泄水建筑物控制转换段水力特性与体型优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
明流溢洪道(洞)是水利水电工程常用的溢流设施,由于布置的需要,引水渠往往存在一定程度的平面转向,这就导致水面产生不同程度的横向比降,甚至出现漩涡,如果其影响达到下游泄槽急流段,还有可能产生急流冲击波,致使水流自由水面波动,直接威胁泄水建筑物乃至大坝的安全。
     对于弧门闸门广泛采用的偏心铰和伸缩式水封方案,都要求门座侧向突扩,底部突跌,从而将闸门止水与掺气设施有机地结合起来。水流离开门座射出有压洞口后四周悬空,并沿水平与垂直两个方向扩散,与侧边墙间形成侧空腔,与跌坎下底板间形成底空腔,底侧空腔相互贯通成为有效的掺气通道,对下游固壁形成保护,但是水流冲击侧墙产生的水翅,以及冲击反射产生的低压区,也会恶化流态,甚至引发空化空蚀问题。
     本文在回顾总结前人研究的基础上,结合九甸峡水利枢纽工程,对双洞式明流岸边溢洪道和弧形闸门突扩突跌水流衔接控制转换段的复杂流动进行了数值模拟和试验研究,主要研究内容和成果有:
     (1)采用k-ε两方程紊流数学模型和VOF自由表面模拟技术,对双洞式溢洪道联合泄洪情况下库区、引水渠、溢流段和陡槽内的三维自由面流动进行了数值模拟研究。模拟得到了流速、压力分布等水力学参数,揭示了进口区域自由水面的扭曲形态。把改善进口不良流态,消除堰顶较大负压,平衡两洞间流量分配作为目标,针对溢洪洞入口地形陡峭且入口水流存在平面急剧转向的情况,提出了“椭圆曲线翼墙+悬臂直墙”的进口整流方案。通过数值模拟和模型试验的联合应用获得了理想的进水口体型与溢流堰曲线形式。
     (2)通过常压模型试验,对弧形闸门突扩突跌段的水力特性进行了研究。结果表明,原设计方案压力洞出口顶板和明渠段存在负压,侧墙水翅高,明渠中水流不稳,流态差,水流空化数偏低,底空腔偏小,水流掺气能力不足。针对存在的这些问题,提出了两种体型改进方案。
     (3)对两种改进方案进行了常压模型试验研究。观测测量的结果包括水流流态,水翅范围高度,底侧空腔长度,清水区范围,底板侧墙压力分布,水流空化数及掺气性能等。通过对比分析,探讨了各体型变化要素对突扩突跌段水力特性的影响,特别是侧扩宽度对侧墙压力分布、清水区范围及水流流态的影响,从冲击反射压力最小的角度提出了最不利侧扩宽度的概念。在局部开启试验中,开度0.75时流态很差,而0.5开度时,侧墙存在一定范围的负压域,且空化数较小,表明特定的局部开启工况可能使特定流动要素处于最不利的情况。
     (4)针对弧形闸门突扩突跌段侧墙存在清水区易于发生空蚀破坏的问题,通过减压模型试验对其空化特性进行了研究。通过空化噪声谱声压级差及噪声能量分析得出的两种改进方案的空化特性与常压试验以水流空化数为判据的结果并不完全对应,表明侧墙冲击反射区内的空化机理比较复杂,对其进行了初步的探讨。
     (5)研究了多级水位、不同开度及存在多种尺度凸体时侧墙的空化特性。结果表明,对于侧扩Δb=0.5m方案,设计水位为最不利水位。对于侧扩Δb=0.8m方案,正常水位为最不利水位,且在闸门0.5开度时,最易于发生空化。壁面存在凸体时水流噪声谱声压级和相对噪声能量大幅增加,当凸体高度超过0.8cm时,各级水位下水流均发生空化或初生空化,表明侧墙空化特性对不平整度比较敏感。
     (6)对有压泄洪洞弧形闸门突扩突跌出口段三维流动进行了数值模拟,获得了空腔形态、侧墙水翅、压力分布等参数,探讨了空腔冲击点涡旋对气流的吸卷作用,并研究了空腔的回水特性。数值模拟表明在底板和侧墙的冲击点附近会各形成一个强的涡旋区,在底板该涡旋卷入空气,形成下游的掺气水流,在侧墙该涡旋可能成为诱发空化的空化源。通过与模型试验数据对比,分析了数学模型对有压泄洪洞弧形闸门突跌突扩出口段复杂流场的预测能力。
The chute or tunnel spillway is most often used water discharge structure in hydropower projects, along which the flow is usual not aligned with the general direction of the flow in the reservoir owing to the limit of terrain. This may lead to transverse gradient over free water surface, and even strong vortex. If the action reach to the supercritical flow section downstream discharge chute, there may produce shock wave in water surface, which may directly threat the safety of discharge structure itself and even dam.
     Eccentric hinge and side expansion water seal for arc gate both require abrupt enlarging in gate seat and bottom, so combining gate seal and aeration devices effectively. After the flow leaving from gate seat and ejecting out from pressure tunnel, it diffuses along the horizontal and vertical directions, and forms side cavities with side wall and bottom cavities with bottom. The bottom cavities and side cavities mutually complement, turning into effective aerator which protects the rigid wall in downstream. But the water-wing generated from impaction between flow and sidewall, and the low pressure generated from impact echo may worsen the flow pattern, even lead to cavitation.
     In this thesis, the complex flow in control sections of both bi-tunnel spillways and abrupt enlarging and abrupt falling segment of arc gate are investigated with numerical simulation and model test. The main contents of the studies and achievements are as following:
     (1) The fractional volume of fluid model and the k-e turbulence model are used to study the three dimensional free water surface flows over bi-tunnel spillway. Obtained hydraulic parameters include velocities and distribution of pressure, etc. The simulation also reveals the distort form of free water surface in weir crest. In order to improving inlet flow pattern, eliminating large negative pressure in weir crest and balancing the flow rate distribution between two channels, numerical simulation and model test are combined to get prospective inlet configuration and overflow weir shape, and a new type of water guide wall is proposed.
     (2) The hydraulic characteristics in abrupt enlarging and abrupt falling segment of arc gate are studied by means of model tests. The experiment shows that negative pressure exists in the roof of pressure tunnel outlet and open channel segment, strong water-wing on sidewall, unstable flow in open channel. And also low cavitation number, small bottom cavity and insufficient aeration exist in original design. Aiming at these problems, two schemes for shape optimization are recommended.
     (3) Experimental results for the two recommended schemes include flow pattern, size of the water-wing, length of bottom cavity, size of un-airflow area, pressure distribution of sidewall and bottom, cavitation number and aeration performance, and so on. The influence of different shape factors on hydrodynamic characteristics of abrupt enlargement and abrupt fall section are analyzed, especially influences of side expansion on pressure distribution of sidewall、size of un-airflow area and flow pattern. From the view of minimum pressure due to jet impact and reflection, unfavorable side expansion width is put forward. Experimental research with partial opening shows that some specific partial opening conditions may result in the worst condition.
     (4) Because there exists un-airflow area on sidewall which is difficult to be aerated. Cavitation characteristics of abrupt spreading or abrupt falling segment of arc gate is studied by mean of vacuum model test. It shows that cavitation mechanism in sidewall impacting reflection area is complex.
     (5) Cavitation characteristics of sidewall under different water level and different similarity vacuum pressures are discussed for different roughness and smooth wall. Under specific water level or specific opening, flow cavitation performance may be the worst, and noise pressure level and relative noise energy increase quickly. When the height of convex bodies exceeds certain value, cavitation may occur under all different water levels.
     (6) The numerical simulation was used to investigate three dimensional flow of outlet of abrupt spreading or abrupt falling segment of arc gate. The simulation found cavity structure, water-wing of sidewall and pressure distribution. Influence of vortex in jet impact region on aeration is discussed. The result shows that the jet can form a strong vortex at impact point both on bed and side walls. On the bed, the vortex suck into air, on the side, the vortex may become a source of cavation.
引文
[1] 水利部国际合作与科技司.当代水利科技前沿[M].北京:水利电力出版社,2006:144-170.
    [2] 金峰,周赤,廖仁强,姜伯乐.突扩跌坎型门座水力学问题研究[J].人民长江,2001,32(11):37-39.
    [3] Regan R P, Munch A V and Schader E K. Cavitation and erosion damage of sluices and stilling basins at two high-head dams [C]. Proceeding of 13th 1COLD, 1990: 177-198.
    [4] 陈飞,李瓒.黄河龙羊峡水电站的初期运行[J].水力发电学报,1998,17(1):33-46.
    [5] 肖兴斌.三峡工程泄洪深孔掺气减蚀设施研究评述[J].水利水电科技进展,2003,23(2):51-54.
    [6] 戴会超,杨文俊.三峡工程泄洪建筑物泄洪消能问题研究[J].水力发电学报,2007,26(1):48-55.
    [7] 梅燕.高水头弧形闸门止水型式研究[J].水力电力机械,2006,28(1):12-19.
    [8] 肖兴斌,王才欢,王业红.弧形闸门突扩突跌式通气减蚀研究进展综述[J].长江科学院院报,2000,17(10):1-4.
    [9] 童显武.中国水工水力学的发展综述[J].水力发电,2004,1 60-64.
    [10] 刘超,杨永全,邓军,王海云.泄洪洞反弧段下游侧墙掺气减蚀试验研究[J].水动力学研究与进展(A辑),2006,21(4):465-472.
    [11] 聂孟喜,李琳琳,段冰.突扩突跌布置侧墙及底板脉动压力特征分析[J].清华大学学报(自然科学版)2007,47(3):331-334.
    [12] 聂孟喜,段冰,李琳琳.突扩突跌体型侧墙负压区的演变特征[J].水利水电科技进展,2006,23(6):34-36.
    [13] 肖兴斌.泄洪深孔掺气减蚀研究[J].水电站设计,2003,19(2):85-89.
    [14] 聂孟喜,吴广镐.折流器体型对突扩突跌掺气空腔特性的影响[J].清华大学学报(自然科学版)2002,42(4):546-550.
    [15] Thom A. The flow past circular cylinder at low speeds[C]. Proceeding of Royal Society of London. 1933, (A141): 652-666.
    [16] 陶文铨.计算传热学的近代进展[M].北京:科学出版社,2000.
    [17] Ikegawa M, Washizu K. Finite element method applied to analysis of flow over a spillway crest[J]. Inter J Num Meth in Engng, 1973, 6: 179—189.
    [18] Larock B E, Taylor C. Computing three—dimensional free surfer flow[J]. Inter J Num Meth in Engng, 1976, 10 (5): 1143—1152.
    [19] Varoglu E, Fiun W L, Variable domain finite element analysis of free surface gravity flow[J]. Computers&Fluid, 1978, 6 (2): 103—114.
    [20] Betts P L. A variational principle in terms of stream function for free—surface flow and its application to the finite element method[J]. Computers&Fluid, 1979, 7: 145—153.
    [21] Cheng A H D, Liggett A and Liu P L F. Boundary calculation of sluice and spillway flows[J]. ASCE, 1981:107.
    [22] 许协庆.自由面重力流的一种有限元解法[J].水利学报,1980.
    [23] 丁道扬.应有自由面位移特性解水工的泄流问题[J].中国科学A辑,1986.
    [24] 刘曼聆,丁道扬.高坝溢流面坝定下游曲线研究[J].水利水运科学研究,1979.
    [25] 汪树玉,彭明祥,王庆华.重力坝溢流的数值模拟及体型优化[J].浙江大学学报,1994,28(2):162-170
    [26] 丁道扬.用数值模拟法探讨三峡深孔体型[J].水利学报,1992.
    [27] 郑邦民.溢流体型的数值模拟[J].中国科学A辑,1985(3)
    [28] 温贤云,吴持恭.坝顶自由面溢流的数学模型[J],成都科技大学学报,1987(3)
    [29] 郑克强,吴持恭.陡槽紊流边界层的计算[J],水利学报,1988(8),
    [30] 丁道杨,吴时强.龙抬头式泄洪洞水流数学模型及其应用,水利水运科学研究,1995(3):246-60
    [31] Rodi W. Turbulent models and their applications in hydraulics[M]. IAHR publication, Delft, Netherlands, 1980.
    [32] 叶坚,窦国仁.一种新的紊流数数学模型[J],k-ε-S模型,河海科技进展,1990,(1).
    [33] 张云等.各向异性k-ε模型研究[J].水动力学研究与进展,1993年增刊.
    [34] 金忠青.N-S方程解法及其紊流模型[M].南京:河海大学出版社.1989.
    [35] 陶文铨.数值传热学[M].西安:西安交通大学出版.1988.
    [36] 陈景仁.湍流模型及其限分析法[M].上海:上海交通大学出版社,1989.
    [37] 顾兆勋,许卫新.二维非定常带自由面湍流的数值模拟[J].水利学报,1988,(5).
    [38] 许卫新,顾兆勋.二维非定常水跃的数值计算[J].河海大学学报,1988,(2).
    [39] 许唯临.具有起伏表面的紊流数值模拟[J].水利学报,1990,(10).
    [40] 杨永全.水垫塘淹没射流的数值模拟[J].水动力学研究与进展,1991,6(4):36-44.
    [41] 王奇峰,李建中.溢流反弧紊流流动数值模拟[J].水利学报,1993,(8):1~9.
    [42] 张庄,周明.溢流反弧段紊动水流的数值模拟[J],1994,(3).
    [43] 戴会超,金忠青.坝下消能工局部水流的数值模拟[J].水动力学研究与进展,1994,(2).
    [44] 李国栋,陈刚,李建中.明流泄洪洞流场数值模拟[J].水动力学研究与进展,1996,(12):633~639.
    [45] 何子干、倪汉根、徐福生.某水库空板消能泄洪洞孔板区紊流场计算[J].水力发电学报,1987(4).
    [46] 支道枢、崔延涛.多级消能孔板流场的数值模拟[J],水力发电学报,1988,(1).
    [47] 赵文华,杨永全.多级消能孔板的数值优化设计方法[J],成都科技大学学报,1993,(4).
    [48] 苏铭德.有压管道双孔板水流流场的数值模拟[J],力学学报,1995,27(6):641-646.
    [49] 张庄,才君眉.随体网格数学模型在多级孔板消能工流场计算及布置优化中的应用[J].水力发电学报,1996(4):61-71.
    [50] 林斌良,Shino K.矩形明渠中三维紊流数值模拟[J].水利学报,1994,(3).
    [51] 马福喜,王金瑞.三维紊流数值研究[J].水动力学研究与进展(A辑),1995,(2):115-124.
    [52] 魏文礼,李建中等.泄水建筑物曲面边壁三维定常紊流的数值模拟[J].应用力学学报,2000,(4):105-110.
    [53] 王玲玲,严忠民.石梁河水库消力池强紊动水流的数值模拟[J].水科学进展,2002,13(3).
    [54] Nguyen V and Nestmann F. Applications of CFD in hydraulics and river engineering [J]. International Journal of Computational Fluid Dynamics, 2004, 18(2):: 165—174.
    [55] 金忠青,王玲玲,魏文礼.三峡工程大江截流流场的数值模拟[J].河海大学学报,1988,26(1):83-87.
    [56] 王玲玲,金忠青.三峡工程大江截流施工仿真[J].水利水电技术,1999,30(3):33-37.
    [57] 戴会超,田斌.三峡工程大江截流施工过程三维仿真研究及应用[J].长江科学院院报,1998,15(1):44-47.
    [58] 戴光清,吴持恭,杨永全.多股射流水垫塘三元流动数值模拟及消能[J].中国科学(A辑),1995,25(9):1002~1008.
    [59] 许唯临,廖华胜,杨永全.水垫塘三维紊流数值模拟及消能分析[J].水动力学研究与进展(A辑),1996,11(5):561-569.
    [60] 许唯临,廖华胜,杨永全.溪洛渡水垫塘流场的数值计算[J].四川联合大学学报,1998,2(5):34-38.
    [61] Xu weilin, Liao Huasheng, Yang yongquan. Turbulent flow and energy dissipation in plunge poll of high arch dam[J]. J of Hydraulic Research, IAHR, 2002, (4): 471-476.
    [62] 刁明军.高坝大流量泄洪消能数值模拟及实验研究[D].成都:四川大学,2003.
    [63] 邓军,许唯临,张建民.向家坝水垫塘的实验研究与数值模拟[J].水力发电,2004,30(11):12-15.
    [64] 杨忠超,邓军,张建民,曲景学,杨永全.多股水平淹没射流水垫塘流场数值模拟[J].2004,23(5):69-74.
    [65] 许联锋,李建中,陈刚.泄水建筑物体型优选的数值模拟研究[J].水动力学研究与进展,2002,17(6),P:701~708.
    [66] 李玲,陈永灿,李旭东.泄洪隧洞防空蚀体型的数值研究[J].水利学报,2003,(7):12~15.
    [67] 刁明军.高坝大流量泄洪消能数值模拟及实验研究[D].成都:四川大学,2003,(11).
    [68] 邓军,许唯临,雷军,刁明军.高水头岸边泄洪洞水力特性的数值模拟[J],水利学报,2005,10:1209~1218.
    [69] 沙海飞,吴时强,陈振文.泄洪洞整体三维紊流数值模拟[J].水科学进展,2006,17(4):507-511.
    [70] 陈为博.三维泄洪紊流场的数值模拟[D].天津:天津大学,2004.
    [71] 夏庆福,孙双科,王晓松,柳海涛.小湾水电站泄洪洞水力学问题试验和数值模拟研究[J].水利水电技术,2005,361(10):12-16.
    [72] 王志东,汪德瓘.含闸墩溢流坝三维过坝水流数值模拟[J],水科学进展,2004,15(5):735-738.
    [73] 李玲,陈永灿,李永红.三维VOF模型及其在溢洪道水流计算中的应用,水力发电学报,2007,26(2):83-87.
    [74] Qu Jingxue, XuWeilin, YangYongquan. Numerical simulation of the turbulent flow through orifice energy dissipaters in Xiaolangdi's flood discharge tunnel [J]. Journal of Hydrodynamics(Ser.B), 2000, 12(3): 41~46.
    [75] 董建伟,许唯临,邓军,刘善均,王韦,曲景学.洞塞式消能工的数值计算[J],四川大学学报(工学版),2002,34(3):12-15.
    [76] Dong Jianwei, XuWeilin, DengJun. Numerical simulation of turbulent flow through throat type energy dissipaters [J]. Journal of Hydrodynamics (Ser.B), 2002 14(3): 135—138.
    [77] 张昌兵.孔板型内消能工水力特性试验研究及数值模拟[D].成都:四川大学,2003.
    [78] 夏庆福,倪汉根.洞塞消能的数值模拟[J]水利学报,2003,34(8):37-42.
    [79] 张建民,许唯临,刘善均,王韦.突扩突缩式内流消能工的数值模拟研究[J].水利学报,2004,35(12):27-33.
    [80] 田忠,许唯临,刘善均,王韦,张建民.段辉组合式洞塞消能工的数值计算[J].水利水电科技进展,2005,25(3):8-10.
    [81] 张晓东,刘之平,高季章,王晓松.竖井旋流式泄洪洞数值模拟[J].水利学报,2003,34(8):58-63.
    [82] 张晓东.泄洪洞高速水流三维数值模拟[D].北京:中国水利水电科学研究院,2004.
    [83] 杨朝晖,吴守荣,余挺,贺昌林,邓军,许唯临.竖井旋流泄洪洞三维数值模拟研究[J],四川大学学报(工程科学版),2006,39(2):41-46.
    [84] 牛争鸣,程庆迎,谭立新.竖井进流水平旋转内消能泄洪洞流场数值模拟[J].西安理工大学学报,2005,21(3):113-117.
    [85] 陈群.阶梯溢流坝紊流数值模拟及实验研究[D].成都:四川大学,2001.
    [86] 陈群,戴光清,刘浩吾.带有曲线自由水面的阶梯溢流坝面流场的数值模拟[J].水利学报,2002,33(9):20~26.
    [87] Chen qun, Dai Guangqing, Liu Haowu. Volume of Fluid Model for Turbulence Numerical Simulation of stepped Spillway over flow[J]. ASMA Journal of Hydraulic Engineering. 2002, 128(7): 683-688.
    [88] Chen Qun, Dai guangqing, Zhu Fenqing, Yang Qing. Three dimensional turbulence numerical simulation of a stepped spillway overflow[J]. Journal of Hydrodynamics (Set.B), 2004, 16(1): 74-79.
    [89] 陈永明,吉庆丰.阶梯溢流坝水流数值模拟及消能分析[J].灌溉排水学报,2006,25(2):68-71.
    [90] Chen xiangju, Luo lin, Zhao wenqian, Li Ran. Two phase flow simulation of aeration on stepped spillway[J]. Progress in Natural Science. 2004 14(7): 626-630.
    [91] 程香菊,陈永灿,罗麟.阶梯溢流坝水气两相流数值模拟[J].中国科学A辑技术科学,2006, 36(11):1355-1364.
    [92] 李福田,刘沛清,马宝峰.高拱坝宽尾墩三维流场数值模拟[J].水科学进展 2005,12(2):185-189.
    [93] 张挺,周勤,伍超,胡耀华,莫政宇.新型宽尾墩和阶梯式溢流坝面一体化消能工数值模拟,福州大学学报(自然科学版),2007,35(1):111-115.
    [94] 张挺,伍超,卢红,郑治.X型宽尾墩与阶梯溢流联合消能的三维流场数值模拟[J].水利学报,2004,35(8):15~20.
    [95] 张挺.宽尾墩和阶梯溢流坝一体化数值模拟[D].成都:四川大学,2005.
    [96] Zhang T, Wu C, Hu YH, etal. 3-D numerical simulation on united dissipater of flaring gate pier and stepped spillway[C]. ⅩⅩⅪ International Association of Hydraulic Engineering and Research Congress, Seoul, 2005: 2635-2643.
    [97] Zhang ting Wu chao, Liao Huasheng, Hu yaohua. 3D Numerical Simulation on Water and Air two-Phase Flows of the Steps and flaring Gate Pier[J]. Journal of Hydrodynamics (Ser.B), 2005, 17(3): 338-343.
    [98] Ferziger J. H. High-level simulation of turbulent flows In: Essers J A, ed. Computational methods for turbulence flows, transonic and viscous flows. Washington DC: hemisphere, 1983:93-182
    [99] Orszag S A. Numerical simulation of turbulence flows. In: Frost W, Moulden T H, eds. Handbook of turbulence. New York: Plenum press, 1977:281-313.
    [100] P Moin, K Mahesh. Direct numerical simulation: a tool in turbulence research [J]. Ann Rev Fluid Mech, 199830: 39-78.
    [101] J. G. Wissink. DNS of separating low Reynolds number flow in a turbine cascade with incoming wakes[J]. International Journal of Heat and Fluid Flow, 2003, 24 (4): 626~635.
    [102] V. Michelassi, J. G. Wissink, W. Rodi, Direet numericalsimulation, large eddysimulation and unsteady Reynolds-averaged Navier-Stokes simulation of periodic unsteady flow in a low-pressure turbine cascade[J]: A comparison. Journal of Power and Energy, 217 (4): 403~412, 2003.
    [103] V. Stephane, Local mesh refinement and penalty methods dedicated to the Direct Numerical Simulation of incompressible multiphase flows[C]. Proceedings of the ASME/JSME Joint Fluids Engineering Conference, 2003: 1299~1305.
    [104] J. C. Li. Large eddy simulation of complex turbulent flow: Physical aspeets and research trends[J]. Acta mechanica Sinaca, 2001, 17(4): 289-301.
    [105] D.G.E. Grigoriadis, J. G. Bartzis, A. Goulas. Efficient treatment of complex: geometries for large eddy simulations of turbulent flows. Computers and fluids, 2004, 33(2): 201-222.
    [106] Chou P Y. On the velocity correlations and the equations of turbulent fluctuation[J], Quart J Appl Math, 1945, 3(1): 38~54.
    [107] J O Hinze, Turbulence [M]. McGraw-Hill, NewYork, 1975.
    [108] Kolmogorov A N. Turbulent flow equations of in compressible fluid. Bulletin of Academic of Science of Soviet Union[R], Physics Series, 1942, 6: 56-58(In Russian).
    [109] Johns W P and Launder B E. The prediction of laminarization with a two-eqaution model of turbulence [J]. Int J. Heat mass transfer, 1972, 15: 301-311.
    [110] SpaldingDB. The prediction of two-dimensional steady turbulent flows[M]. Imperial college, Heat transfer section Rep., EF/TN/A/16,1969.
    [111] Launder B E and Spalding D B. Lectures in mathematical models of turbulencefM]. London: Academic Press, 1972, 78-115.
    [112] Yakhot V, Orzag S A. Renormalization group analysis of turbulence: Basic theory[J]. J Science Comput, 1986, 1: 3-11
    [113] Shih T H, Liou W W, Shabbir A, Yang Z G. A new eddy viscosity model for high Reynolds number turbulent flows[J]. Comput. Fluids 1995, 24(3): 227-238.
    [114] Speziale C G. On nonlinear k-l and k-ε models of turbulence[J]. J Fluid mechanics, 1987, 178: 459-475.
    [115] Nisizima S, Yoshizawa A. Turbulent channel and Couette flows using anisotropic k-s model[J]. AIAA J, 1987, 25(3): 414-420.
    [116] Rubinstein R, Barton J M. Nonlinaer Reynolds stress models and the renormalization group[J]. Phys fluids A, 1990, 2(8): 1472-1476.
    [117] Zeidan E, Djilali N. Multiple-time scale turbulence model: computations of flow over a square rib[J]. AIAA J, 1996, 34(5): 626-629.
    [118] Kim S W and Chen C P. A multi-time -scale turbulence model based on variable partitioning of the turbulent kinetic energy spectrum. Numerical heat Transfer, Part B. 1989.16:193-211.
    [119] Schiestel R. Multi-time-scale modeling of turbulent flow in one point closures[J]. Phys fluid, 1987, 30(3): 722-731.
    [120] Chen C J Jaw S-Y. Fundamentals of turbulence modeling[M]. Washington DC: Taylor & Francis, 1998.
    [121] Speziale C G . Analytical methods for the development of Reynolds-stress closure in turbulence[J]. Ann Rev Fluid Mech, 1991,23: 107-157.
    [122] Rodi W. The prediction of free boundary layers by use of a 2-eqaution model of turbulence[D]. London: Faculty of Engineering, University of London 1972.
    
    [123] Rodi W. A new algebraic relation for calculating the Reynolds stress. ZAMM. 1976.56:219-221.
    [124] Gibson M M and Launder B E. Ground effects of pressure fluctuation in atmospheric boundary[J]. J Fluid Mech, 1978, 86: 491.
    [125] Harlow F H and Welch J E. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface[J]. The Physics of Fluids, 1965, 8: 2182-2189.
    [126] ]Hirt C W and Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. J. Comput. Phys. 1981, 39: 201~225.
    [127] Osher S and Sethain J A. Fronts Propagating with Curvature—Dependent Speed: Algorithms Based on Hamilton—Jacobi Formulations[J]. J of Comp Phys, 1988, 79: 12~49.
    [128] 李玲,陈永灿,李永红.三维VOF模型及其在溢洪道水流计算中的应[J].水力发电学报,2007,26(2):83-87.
    [129] 张土乔,尹则高,毛根海.弯曲圆形管道紊流的数值模拟[J].水力发电学报,2005,24(3):61~65.
    [130] 袁新明,毛根海,吴寿荣,唐锦春.闸后水跃水流的数值模拟[J].水利学报,1999,30(5):44~48.
    [131] 陶文铨.数值传热学[M].第二版.西安:西安交通大学出版社.2002:15~16.
    [132] Versteeg H K, Malalasekra W. An introduction to computational fluid dynamics[M].北京:世界图书出版公司,2000.
    [133] 谭维炎著.计算浅水动力学[M].北京:清华大学出版社,1998.
    [134] S.V. Patanker, D. B. Spalding. A calculation processure for heat, mass and momentum transfer in three-dimensional parabolic flows[J]. Int J Heat Mass Transfer, 1972, 15: 1787-1806.
    [135] Rhie C M, Chow W L. A numerical study of turbulent flow past an isolated airfoil with trailing edge separation[J]. AIAA J,1983,21: 1525-1552.
    [136] van Doormal J P, Raithby G D. Enhancement of the SIMPLE method for predicting in compressible fluid flow[J]. Numerical heat transfer, 1984, 7: 147-163.
    [137] Patankar C. Numerical heat transfer and fluid flow, Hemisphere Publishing Corporation[M]. New york: Taylor Francis Group, 1985.
    [138] Issa R I. Solution of implicitly discretisod fluid flow equations by operator splitting[J]. J comput. Phys.1986,62: 40-65.
    [139] 聂孟喜,吴广镐.侧向折流器对侧空腔和底空腔掺气参数的影响[J].清华大学学报(自然科学版),2003,43(8):1116-1119
    [140] 李忠义,陈霞,王永生.三峡工程泄洪深孔掺气减蚀常压及减压试验研究[R]北京:中国水利水电科学研究院水力学研究所,1997.
    [141] 田忠.洞塞式内消能工的水力特性研究[D],成都:四川大学,2006.
    [142] Charles S G, Thomas G B, Neassan F. An analysis of RNG based turbulent models for homogeneous shear flow [J]. Physics of Fluids, 1991, 3(9): 2278-2281.
    [143] 王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700