalysts on Multiwalled Carbon Nanotubes for Proton Exchange Membrane Fuel Cells. Langmuir,2002,18(10):4054-4060.
    [74]J. M. Planeix, N. Coustel, B. Coq, V. Brotons, P. S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P. M. Ajayan, Application of Carbon Nanotubes as Supports in Heterogeneous Catalysis. Journal of the American Chemical Society,1994,116(17): 7935-7936.
    [75]Wenzhen Li, Changhai Liang, Weijiang Zhou, Jieshan Qiu, Zhou, Gongquan Sun, Qin Xin, Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells. The Journal of Physical Chemistry B,2003,107 (26):6292-6299.
    [76]Nelly M. Rodriguez, Myung-Soo Kim, R. Terry K. Baker, Carbon Nanofibers:A Unique Catalyst Support Medium. The Journal of Physical Chemistry,1994,98 (50): 13108-13111.
    [77]T. W. Ebbesen, P. M. Ajayan, Large-scale synthesis of carbon nanotubes. Nature, 1992,358 (6383):220-222.
    [78]Cyntia Cristina de Paula, Antonio Garcia Ramos, Andre Cesar da Silva, Edson Cocchieri Botelho, Mirabel Cerqueira Rezende, Fabrication of glassy carbon spools for utilization in fiber optic gyroscopes. Carbon,2002,40 (5):787-788.
    [79]J. P. Issi, L. Langer, J. Heremans, C. H. Olk, Electronic properties of carbon nanotubes:Experimental results. Carbon,1995,33 (7):941-948.
    [80]Robert V. Hull, Liang Li, Yangchuan Xing, Charles C. Chusuei, Pt Nanoparticle Binding on Functionalized Multiwalled Carbon Nanotubes. Chemistry of Materials, 2006,18(7):1780-1788.
    [81]Rongqing Yu, Luwei Chen, Qiping Liu, Jianyi Lin, Kuang-Lee Tan, Siu Choon Ng, Hardy S. O. Chan, Guo-Qin Xu, T. S. Andy Hor, Platinum Deposition on Carbon Nanotubes via Chemical Modification. Chemistry of Materials,1998,10 (3): 718-722.
    [82]L. M. Ang, T. S. A. Hor, G. Q. Xu, C. H. Tung, S. P. Zhao, J. L. S. Wang, Decoration of activated carbon nanotubes with copper and nickel. Carbon,2000,38 (3): 363-372.
    [83]Guangli Che, Brinda B. Lakshmi, Charles R. Martin. Ellen R. Fisher, Metal-Nanocluster-Filled Carbon Nanotubes:Catalytic Properties and Possible Applications in Electrochemical Energy Storage and Production. Langmuir,1999,15 (3):750-758.
    [84]Deryn Chu, Rongzhong Jiang, Performance of polymer electrolyte membrane fuel cell (PEMFC) stacks:Part I. Evaluation and simulation of an air-breathing PEMFC stack. Journal of Power Sources,1999,83 (1-2):128-133.
    [85]C. Lamy, E. M. Belgsir, J. M. Leger, Electrocatalytic oxidation of aliphatic alcohols: Application to the direct alcohol fuel cell (DAFC). Journal of Applied Electrochemistry,2001,31 (7):799-809.
    [86]Shuqin Song, Vasiliki Maragou, Panagiotis Tsiakaras, How Far Are Direct Alcohol Fuel Cells From Our Energy Future? Journal of Fuel Cell Science and Technology, 2007,4 (2):203-209.
    [87]Umit B. Demirci, Direct liquid-feed fuel cells:Thermodynamic and environmental concerns. Journal of Power Sources,2007,169 (2):239-246.
    [88]Vladimir Neburchilov, Jonathan Martin, Haijiang Wang, Jiujun Zhang, A review of polymer electrolyte membranes for direct methanol fuel cells. Journal of Power Sources,2007,169 (2):221-238.
    [89]C. Rice, S. Ha, R. I. Masel, A. Wieckowski, Catalysts for direct formic acid fuel cells. Journal of Power Sources,2003,115 (2):229-235.
    [90]陆天虹,唐亚文,张玲玲,高颖,直接甲酸燃料电池的优越性.电池工业,2007,11(6):412-414.
    [91]Bradley D. Bath, Henry S. White, Erik R. Scott, Electrically Facilitated Molecular Transport. Analysis of the Relative Contributions of Diffusion, Migration, and Electroosmosis to Solute Transport in an Ion-Exchange Membrane. Analytical Chemistry,2000,72 (3):433-442.
    [92]S. Ha, B. Adams, R. I. Masel, A miniature air breathing direct formic acid fuel cell. Journal of Power Sources,2004,128 (2):119-124.
    [93]Xingwen Yu, Peter G. Pickup, Recent advances in direct formic acid fuel cells (DFAFC). Journal of Power Sources,2008,182 (1):124-132.
    [94]Young-Woo Rhee, Su Y. Ha, Richard I. Masel, Crossover of formic acid through Nafion(?) membranes. Journal of Power Sources,2003,117 (1-2):35-38.
    [95]Piotr Waszczuk, Thomas M. Barnard, Cynthia Rice, Richard I. Masel, Andrzej Wieckowski, A nanoparticle catalyst with superior activity for electrooxidation of formic acid. Electrochemistry Communications,2002,4(7):599-603.
    [96]Yimin Zhu, Zakia Khan, R. I. Masel, The behavior of palladium catalysts in direct formic acid fuel cells. Journal of Power Sources,2005,139 (1-2):15-20.
    [97]Wei Ping Zhou, Adam Lewera, Robert Larsen, Rich I. Masel, Paul S. Bagus, Andrzej Wieckowski, Size Effects in Electronic and Catalytic Properties of Unsupported Palladium Nanoparticles in Electrooxidation of Formic Acid. The Journal of Physical Chemistry B,2006,110 (27):13393-13398.
    [98]Stefanie v Andrian, Josefin Meusinger, Process analysis of a liquid-feed direct methanol fuel cell system. Journal of Power Sources,2000,91 (2):193-201.
    [99]Lingling Zhang, Tianhong Lu, Jianchun Bao, Yawen Tang, Cun Li, Preparation method of an ultrafine carbon supported Pd catalyst as an anodic catalyst in a direct formic acid fuel cell. Electrochemistry Communications,2006,8 (10):1625-1627.
    [100]R. S. Jayashree, J. S. Spendelow, J. Yeom, C. Rastogi, M. A. Shannon, P. J. A. Kenis, Characterization and application of electrodeposited Pt, Pt/Pd, and Pd catalyst structures for direct formic acid micro fuel cells. Electrochimica Acta, 2005,50(24):4674-4682.
    [101]P. K. Babu, H. S. Kim, J. H. Chung, E. Oldfield, A. Wieckowski, Bonding and Motional Aspects of CO Adsorbed on the Surface of Pt Nanoparticles Decorated with Pd. The Journal of Physical Chemistry B,2004,108(52):20228-20232.
    [102]M. Arenz, V. Stamenkovic, T. J. Schmidt, K. Wandelt, P. N. Ross, N. M. Markovic, The electro-oxidation of formic acid on Pt-Pd single crystal bimetallic surfaces. Physical Chemistry Chemical Physics,2003,5(19):4242-4251.
    [103]Yu Zhu, Yongyin Kang, Zhiqing Zou, Qun Zhou, Junwei Zheng, Baojia Xia, Hui Yang, A facile preparation of carbon-supported Pd nanoparticles for electrocatalytic oxidation of formic acid. Electrochemistry Communications,2008, 10(5):802-805.
    [104]Sudong Yang, Xiaogang Zhang, Hongyu Mi, Xiangguo Ye, Pd nanoparticles supported on functionalized multi-walled carbon nanotubes (MWCNTs) and electrooxidation for formic acid. Journal of Power Sources,2008,175(1):26-32.
    [105]S. Ha, R. Larsen, Y. Zhu, R.I. Masel, Direct formic acid fuel cells with 600 mA cm 2 at 0.4 V and 22℃. Full Cells,2004, 4(4):337-343.
    [106]L. A. Kibler, A. M. El-Aziz, D. M. Kolb, Electrochemical behaviour of pseudomorphic overlayers:Pd on Au(1 1 1). Journal of Molecular Catalysis A: Chemical,2003,199 (1-2):57-63.
    [107]M. Baldauf, D. M. Kolb, Formic Acid Oxidation on Ultrathin Pd Films on Au(hkl) and Pt(hkl) Electrodes. The Journal of Physical Chemistry,1996,100 (27): 11375-11381.
    [108]Xin Wang, Yawen Tang, Ying Gao, Tianhong Lu, Carbon-supported Pd-Ir catalyst as anodic catalyst in direct formic acid fuel cell. Journal of Power Sources,2008, 175 (2):784-788.
    [109]Qingfeng Yi, Wu Huang, Xiaoping Liu, Guorong Xu, Zhihua Zhou, Aicheng Chen, Electroactivity of titanium-supported nanoporous Pd-Pt catalysts towards formic acid oxidation. Journal of Electroanalytical Chemistry,2008,619-620 197-205.
    [110]Robert Larsen, Su Ha, Joseph Zakzeski, Richard I. Masel, Unusually active palladium-based catalysts for the electrooxidation of formic acid. Journal of Power Sources,2006,157(1):78-84.
    [111]Weijiang Zhou. Jim Yang Lee, Highly active core-shell Au@Pd catalyst for formic acid electrooxidation. Electrochemistry Communications,2007,9 (7):1725-1729.
    [112]Ines Rabelo de Moraes, Elaine Yoshiko Matsubara, Jose Mauricio Rosolen, Electrochemical Evidence of Strong Electronic Interaction of PtRu on Carbon Nanotubes with High Density of Defects. Electrochemical and Solid-State Letters, 2008,11(12):K109-K112.
    [113]Dao-jun Guo, Hu-lin Li, Electrochemical synthesis of Pd nanoparticles on functional MWNT surfaces. Electrochemistry Communications,2004,6 (10): 999-1003.
    [114]Cheng Wang, Mahesh Waje, Xin Wang, Jason M. Tang, Robert C. Haddon, Yan, Proton Exchange Membrane Fuel Cells with Carbon Nanotube Based Electrodes. Nano Letters,2003,4(2):345-348.
    [115]G.G. Wildgoose, C.E. Banks, R.G. Compton, Metal Nanoparticles and Related Materials Supported on Carbon Nanotubes:Methods and Applications. Small,2006, 2(2):182-193.
    [116]Hui Yang, Nicolas Alonso-Vante, Jean-Michel Leger, Claude Lamy, Tailoring, Structure, and Activity of Carbon-Supported Nanosized Pt-Cr Alloy Electrocatalysts for Oxygen Reduction in Pure and Methanol-Containing Electrolytes. The Journal of Physical Chemistry B,2004,108 (6):1938-1947.
    [117]V. Radmilovic, H. A. Gasteiger, P. N. Ross, Structure and Chemical Composition of a Supported Pt-Ru Electrocatalyst for Methanol Oxidation. Journal of Catalysis, 1995,154(1):98-106.
    [118]David L. Lahr, Sylvia T. Ceyer, Catalyzed CO Oxidation at 70 K on an Extended Au/Ni Surface Alloy. Journal of the American Chemical Society,2006,128 (6): 1800-1801.
    [119]毕道治,中国燃料电池的发展.电源技术,2000,24(2):103-107.
    [120]Su Ha, Cynthia A. Rice, Richard I. Masel, Andrzej Wieckowski, Methanol conditioning for improved performance of formic acid fuel cells. Journal of Power Sources,2002,112(2):655-659.
    [121]Yimin Zhu, Su Y. Ha, Richard I. Masel, High power density direct formic acid fuel cells. Journal of Power Sources,2004,130 (1-2):8-14.
    [122]Lingling Zhang, Yawen Tang, Jianchun Bao, Tianhong Lu, Cun Li, A carbon-supported Pd-P catalyst as the anodic catalyst in a direct formic acid fuel cell. Journal of Power Sources,2006,162 (1):177-179.
    [123]J. Yeom, R. S. Jayashree, C. Rastogi, M. A. Shannon, P. J. A. Kenis, Passive direct formic acid micro fabricated fuel cells. Journal of Power Sources,2006,160 (2): 1058-1064.
    [124]Falin Chen, Min-Hsing Chang, Mu-Kun Lin, Analysis of membraneless formic acid microfuel cell using a planar microchannel. Electrochimica Acta,2007,52(7): 2506-2514.
    [125]Wei Chen, Yawen Tang, Jianchun Bao, Ying Gao, Changpeng Liu, Wei Xing, Tianhong Lu, Study of carbon-supported Au catalyst as the cathodic catalyst in a direct formic acid fuel cell prepared using a polyvinyl alcohol protection method. Journal of Power Sources,2007,167(2):315-318.
    [126]Sunghyun Uhm, Sung Taik Chung, Jaeyoung Lee, Activity of Pt anode catalyst modified by underpotential deposited Pb in a direct formic acid fuel cell. Electrochemistry Communications,2007,9 (8):2027-2031.
    [127]Xiaochun Zhou, Wei Xing, Changpeng Liu, Tianhong Lu, Platinum-macrocycle co-catalyst for electro-oxidation of formic acid. Electrochemistry Communications, 2007,9(7):1469-1473.
    [128]Craig M. Miesse, Won Suk Jung, Kyoung-Jin Jeong, Jae Kwang Lee, Jaeyoung Lee, Jonghee Han, Sung Pil Yoon, Suk Woo Nam, Tae-Hoon Lim, Seong-Ahn Hong, Direct formic acid fuel cell portable power system for the operation of a laptop computer. Journal of Power Sources,2006,162 (1):532-540.
    [129]Yunjie Huang, Xiaochun Zhou, Jianhui Liao, Changpeng Liu, Tianhong Lu, Wei Xing, Preparation of Pd/C catalyst for formic acid oxidation using a novel colloid method. Electrochemistry Communications,2008,10 (4):621-624.
    [130]Xuguang Li, I. Ming Hsing, Electrooxidation of formic acid on carbon supported PtxPdl-x (x=0-1) nanocatalysts. Electrochimica Acta,2006,51(17):3477-3483.
    [131]Junhua Jiang, Anthony Kucernak, Nanostructured platinum as an electrocatalyst for the electrooxidation of formic acid. Journal of Electroanalytical Chemistry,2002, 520(1-2):64-70.
    [132]J. D. Lovic, A. V. Tripkovic, S. Lj Gojkovic, K. Dj Popovic, D. V. Tripkovic, P. Olszewski, A. Kowal, Kinetic study of formic acid oxidation on carbon-supported platinum electrocatalyst. Journal of Electroanalytical Chemistry,2005,581 (2): 294-302.
    [133]Fred S. Thomas, Richard I. Masel, Formic acid decomposition on palladium-coated Pt(110). Surface Science,2004,573(2):169-175.
    [134]J. B. Xu, T. S. Zhao, Z. X. Liang, Carbon supported platinum-gold alloy catalyst for direct formic acid fuel cells. Journal of Power Sources,2008,185 (2):857-861.
    [135]Xiao-Ming Wang, Yong-Yao Xia, Synthesis, characterization and catalytic activity of an ultrafine Pd/C catalyst for formic acid electrooxidation. Electrochimica Acta, 2009,54(28):7525-7530.
    [136]Xiaoguang Wang, Weimin Wang, Zhen Qi, Changchun Zhao, Hong Ji, Zhonghua Zhang, High catalytic activity of ultrafine nanoporous palladium for electro-oxidation of methanol, ethanol, and formic acid. Electrochemistry Communications,2009,11 (10):1896-1899.
    [137]Yujiao Wang, Bing Wu, Ying Gao, Yawen Tang, Tianhong Lu, Wei Xing, Changpeng Liu, Kinetic study of formic acid oxidation on carbon supported Pd electrocatalyst. Journal of Power Sources,2009,192 (2):372-375.
    [138]Yange Suo, I. Ming Hsing, Size-controlled synthesis and impedance-based mechanistic understanding of Pd/C nanoparticles for formic acid oxidation. Electrochimica Acta,2009,55 (1):210-217.
    [139]Zhi-Peng Sun, Xiao-Gang Zhang, Hao Tong. Yan-Yu Liang, Hu-Lin Li, Sulfonation of ordered mesoporous carbon supported Pd catalysts for formic acid electrooxidation. Journal of Colloid and Interface Science,2009,337 (2): 614-618.
    [140]Huanqiao Li, Gongquan Sun, Qian Jiang, Mingyuan Zhu, Shiguo Sun, Qin Xin, Synthesis of highly dispersed Pd/C electro-catalyst with high activity for formic acid oxidation. Electrochemistry Communications,2007,9 (6):1410-1415.
    [141]张玲玲,唐亚文,陆天虹,周益明,有机溶胶法制备的Pd/C催化剂对甲酸氧化的电催化性能.南师大学报(自然科学版),2006,29(3):58-61.
    [142]Feng Ping Hu, Zhenyou Wang, Yongliang Li, Changming Li, Xin Zhang, Pei Kang Shen, Improved performance of Pd electrocatalyst supported on ultrahigh surface area hollow carbon spheres for direct alcohol fuel cells. Journal of Power Sources, 2008,177(1):61-66.
    [143]Huanqiao Li, Gongquan Sun, Qian Jiang, Mingyuan Zhu, Shiguo Sun, Qin Xin, Preparation and characterization of Pd/C catalyst obtained in NH3-mediated polyol process. Journal of Power Sources,2007,172 (2):641-649.
    [144]Junjie Ge, Wei Xing, Xinzhong Xue, Changpeng Liu, Tianhong Lu, Jianhui Liao, Controllable Synthesis of Pd Nanocatalysts for Direct Formic Acid Fuel Cell (DFAFC) Application:From Pd Hollow Nanospheres to Pd Nanoparticles. The Journal of Physical Chemistry C,2007,111 (46):17305-17310.
    [145]Changhoon Jung, Carlos M. Sanchez-Sanchez, Cheng-Lan Lin, Joaquin Rodriguez-Lopez, Allen J. Bard, Electrocatalytic Activity of Pd-Co Bimetallic Mixtures for Formic Acid Oxidation Studied by Scanning Electrochemical Microscopy. Analytical Chemistry,2009,81 (16):7003-7008.
    [146]Falong Jia. Ka-wai Wong, Ruxu Du, Direct growth of highly catalytic palladium nanoplates array onto gold substrate by a template-free electrochemical route. Electrochemistry Communications,2009,11 (3):519-521.
    [147]Xingwen Yu, Peter G. Pickup, Novel Pd-Pb/C bimetallic catalysts for direct formic acid fuel cells. Journal of Power Sources,2009,192 (2):279-284.
    [148]B. Liu, H. Y. Li, L. Die, X. H. Zhang, Z. Fan, J. H. Chen, Carbon nanotubes supported PtPd hollow nanospheres for formic acid electrooxidation. Journal of Power Sources,2009,186 (1):62-66.
    [149]Yanhui Xu, Xiangqin Lin, Facile fabrication and electrocatalytic activity of Pt0.9Pd0.1 alloy film catalysts. Journal of Power Sources,2007,170(1):13-19.
    [150]Zhaolin Liu, Xinhui Zhang, Carbon-supported PdSn nanoparticles as catalysts for formic acid oxidation. Electrochemistry Communications,2009,11 (8): 1667-1670.
    [151]D. Morales-Acosta, J. Ledesma-Garcia, Luis A. Godinez, H. G. Rodriguez, L. Alvarez-Contreras, L. G. Arriaga, Development of Pd and Pd-Co catalysts supported on multi-walled carbon nanotubes for formic acid oxidation. Journal of Power Sources,2010,195(2):461-465

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700