1,3-二硫杂环戊烯-2-硫酮及其衍生物的光诱导反应动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近二十多年来,有机富硫分子如二硫纶(dithiolene)化合物dmit和四硫富瓦烯(TTF)衍生物作为有机光电磁的功能化合物,一直引起人们很大的兴趣。在二十多年时间里,TTF的化学研究主要围绕如何提高基于TTF衍生物电荷转移复合物的导电性能展开。随着超分子化学、分子电子学研究的发展和深入,TTF单元由于其特殊的电化学行为、组装特性、易衍生性等特殊物理化学性质,日益成为上述研究领域中重要的功能性结构单元。因此,1,3-二硫杂环类化合物作为合成四硫富瓦烯(TTF)衍生物的重要的前驱体,对其进行短时动力学研究具有很重要的意义。
     本文采用共振拉曼光谱技术研究了三硫代碳酸乙烯酯,1,3-二硫杂环戊烯-2-硫酮,2-硫代- 1 ,3 -二硫- 4 ,5 -二甲酸二甲酯和4 ,5-二亚乙基-2-硫代-1,3-二硫醇-2-硫酮化合物在适合溶剂中的光诱导反应在Franck-Condon区域的短时动力学特征,在以下几个方面做出了贡献。
     (1)测得三硫代碳酸乙烯酯在环己烷中的282.4nm、299.1nm、309.1nm和319.9nm激发光的共振拉曼光谱,研究结果揭示了三硫代碳酸乙烯酯的A与B两个吸收带的激发态动力学结构的差异。首先,三硫代碳酸乙烯酯A带的电子跃迁可归属为π(C=S)→π*(C=S)的跃迁,C=S伸缩振动ν_(11)为主要的振动模,而其泛频和组合频占据了共振拉曼光谱强度的主要部分,表明其在A带的光诱导短时动力学主要沿着这一个活性模展开。而S-C-S对称伸缩振动ν_(18), H-C-C剪切振动及C-C伸缩振动ν_9,S-C-S剪切振动+C-S-C的面内弯曲振动ν_(21),S=CS_2面外变形振动2ν_(19)四个活性模的同时存在也表明其在Franck-Condon区域的短时动力学具有多维性。B带的电子跃迁不同与A带,它的B吸收带可归属为n(C=S)→σ*(S-C-S),其表明三硫代碳酸乙烯酯B带的光诱导短时动力学主要沿着C=S伸缩振动ν11,S-C-S对称伸缩振动ν_(18), S-C-S反对称伸缩及H-C-H摇摆振动ν_(14),S-C-S剪切振动+C-S-C面内弯曲振动ν_(21),H-C-H摇摆振动ν_8,在S-C-C-S的C-S反对称伸缩振动ν_(16),C=S面内摇摆振动ν_(22)、S–C–S反对称伸缩振动ν_(15)这八个活性模展开。而8个活性模的同时存在也表明其在Franck-Condon区域的短时动力学具有多维性。此外,就S=CS_2基团的局部对称性而言,A带和B带的共振拉曼光谱出现了不同的反对称振动模。B带(282.4nm)的共振拉曼光谱出现了S-C-S反对称伸缩及H-C-H摇摆振动ν_(14)与在S-C-C-S的C-S反对称伸缩振动ν_(16),而A带(309.1和319.9nm)的共振拉曼光谱出现了S=CS_2面外变形振动的偶数倍频2ν_(19)、4ν_(19),这说明分子在S_3态发生了官能团S=CS_2的碳原子的锥形化,而且B带的S-C-S反对称伸缩及H-C-H摇摆振动ν_(14)与在S-C-C-S的C-S反对称伸缩振动ν_(16)的出现也表明两个C-S键经历了不同的键长变化。
     (2)测得1,3-二硫杂环戊烯-2-硫酮在环己烷中的341.5nm、354.7nm和368.9nm激发光的共振拉曼光谱,研究结果表明1,3-二硫杂环戊烯-2-硫酮的共振拉曼光谱指认为7个Franck-Condon区域活性振动模:C=S伸缩振动+H-C=C-H剪切振动ν_4,H-C=C-H剪切振动ν_3,S-C(=S)-S对称伸缩振动ν_6,C=C伸缩振动ν_2,在S-CH=CH-S中C-S伸缩振动+ S–C–S剪切振动ν_5,S–C–S剪切振动ν_7属于A_1不可约表示,非完全对称性S=CS_2面外变形振动2ν_(11)的ν_(11)属于B_1不可约表示,这表明虽然大多数激发态结构动力学是沿着全对称性振动反应坐标进行,但它也可以沿着非完全对称性S=CS_2面外变形反应坐标展开,从而进一步说明A_1和B_1两态在Franck-Condon区域存在振动耦合。S=CS_2面外变形振动的2ν_(11)和4ν_(11)出现表明该分子在S_2激发态产生了几何结构变形与对称性打破,这与三硫代碳酸乙烯酯的S_3态与甲原磺酸根离子的S_3激发态类似。
     (3) 2-硫代- 1,3 -二硫- 4,5 -二甲酸二甲酯在环己烷溶液中的紫外最大吸收在355nm左右,采用341.5nm、354.7nm和368.9nm的激发光获得了其共振拉曼光谱,并进行强度分析。研究结果表明,2-硫代- 1,3 -二硫- 4,5 -二甲酸二甲酯在环己烷溶液中Franck-Condon区域短时动力学具有多维性,激发态初始反应坐标主要是沿着:C=S伸缩振动(ν_(12),|△| =1.05)和在S-C-S中C-S对称伸缩振动(ν_(18),|△|=0.93)展开,伴随着C=C伸缩振动(ν_2,|△|=0.23),C=S伸缩振动+ C-C=C-C对称性收缩振动+ O-CH_3伸缩振动(ν_(13),|△|=0.53)等振动模,它们共同对激发态分子几何结构重组作出贡献。总振动重组能为1081 cm-1,其中C=S伸缩振动ν_(12)(λ=597 cm-1)和在S-C-S中C-S对称伸缩振动ν_(18)(λ=212 cm-1)之和在总振动重组能中所占比例达到75%。
     (4) 4,5-二亚乙基-2-硫代-1,3-二硫醇-2-硫酮在氯仿溶液中的紫外最大吸收在400nm左右,采用397.9nm和416nm的激发光获得了其共振拉曼光谱,并进行分析。研究结果表明,4,5-二亚乙基-2-硫代-1,3-二硫醇-2-硫酮激发态初始反应坐标主要是沿着:C=C伸缩振动ν_3,C=C面外扭转振动ν_(12)展开,伴随着C=S伸缩振动ν_(13),C7-C8伸缩振动ν_8,S-C-S反对称伸缩振动+环变形振动+ H-C-H摆动振动ν_(25),H-C-H扭转振动ν_(23)等振动模,它们共同对激发态分子几何结构重组作出贡献,说明其短时动力学有多维性,沿着多重反应坐标展开。
Over 20 years time, the organic sulfur-rich molecules such as dithiolene -Dmit and tetrathiafulvalenes derivatives are among the widely interesting developments, because they show a variety of properties in the preparation of organic optical and electrical materials. During this period , people have paid attention to tetrathiafulvalenes derivatives' study on how to improve the conductive properties of the charge-transfer complexes based on tetrathiafulvalene .With the in-depth developments of the supramolecular chemistry and molecular electronics, the molecules will increasingly play an important role in the study on functional structural units because of their special physical and chemical properties of electrochemical behavior, assembly features, easy to derivatives and so on. Therefore we feel very interested in the study on the 1, 3-dithioles which are important precursors in the synthesis of a number of tetrathiafulvalenes derivatives .
    
     In this paper, the short-time photo-induced dynamics of the tetrathiafulvalenes derivatives' precursors-ethylene trithiocarbonate, 1,3-dithiole-2-thione、dimethyl 1, 3-dithiole-2-thione -4,5-dicarboxylate and 4,5-Ethylenedithio-1,3-dithiole-2-thione in the appropriate solvent have been investigated by the Resonance Raman spectra in combination with DFT calculation. Main contributions of the present work are summarized as follows:
     (1) Resonance Raman spectra of ethylene trithiocarbonate were obtained with 282.4, 299.1, 309.1 and 319.9 nm excitation wavelengths that probe respectively the (n,σ*) and the 1(π,π*) potential energy surfaces. The results indicate that clearly the spectra obtained at different excitation wavelengths exhibit large variations in relative band intensity that reflects significant differences in the excited state structural dynamics. At first, we thus assign the A-band absoption of ethylene trithiocarbonate to theπ(C=S)→π* (C=S)electronic transition,and the resonance Raman spectra indicate that the short-time photo-induced dynamics in the Franck-Condon region occurs along the nominal C=S stretchυ_(11) forms the largest overtone progressions and combination bands with the other four Franck–Condon active modes the nominal S–C–S symmetric stretchυ_(18) , the nominal H-C-C scissor + C-C stretchυ_9, the nominal S-C-S scissor+ C-S-C in plane bendυ_(21) , the overtone 2υ_(19) of the nominal S=CS_2 out of plane deformation, the nominal H-C-C scissor + C-C stretchυ_9 . The B-band is different from the A-band, which is assigned to the n (C=S)→σ* (S-C-S) electronic transition. It appears that photoexcitation of ethylene trithiocarbonate in the B-band absorption causes larger motions among the C=S stretchυ_(11), S-C-S symmetric stretchυ_(18), the S-C-S asymmetric stretch + H-C-H rockυ_(14), S-C-S scissor+C-S-C in plane bendυ_(21), H-C-H wagυ_(14), S=CS_2 out of plane deformationυ_(19), C-S anti-symmetric stretch in S-C-C-Sυ_(16),C=S in plane wagυ_(22) and S–C–S symmetric stretchν_(15)、; Secondly the A- and B-band resonance Raman spectra also display very different kinds of anti-symmetry vibrational modes in terms of local symmetry of S=CS_2 functional group. The B-band resonance Raman spectrum (282.4 nm) shows the antisymmetric mode that are the nominal S–C–S asymmetric stretch + H-C-H rockυ_(14) and the nominal C-S anti-symmetric stretch in S-C-C-Sυ_(16), while the A-band resonance Raman spectrum (309.1 and 319.9 nm) shows even overtones 2υ_(19) and 4υ_(19) of a antisymmetric modes that is the nominal out of plane S=CS_2 deformationυ_(19) . The appearance of the even overtones 2υ_(19) and 4υ_(19) in A-band resonance Raman spectra indicates that the molecule upon A-band absorption or in S_3 excited state undergoes pyramidalization of carbon atom in S=CS_2 group, while the presence of the antisymmetric modes of the nominal S–C–S asymmetric stretch + H-C-H rockυ_(14) and the nominal C-S symmetric stretch in S-C-C-Sυ_(16) indicates that the two C-S bonds undergo different bond length changes.
     (2) Resonance Raman spectra were acquired for 1,3-Dithiole-2-thione in cyclohexane solvent with 341.5, 354.7 and 368.9 nm excitation wavelengths. The resonance Raman spectra of these spectra indicate that most of the short-time photo-induced dynamics in the Franck-Condon region occurs mostly along the C=S stretch+ H-C=C-H scissorυ_4 , accompanied by the nominal H-C=C-H scissorυ_3 , the nominal S-C-S symmetric stretchυ_6 , the nominal C=C stretchυ_2 in A_1 irreducible representative, and one non-total symmetry S=C-SS out of plane deformation vibrational modeυ_(11) in B_1 irreducible representative. This indicates that while most of the excited state structural dynamics are along the total symmetry vibrational reaction coordinates, it also moves along the non-total symmetry S=C-SS out of plane deformation reaction coordinate significantly, indicating the existence of the Franck-Condon region vibronic coupling between the A_1 and B_1 states. The appearance of the even overtones 2υ_(11) and 4υ_(11) of the nominal out of plane S=CS_2 deformationυ_(11) suggests that geometry deformation or symmetry breaking occurs in the initial S2 excited state. This is very similar to the S3 state of ethylene or the S3 state of methyl xanthate anion.
     (3) We obtained the intensity absorption spectrum of dimethyl 1, 3-dithiole-2-thione -4,5-dicarboxylate in cyclohexane solvent which has a charge-transfer band near 355 nm. Resonance Raman spectra were acquired for dimethyl 1, 3-dithiole-2-thione -4,5-dicarboxylate in cyclohexane solvent with 341.5, 354.7 and 368.9 nm excitation wavelengths. The results indicate that the Franck-Condon region structural dynamics of dimethyl 1, 3-dithiole-2-thione -4,5-dicarboxylate have multidimensional character with motion predominantly in the C=S stretch (ν_(12),|△| =1.05)and the C-S symmetric stretch modes in the S-C-S (ν_(18),|△| =0.93), accompanied by moderate contributions from the C=C stretch(ν_2,|△| =0.23),the C=S stretch+ S-C symmetric stretch in C-C=C-C + O-CH_3 stretch(ν_(13),|△| =0.53)and so on. The 75% total vibrational organizational enery (1081cm-1) of dimethyl 1, 3-dithiole-2-thione -4,5-dicarboxylate -dicarboxylate which is distributed on the modes about C=S stretch (ν_(12),λ=597 cm-1)and the C-S symmetric stretch modes in the S-C-S (ν_(18),λ=212 cm-1).
     (4) We obtained the intensity absorption spectrum of 4,5-Ethylenedithio-1,3-dithiole -2-thione in chloroform solvent which has a charge-transfer band near 400 nm. Resonance Raman spectra were acquired for 4,5-Ethylenedithio-1,3-dithiole-2-thione in chloroform solvent with 397.5 and 416nm excitation wavelengths. The results indicate that the Franck-Condon region structural dynamics of 4,5-Ethylenedithio-1,3-dithiole-2-thione have multidimensional character with motion predominantly in the C=C stretchν_3 and the C=C twist out of planeν_(12), accompanied by moderate contributions from the C=S stretchν_(13), C7-C 8stretchν_8,S-C-S anti-symmetric stretch +Ring deformation +H-C-H rockν_(25), H-C-H twistν_(23).
引文
[1]张建成,王夺元.《现代光化学》[M],北京:化学工业出版社,2006
    [2] Ahmad,Afaq,DU,Meng-Li. Interferences in Photodetachment of a Negative Molecular Ion, Commun.Theor.Phys.(Beijing,China)2006.46:119-122.
    [3]梁文平,杨俊林,陈拥军,李灿.《新世纪的物理化学——学科前沿与展望》[M],北京,科学出版社,2004.
    [4] R.D.Levine, .B.Bernstein, Molecular Reaction Dynamics, Univ.Press,Oxford, 1974.
    [5] (a) Wilson K R, Herschbach D R. Correlation of Sodium Atom Reaction Rates with Electron Capture Cross-sections [J]. Nature, 208: 182–183. (b) Lee Y T. Molecular Beam Studies of Elementary Chemical Processes [J]. Science, 1987, 236: 793-798. (c)Shobatakee K, Parson J M, Lee Y T, Rice S A. Unimolecular decomposition of long-lived complexes of fluorine and substituted mono-olefins, cyclic olefins, and dienes [J]. J Chem Phys,1973,59: 1416-1426.(d) Farrar J M, Lee Y T. Crossed molecular beam synthesis of a new compound, methyl fluoride iodide (CH_3IF) [J]. J Am Chem Soc, 1974, 96: 7570-7572.
    [6] (a)Greene C H, Zare R N. Determination of product population and alignment using laser-induced fluorescence [J]. J Chem Phys, 1983, 78: 6741-6753. (b)Kummel A C, Sitz G O, Zare R N. Determination of orientation of the ground state using two-photon nonresonant excitation[J]. J Chem Phys, 1988, 88: 6707-6732. (c)Dubs M , Bruhlmann U , Huber J R. Sub-Doppler laser-induced fluorescence measurements of the velocity distribution and rotational alignment of NO photofragments [J]. J Chem Phys, 1986, 84: 3106-3119. (d)Bruhlmann U, Dubs M , Huber J R. Photodissociation of methylnitrite: State distributions, recoil velocity distribution, and alignment effects of the NO(X~2 ) photofragment [J]. J Chem Phys ,1987, 86: 1249-1257.
    [7] (a)Whittle E, Dows D A, Pimentel G C. Matrix Isolation Method for the Experimental Study of Unstable Species [J]. J Chem Phys,1954, 22:1943-1945. (b)Nelson L Y, Pimentel G C. Infrared detection of xenon dichloride [J]. Inorg Chem, 1967, 6: 1758-1759.
    [8] (a)Zhou M F, Andrews L, Li J, Bursten B E. Reaction of Laser-Ablated Uranium Atoms with CO: Infrared Spectra of the CUO, CUO-, OUCCO, (r~2-C_2)UO_2, and U(CO)_x (x = 1-6) Molecules in Solid Neon [J]. J Am Chem Soc,1999, 121: 9712-9721. (b)Zhou M F, Andrews L, Bauschlicher J C W. Spectroscopic and Theoretical Investigations of VibrationalFrequencies in Binary Unsaturated Transition-Metal Carbonyl Cations, Neutrals, and Anions [J]. Chem Rev, 2001, 101:1931-1961. (c)Zhou M F, Zhao Y Y , Gong Y, Li Jun. Formation and Characterization of the XeOO~+ Cation in Solid Argon [J]. J Am Chem Soc, 2006,128:2504-2505.
    [9] Cotter,R.J. Time-of-Flight Mass Spectrometry: Instrumentation and Applications in Biological Research,[J] Washington D.C.:ACS Books,ACS Symp.Ser.1994,549
    [10]郑兰荪,黄荣彬,李文莹,张鹏,王光国,周牧易.激光等离子体源飞行时间质谱计。[J]化学物理学报,1992,(15)5:369-373
    [11]苏永选,周振.[J]分析仪器,1997,3:13-18
    [12]高鸿奕,陈建文,李儒新,谢红兰,朱化凤,徐至展.时间分辨的X射线衍射[J].物理学进展, 2004, 24(4): 436-457.
    [13] (a)Mclanchlan K A.Continuous-Wave transient eletron spin resonance, Modern pulsed and continuous wave electron spin resonance [J] John Wiley&Sons. Inc., 1990, 285. (b) Trifunac A D, Lawler R C, Bsrteis D M, Thurnauer M C.Prog. React. Kinet. 1986, 14:43-49.(c) Hore P J. in Adbanced EPR: Applications in biology and biochemistry, Hoff A J, EDS Elsevier:Amsterdam,1989,405.
    [14] (a)Bsdes M G., Brand L. [J].Methods Enzymol,1971,61: 378--385. (b)O’Connor D V , Phillips D. Time-Correlated Single Photon Counting [M]. London: Academic Press , 1984,36-54. (c)Jas Gouri S, Wan C Z, Johnson C K. Picosecond Time-Resolved Fourier Transform Raman Spectroscopy of 9, 10-Diphenylanthracene in the Excited Singlet State [J]. Appl Spectrosc, 1995,49: 645-649.
    [15] (a)虞群,叶建平,寿涵森.激光闪光光解技术简介[J].化学通报. 1989, 5:53-55. (b)Rimai L, Kaiser E W, Schwab E. Application of time-resolved infrared spectral photography to chemical kinetics [J]. Appl Opt, 1992, 31: 350-356. (c)Montingy F, Brondeau J, Canet D. Analysis of time-domain NMR data by standard non-linear least-squares [J]. Chem Phys Letts,1990, 170:175-180.
    [16] (a)Rosker M, Dantus M, Zewail A H. Femtosecond Clocking of the Chemical Bond [J]. Science, 1988,241: 1200-1202. (b)Su J T, Zewail A. H. Solvation Ultrafast Dynamics of Reactions. Molecular Dynamics and ab Initio Studies of Charge-Transfer Reactions of Iodine in Benzene Clusters [J]. J Phys Chem A, 1998, 102:4082-4099. (c)Zhong D,Bernhardt T M, Zewail A H. Femtosecond Real-Time Probing of Reactions. 24. Time, Velocity, and Orientation Mapping of the Dynamics of Dative Bonding in Bimolecular Electron Transfer Reactions [J]. J Phys Chem A,1999 ,103: 10093-10117.
    [17] (a) He Y, Xiong Y J, Wang Z H, Zhu Q H, Kong F A. Theoretical Analysis of Ultrafast Fluorescence Depletion of Vibrational Relaxation of Dye Molecules in Solution [J]. J Phys Chem A, 1998,102: 4266-4270. (b)Zhong Q H, Wang Z H, Liu Y Q, Zhu Q H, Kong F A. The ultrafast intramolecular dynamics of phthalocyanine and porphyrin derivatives [J]. J Chem Phys, 1996, 105: 5377-5379. (c)Zhong Q H, Wang Z H, Sun Y, Zhu Q H, Kong F A. Vibrational relaxation of dye molecules in solution studied by femtosecond time-resolved stimulated emission pumping fluorescence depletion [J]. Chem Phys Letts, 1996, 248: 277-282.
    [18] Wudl, F., Smith, G. M., Hufnagel, E. J. J. Chem. Bis-1,3-dithiolium chloride: an unusually stable organic radical cation, [J] J. Soc, Chem. Commun. 1970:1453-1454.
    [19] G. Steimecke, H. J. Sieler, P. Kirmse et al.1,3-dithiole-2-thione-4,5-dithiolate from carbon-disulfide and alkaline metal [J]. Phosphorus Sulfur, 1979, 7(1):49~55
    [20] (a)XuefengGuo,ZhenhaiGai,HongxiaLuo,YasuyukiAraki,DeqingZhang,DaobenZhu,andOsamuIto,Photoinducedelectron-transferprocessesof tetrathiafulvalene-(pacer)-(naphthalenediimide)-(spacer)-tertrathiafulvalenetriads in solution, [J] J.Phys.Chem.A,2003,107(46),9747-9753.;(b) Xuefeng Guo, Deqing Zhang ,Huijuan Zhang ,Qinghua Fan, Wei Xu, Xicheng Ai,Louzheng Fan,‘Donor-acceptor-donor triads incorporationg tetrathiafulvalene and perylene diimide units: synthesis electrochemicall and spectroscopic studies’[J] Tetrahedron 2003 ,59:4843-4850.
    [21] (a)Xunwen Xiao, Wei Xu, Deqing Zhang, Hai Xu, Haiyan Lu and Daoben Zhu. A new fluorescence-switch based on supermolecular dyad with (tetraphenylporphyrinato) zinc(II) and tetrathiafulvaleneunits. J.Mater.Chem. [J], 2005, 15(26):2557-2561 ; (b) Xunwen Xiao, Wei Xu, Deqing Zhang, Hai Xu, Lei Liu and Daoben Zhu. Novel redox-fluorescence switch based on a triad containing tetrathiafulvalene and pyrene units with tunable monomer and excimer emissions. New J. Chem.[J], 2005, 29(10): 1291—1294 ;(c)Guanxin Zhang, Deqing Zhang, Xiaohui Zhao, Xicheng Ai, Jianping Zhang,Daoben Zhu.Assembly of a Tetrathiafulvalene-Anthracene Dyad on the Surfaces of Gold Nanoparticles: Tuning theExcited-State Properties of the Anthracene Unit in the Dyad. [J] Chem. Eur. J. 2006, 12(4), 1067-1073
    [22] (a)Li Xiaohua, Zhang Guanxin, Ma Huimin, Zhang Deqing, Li Jun, Zhu Daoben.4,5-Dimethylthio-4G??-[2-(9-anthryloxy)ethylthio]tetrathiafulvalene, a Highly Selective andSensitive Chemiluminescence Probe for Singlet Oxygen.[J] J. Am. Chem. Soc., 2004, 126(37), 11543-11548;(b)Zhang, G.; Li, X.; Ma, H.; Zhang, D.; Li, J.; Zhu, D. A selective and sensitive chemiluminescence reaction of 4, 4 (5)-bis[2-(9-anthryloxy)-ethylthio] tetrathiafulvalene with singlet oxygen. [J] Chem.Commun. 2004, 18, 2072-2073.
    [23] (a)Wang, Z.;Zhang, D.;Zhu, D.A new saccharide sensor based on a tetrathiafulvalene-anthracenedyad with a boronic acid group. [J] J. Org. Chem., 2005, 70(14),5729-5732;(b)Zhang, G.; Zhang, D.; Yin, S.; Yang, X.; Shuai, Z.; Zhu, D. 1,3-Dithiole-2-thionederivatives featuring an anthracene unit: new selective chemodosimeters for Hg(II) ion. [J] Chem. Commun, 2005, (16), 2161-2163; (c)Haiyan Lu, Wei Xu, Deqing Zhang, Chuanfeng Chen, and Daoben Zhu A Novel Multisignaling Optical-electrochemicalChemosensor for Anions Based on Tetrathiafulvalene. [J] Org. Lett., 2005, 7(21), 4629-4632; (d) Haiyan Lu, Wei Xu, Deqing Zhang, Daoben Zhu. Highly Effective Phosphate Electrochemical Sensor Based on Tetrathiafulvalene. [J]Chem. Commun, 2005,(38), 4777-4779
    [24] Cheng Wang, Deqing Zhang, and Daoben Zhu. A Low-Molecular-Mass Gelator with an Electroactive Tetrathiafulvalene Group: Tuning the Gel Formation by Charge-Transfer Interaction and Oxidation. [J] J. Am. Chem. Soc., 2005, 127, 16372-16373
    [25] Min Feng, Xuefeng Guo, Xiao Lin, Xiaobo He, Wei Ji, Shixuan Du, Deqing Zhang, Daoben Zhu, and Hongjun Gao .Stable, Reproducible Nanorecording on Rotaxane Thin Films .[J] J. Am. Chem. Soc. 2005, 127, 15338-15339.
    [26] Guanxin Zhang, Deqing Zhang, Xuefeng Guo and Daoben Zhu. A New Redox-Fluorescence Switch Based on a Triad with Tetrathiafulvalene and Anthracene Units.[J] Org. Lett.[J], 2004, 6(8): 1209—1212
    [27] Bousseau M .,Vahde L., et al.,[J] J.Am. Chem. Soc .,1986,108,1908
    [28] Jing Sun, Quan Ren. Study on nonlinear optical absorption properties of [(CH3)_4N]_2[Cu(dmit)_2] by Z-scan technique. [J] Optics & Laser Technology, 2009,41: 209–212.
    [29]孙香冰,任诠,张福军,高怡,杨洪亮,冯林,一种新型有机金属化合物的三阶光学非线性研究,[J]中国激光,33(11):1501-1506
    [30] Glaucio B. Ferreira , Eduardo Hollauer , Nadia M. Comerlato , James L. Wardell, An experimental and theoretical study of the electronic spectraof tetraethylammonium [bis(1,3-dithiole-2-thione-4,5-dithiolato)M(III)] and tetraethylammonium [bis(1,3-dithiole-2-one-4,5-dithiolato)M(III)](M = Sb or Bi). [J] Inorganica Chimica Acta , 2006,359 :1239–1247
    [31] Glaucio B. Ferreria, Eduardo Hollauer, Nadia M. Comerlato, James L. Wardell, An experimental and theoretical study of the electronic spectra of tetraethylammonium [bis(1,3-dithiole-2-thione-4,5-dithiolato)zincate(II)],[NEt4]2[Zn(dmit)2],and tetraethylammonium [bis(1,3-dithiole-2-one-4,5-dithiolato)zincate(II)],[NEt4]2[Zn(dmio)2] .[J]Spectrochimica Acta .Part .A. 2008,71 : 215–229
    [32] W.J. Barretoa, M.C.C. Ribeirob and P.S. The nature of the electronic transitions in some metal dithiolenes as revealed by resonance Raman spectroscopy and transform methods Santosb. [J] Journal of Molecular Structure, 1992 ,269:7584
    [33] Carole K.Gr?tzel and Michael Gratzel, Light-Driven Electron Transfer from Tetrathiafulvaiene to Porphyrins and Ru(bpy)~(2+):Charge Separation by Organized Assemblies, [J] J. Phys. Chem. 1982, 86:2710-2714
    [34] A.R.Leheny,R.Rossetti, and L.E.Brus, Molecular Resonance Raman Observation of Tetrathiafulvalene Oxidation by Colloidal Platinum Crystallites, [J] J. Phys. Chem. 1985,89:211-213
    [35] A.R.Leheny,R.Rossetti, and L.E.Brus,Tetrathiafulvalene Photoionization In Micellar Solutions: A Time-Resolved Raman Scattering Study of Interfacial Solvation,[J] J. Phys. Chem. 1985, 89:4091-4093
    [36] (a)L.Russell Melby,Harris D.Hartzler,and William A.Sheppard ,An Improved Synthesis of Tetrathiafulvalene, [J] J.Org.Chem.,1974,39,(16):2456-2458;(b)Yanning Cao,Hanhui Zhang,Yiji Lin,Changcang Huang,Yiping Chen ,Fengli Zhang,Jianshan Chen, One-pot synthesis, structure, theoretical study and vibrational spectroscopy of 5-amino-4-cyano-3H-1,2-Dithiole-3-thione, [J] Journal of Molecular Structure 2008,888: 354–359
    [37] C. D. DYER,J. D. KILBURN, W. F. MADDAMS and P. A. WALKER, Fourier transform Raman spectroscopy of 1,3-dithiole-2-thione and related compounds, [J] Spectrochimica Acta Part A,1991,47(9):1225-1234
    [38] K.R.Gayathri Devi and D.N.Stahyanarayana, Infared spectra of 1,3-dithiole-2-thione and its selenium analogues-Frequency assignment and Molecular force constants, [J] Journal of molecular structure ,1981,71:1-15.
    [39] (a)Ruifeng Liu, Alex S. VanBuren, Paula R. Moody, Joel A. Krauser, Dennis R. Tate,Jeffrey A. Clark ,Theoretical study of the structure and vibrational spectrum of 1,3-dithiole-2-thione. [J] Spectrochimica Acta Part A,1996,52, 279-286;(b) Guoqun Liu , Qi Fanga, Wen Xua, Hongyu Chen, Chunlei Wang, Vibration assignment of carbon–sulfur bond in2-thione-1,3-dithiole-4,5-Dithiolate derivatives, [J] Spectrochimica Acta Part A ,2004,60: 541–550
    [40] Jens Spanger-Larsen.,Rolf Gleiter,Michio Kobayashi, Edward M. Engler, Paul Shu, and Dawine O.Cowan ,The Electronic of 1,3-dithiole-2-thione and its selenium analogues. Photoelectron Spectra and Polarized Electronic Absorption Spectra, [J] J. Am. Chem. Soc.1977:2855-2865.
    [1] (a) C. A. Mead, D. G.. Truhlar On the determination of Born–Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei [J]. J. Chem. Phys., 1979, 70(5): 2284-2296. (b) S. P. Keating, C. A. Mead Conical intersections in a system of four identical nuclei [J]. J. Chem. Phys., 1985, 82(11): 5102-5117. (c) S. P. Keating, C. A. Mead Toward a general theory of conical intersections in systems of identical nuclei [J]. J. Chem. Phys., 1987, 86(4): 2152-2160.
    [2] (a) H. E. Zimmerman Molecular Orbital Correlation Diagrams, Mobius Systems, and Factors Controlling Ground- and Excited-State Reactions [J]. J. Am. Chem. Soc., 1966, 88(7): 1566-1567. (b) M. Desouter-Lecomte, J. C. Lorquet Nonadiabatic interactions in unimol -ecular decay. IV. Transition probability as a function of the Massey parameter [J]. J. Chem. Phys., 1977, 71(11) : 4391-4403. (c) G.. Herzberg The Electronic Spectra of Polyatomic Molecules Van Nostrand, Princeton, 1966. (d) P. Celani, F. Bernardi, M. Olivucci, M. A. Robb Excited-state reaction pathways for s-cis buta-1,3-diene [J]. J. Chem. Phys., 1995, 102(14) : 5733-5743.
    [3] (a) S. Wilsey, M. J. Bearpark, F. Bernardi, M. Olivucci, M. A. Robb Mechanism of the Oxadi- -methane and [1,3]-Acyl Sigmatropic Rearrangements ofβ, -Enones: A Theoretical Study [J]. J. Am. Chem. Soc., 1996, 118(1): 176-184. (b) M. Reguero, M. Olivucci, F. Bernardi, M. A. Robb Excited-State Potential Surface Crossings in Acrolein: A Model for Understanding the Photochemistry and Photophysics of .alpha.,.beta.-Enones [J]. J. Am. Chem. Soc., 1994, 116(5): 2103-2114. (c) I. J. Palmer, L. N. Ragazos, F. Bernardi., M. Olivucci, M. A. Robb An MC-SCF Study of the (Photochemical) Paterno-Buchi Reaction [J]. J. Am. Chem. Soc., 1994, 116(5): 2121-2132. (d) L. J. Palmer, L. N. Ragazos, F. Bernardi, M. Olivucci, M. A. Robb An MC-SCF study of the S1 and S2 photochemical reactions of benzene [J]. J. Am. Chem. Soc., 1993, 115(2): 673-682. (e) P .Celani, S. Ottani, M. Olivucci, F. Bernardi, M. A. Robb What Happens during the Picosecond Lifetime of 2A1 Cyclohexa-1,3-diene? A CAS-SCF Study of the Cyclohexadiene/Hexatriene Photochemical Interconversion [J]. J. Am. Chem. Soc., 1994, 116(22): 10141-10151. (f) P. Celani, M. Garavelli, S. Ottani, F. Bemardi, M. A. Robb, M. Olivucci Molecular "Trigger" for the Radiationless Deactivation of Photoexcited Conjugated Hydrocarbons [J]. J. Am. Chem. Soc.,1995, 117(46): 11584-11585.
    [4] R. O. Jones, O. Gunnarsson The density functional formalism, its applications and prospects [J]. Rev. Mod. Phys., 1989, 61(3): 689-746.
    [5]梁文平,杨俊林,陈拥军,李灿.《新世纪的物理化学——学科前沿与展望》[M],北京,科学出版社,2004.
    [6] G. Onida, L. Reining, A.Rubio Electronic excitations: density-functional versus many-body Green’s-function approaches [J]. Rev. Mod. Phys., 2002, 74(2): 601-659.
    [7] S. Ismail-Beigi, S. G.. Louie Excited-State Forces within a First-Principles Green's Function Formalism [J]. Phys. Rev. Lett. , 2003, 90(7): 076401-076404.
    [8] A. D. Becke Density functional calculations of molecular bond energies [J]. J. Chem. Phys., 1986, 84(8): 4524-4529.
    [9] C. Lee, W. Yang, R. G. Parr Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev. B, 1988, 37(2): 785-789.
    [10] M. J. Frisch, et al. Gaussian 03, Revision B.02, Gaussian, Inc., Pittsburgh PA, 2003.
    [11] V. Peuckert A new approximation method for electron systems [J]. J. Phys. C: Solid States Phys, 1978, 11(24): 4945-4956.
    [12] A. Zangwill, P. Soven Density-functional approach to local-field effects in finite systems: Photoabsorption in the rare gases [J]. Phys. Rev. A, 1980, 21(5): 1561-1572.
    [13] E. Runge, E. K. U. Gross Density-Functional Theory for Time-Dependent Systems [J]. Phys Rev. Lett., 1984, 52(12): 997-1000.
    [14] K. Burke, E. K. U. Grass In Density Functionals: Theory and Applications. Eds.:Joubert D.Springer: Berlin,1998.
    [15] E. K. U. Gross, W. Kohn Time-Dependent Density-Functional Theory [J]. Adv. Quant. Chem., 1990, 21: 255-291.
    [16] E. K. U. Gross, J. Dobson, F. M. Petersilka Density Functional Theory, Springer,1996.
    [17] J. Dobson, G. Vignale, M. P. Das Electronic Density Functional Theory: An approach tothe Quantum Many-Body Problem, Plenum, 1997.
    [18] (a) S. Y. Lee, E. J. Heller Time-dependent theory of Raman scattering [J]. J. Chem. Phys., 1979, 71(12): 4777-4788. (b) E. J. Heller, R. Sundberg, D. Tannor Simple aspects of Raman scattering [J]. J. Phys. Chem., 1982, 86(10): 1822-1833.
    [19] (a) A. B. Myers, R. A. Mathies In Biological Applications of Raman Spectroscopy [M]. Spiro, T. G., Ed.; Wiley: New York, 1987; Vol. 2. (b)A. B. Myers, T. R. Rizzo In Laser Techniques in Chemistry [M]. Wiley: New York, 1995.
    [1]李少鹏,吴光明,郑旭明. I_(2-)环己烯复合物的共振拉曼光谱和密度泛函理论计算研究[J].高等学校化学学报,2004, 25(8): 1495-1498.
    [2] O. T. Mark, A. M. Richard. Raman cross section measurements in the visible and ultraviolet using an integrating cavity: Application to benzene, cyclohexane, and cacodylate [J]. J. C hem. Phys., 1986, 84(4): 2068-2074.
    [1] Ruifeng Liu, Alex S. VanBuren, Paula R. Moody, Joel A. Krauser, Dennis R. Tate,Jeffrey A. Clark, Theoretical study of the structure and vibrational spectrum of 1,3-dithiole-2-thione [J]. Spectrochimica Acta A, 1996,52:279 -286.
    [2] C. D. DYER,J. D. KILBURN, W. F. MADDAMS and P. A. WALKER, Fourier transform Raman spectroscopy of 1,3-dithiole-2-thione and related compounds [J].Spectrochimica Acta Part A,1991,47(9):1225-1234
    [3] K.R.Gayathri Devi and D.N.Stahyanarayana, Infared spectra of 1,3-dithiole-2-thione and its selenium analogues-Frequency assignment and Molecular force constants [J]. Journal of molecular structure ,1981, 71:1-15.
    [4] Guoqun Liu , Qi Fanga, Wen Xua, Hongyu Chen, Chunlei Wang, Vibration assignment of carbon–sulfur bond in 2-thione-1,3-dithiole-4,5-Dithiolate derivatives [J]. Spectrochimica Acta Part A ,2004 ,60: 541–550
    [5] R.S. Mulliken, , Electronic Structures of Polyatomic Molecules and Valence.Ⅱ.Quantum Theory of the Double Bond, Phys. Rev.,1932, 41 :751-758.
    [6] (a) L. D. Ziegler, B. S. Hudson Resonance Raman scattering of ethylene: Evidence for a twisted geometry in the V state [J]. J. Chem. Phys., 1983, 79(3): 1197-1202. (b) R. J. Sension, L. Mayne, B. Hudson Far ultraviolet resonance Raman scattering. Highly excited torsional levels of ethylene [J]. J. Am. Chem. Soc., 1987, 109(16): 5036-5038. (c) R. J. Sension, B. S. Hudson Vacuum ultraviolet resonance Raman studies of the excited electronic states of ethylene [J]. J. Chem. Phys. 1989, 90(3): 1377-1389.
    [7] P.-C. Gao, H.-G. Wang, K.-M. Pei, X. Zheng A distorted geometry of methyl xanthate anion in S3 state—Resonance Raman and ab initio studies [J]. Chem. Phys. Lett., 2007, 445(4-6): 173–178.
    [1] L. Russell Melby,Harris D. Hartzler, and William A. Sheppard , An Improved Synthesis of Tetrathiafulvalene, [J] J. Org. Chem., 1974 ,39, 16, 2456-2458.
    [2] Ruifeng Liu, Alex S. VanBuren, Paula R. Moody, Joel A. Krauser, Dennis R. Tate,Jeffrey A. Clark, Theoretical study of the structure and vibrational spectrum of 1,3-dithiole-2-thione, [J]Spectrochimica Acta A, 1996,52:279 -286.
    [3] C. D. DYER,J. D. KILBURN, W. F. MADDAMS and P. A. WALKER, Fourier transform Raman spectroscopy of 1,3-dithiole-2-thione and related compounds, [J] Spectrochimica Acta Part A,1991,47(9):1225-1234
    [4] K.R.Gayathri Devi and D.N.Stahyanarayana, Infared spectra of 1,3-dithiole-2-thione and its selenium analogues-Frequency assignment and Molecular force constants, [J] Journal of molecular structure ,1981,71:1-15.
    [5] Guoqun Liu , Qi Fanga, Wen Xua, Hongyu Chen, Chunlei Wang, Vibration assignment of carbon–sulfur bond in2-thione-1,3-dithiole-4,5-Dithiolate derivatives, [J] Spectrochimica Acta Part A ,2004,60: 541–550
    [6] Huigang Wang, Bo Liu, Yanying Zhao, and Xuming Zheng,Resonance Raman spectra and excited state structural dynamics of ethylene trithiocarbonate in the A- and B-band absorptions ,[J] Journal of Raman Spectroscopy, 2009, 40:1312–1318.
    [7] P.-C. Gao, H.-G. Wang, K.-M. Pei, X. Zheng A distorted geometry of methyl xanthate anion in S3 state—Resonance Raman and ab initio studies[J]. Chem. Phys. Lett., 2007, 445(4-6): 173–178.
    [1] Bo Liu, Jun Xu, Yanying Zhao, Bin Wu, Xuming Zheng ,Huigang Wang,Resonance Raman Intensity Analysis of the Excited State Photochemical Dynamics of Dimethyl 1,3-Dithiole-2-thione-4,5-dicarboxylate in the A band Absorption,Journal of Raman Spectroscopy,[J] Journal of Raman Spectroscopy
    [2] (a) L. D. Ziegler, B. S. Hudson Resonance Raman scattering of ethylene: Evidence for a twisted geometry in the V state [J]. J. Chem. Phys., 1983, 79(3): 1197-1202. (b) R. J. Sension, L. Mayne, B. Hudson Far ultraviolet resonance Raman scattering. Highly excited torsional levels of ethylene [J]. J. Am. Chem. Soc., 1987, 109(16): 5036-5038. (c) R. J.Sension, B. S. Hudson Vacuum ultraviolet resonance Raman studies of the excited electronic states of ethylene [J]. J. Chem. Phys. 1989, 90(3): 1377-1389.
    [3] P.-C. Gao, H.-G. Wang, K.-M. Pei, X. Zheng A distorted geometry of methyl xanthate anion in S3 state—Resonance Raman and ab initio studies[J]. Chem. Phys. Lett., 2007,445(4-6): 173–178.
    [4] Huigang Wang, Bo Liu, Yanying Zhao, and Xuming Zheng,Resonance Raman spectra andexcited state structural dynamics of ethylene trithiocarbonate in the A- and B-band absorptions , Journal of Raman Spectroscopy,2009, 40:1312–1318
    [5] Hailin zhu, Jian Liu, Xuming Zheng and David Lee Phillips Resonance Raman study of the A-band short-time photodissociation dynamics of 2-iodothiophene [J].J. Chem. Phys., 2006, 125:1-9
    [1] Huigang Wang, Bo Liu, Junmin Wan and Jun Xu, Xuming Zheng,Excited-state structural dynamics and vibronic coupling of 1,3-dithiole-2-thione-resonance Raman spectroscopy and density functional theory calculation study, Journal of Raman Spectroscopy,2009,40:992–997.
    [2] Huigang Wang, Bo Liu, Yanying Zhao, and Xuming Zheng,Resonance Raman spectra and excited state structural dynamics of ethylene trithiocarbonate in the A- and B-band absorptions , Journal of Raman Spectroscopy, 2009, 40:1312–1318.
    [3] Bo Liu, Jun Xu, Yanying Zhao, Bin Wu, Xuming Zheng ,Huigang Wang,Resonance Raman Intensity Analysis of the Excited State Photochemical Dynamics of Dimethyl 1,3-Dithiole-2-thione-4,5-dicarboxylate in the A band Absorption,Journal of Raman Spectroscopy,已被接受。
    [4]刘波,王惠钢,郑旭明,1,3-二硫杂环戊烯-2-硫酮的共振拉曼光谱研究,第十一届全国化学反应动力学会议论文, 2009年8月。
    [5]刘波,王惠钢,郑旭明,Dimethyl 1, 3-dithiole-2-thione -4,5-dicarboxylate在环己烷溶液中的短时动力学研究,第十一届全国化学反应动力学会议论文,2009年8月。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700