多联产系统煤热解焦油析出特性及焦油深加工利用试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤部分气化技术是煤洁净煤技术的重要研究方向之一,对我国煤炭资源的高效利用有重要意义。浙江大学开发的循环流化床煤部分气化多联产技术实现了热、电、焦油和煤气的多联产,具有很广泛的应用前景。本文主要研究多联产系统中焦油析出特性和煤焦油的深加工利用。
     本文在1MW热电气焦油多联产试验装置上研究热解温度、煤种对焦油产率和焦油基本特性以及焦油的成分含量的影响,结果表明,煤样的挥发份含量对焦油的产率有一定的影响,挥发份越高,其焦油产率越高。温度对焦油产率的影响较大,随着温度升高,焦油产率是先升高后降低的过程。通过GC-MS分析发现,不同于萘类、菲类等芳香重质组分,苯类、酚类和直链的烷烃类更容易在低温条件下析出。在温度较低和较高时,焦油中轻质组分含量比例较大,说明温度较高时,焦油组分趋于向低沸点和高沸点两侧范围集中分布。此外,煤中的氧含量也对焦油酚类含量有明显的影响。
     在此基础上,论文对12MW热电气焦油多联产系统生产的焦油进行了大量试验研究。结果表明,随温度的升高,急冷塔焦油的灰分含量、碳氢比、软化点、黏度和沥青质含量增大。针对初期制得的重质焦油,本文分别采用机械脱水、过滤和添加添加剂的方式以解决焦油的高含水率、高灰分含量和高黏度所带来的应用上的制约。
     为了对焦油进行深加工利用,文中用常减压蒸馏仪器对焦油进行切割,并用层析、GC-MS、FT-IR等方法对焦油不同温度段的馏分进行分析,发现焦油170℃~230℃有较高的含酚率,且焦油馏分中含有一定比例的硫化物、氮化物和烯烃。文中并进一步开展了焦油馏分的碱法提酚和加氢精制研究。
     为了提高本工艺的环境友好性,文中最后开展含酚废水处理的相关研究。以乙酸丁酯为萃取剂,经过多级萃取,可以将废水中的挥发酚含量降到国标要求的排放标准以内。
As one of important research directions on clean coal technology, coal gasification technology is significant in highly utilization of coal in China. The circulating fluidized bed multi-product cogeneration system developed by Zhejiang University achieves coal tar、gas、steam and power cogeneration and has a very broad application prospects. On this basis, an integrated experimental research on tar formation during coal pyrolysis on the muti-productsystem and deep processing application of tar was presented in this thesis.
     The influence of pyrolysis temperature and coal type on the yield、basic characteristics and composition of coal tar was inverstigated on a 1MW multi-product cogeneration system. According to the results, the coal with higher volatile has a higher tar yield and the tar yield increase to a maximum and then decrease with the continuing increase of pyrolysis temperature. GC-MS analysis showed that benzene、phenols and alkanes forme more easily at a low temperature not like naphthalenes at a high temperature. Results that the light components has a lager proportion in the tar at lower and higher pyrolysis temperature indicated that tar components tend to be distributed in both low boiling point region and high boiling point region at high pyrolysis temperature. Moreover, the oxygen content in coal has a significantly impact on the phenols content.
     Experimental research on the 12MW multi-product cogeneration system, was also investigated. Analysis of physical and chemical characteristics showed that ash content, high hydrocarbon ratio, softening point, viscosity and asphaltene content of heavy tar were high and increased with the pyrolysis temperature. In this paper, mechanical dewatering, filtration and additives were selected to solve application problem caused by high moisture content, high ash content and high viscosity.
     In order to deepen the tar processing and utilization, two atmospheric vacuum distillations apparatuses were used to cut the tar distillate, other methods and apparatuses,such as GC-MS\FT-IR and chromatography were also used to analysis the tar distillate composition at different temperature ranges. It was indicated that there was a certain proportion of sulfide\nitride and olefin and the phenols content of tar distillate at 170℃-230℃was very high. Thus, further processing of tar distillate about extraction of phenols and hydrotreating was carried out.
     In order to improve the environment friendliness of this system, the extraction and recovery of phenols in wastewater from the coal-pyrolysis multi-production co-generation system has been investigated. According to the experimental results, the volatile phenols contained in the wastewater can be reduced to following the national emission standards after multi-stages extraction using butyl-acetate as extractant.
引文
[1]谷天野.煤炭洁净加工与高效利用[J].洁净煤技术.2006,12(4):88-90.
    [2]李光斌.浅述煤炭综合利用的应用前景[J].内蒙古科技与经济.2008,(6):76~77.
    [3]刘耀鑫,方梦祥,余春江,等.循环流化床热、电、气、多联产技术方案研究[J].2003,(2):1~4.
    [4]黄军军.煤的流化床部分气化利用技术的实验研究[硕士学位论文].浙江:浙江大学.2005,
    [5]王俊琪,方梦祥,刘耀鑫,等.煤的部分空气气化联合循环发电系统特性研究[J].能源工程.2004,(3):1~4.
    [6]肖瑞华.煤焦油化工学[M].北京:冶金工业出版社,2006,1~12.
    [7]江巨荣.国内煤焦油的加工工业现状及发展[J].广州化工.2009;37(4):52~55.
    [8]张同翔,任有中,钱剑清,等.乳化煤焦油作为锅炉燃料的初步研究[J].锅炉技术.2004,35(3):45~48.
    [9]魏贤勇,宗志敏,秦志宏,等.煤液化化学[M].北京:科学出版社,2002.
    [10]邓胜祥,李继中,周孑民等.采用改质煤焦油作为煤粉锅炉的点火燃料[J].燃烧科学与技术.2009,15(4):304-308.
    [11]贾永忠,贾丽.煤焦油中酚的提取利用[M].当代化工.2008,37(2).
    [12]王军,刘文彬,白雪峰等.从煤焦油洗油总提取高纯度苊的研究[J].化学与黏合.2005,27(2):85-87.
    [13]王军,刘文彬,吴振,等.从煤焦油中提取喹啉和异喹啉的研究[J].化工科技.2005,13(2):19~22.
    [14]曲思建,关北峰,王燕芳等.我国煤温和气化(热解)焦油性质及加工利用现状与进展[J]煤炭转化.1998,21(1):15~2.
    [15]王龙延,杨伯伦,潘延民.炼油助剂新进展[J].石油化工.2004,33(3):277~283.
    [16]S.A Qader, and GR.Hill. Catalytic hydrocracking mechanism of hydrocracking of low temperature coal tar[J]. industrial & engineering chemistry process design and development.1969,8(4):456~461.
    [17]Roberto Rosal, Fernando V.Diez and Herminio Sastre. catalytic hydrogenation of mutiring aromatic hydrocarbons in a coal tar fraction [J]. industrial & engineering chemistry process design and development.1992.31(4):1007~1012.
    [18]张海军.煤焦油加氢反应性的研究[硕士学位论文].山西:太原理工大学,2007.
    [19]张晔,赵亮富.中/低温煤焦油催化加氢制备清洁燃料油研究[J].煤炭转化.2009,3(3):48~50.
    [20]舒歌平,史士东,金嘉璐,等.煤气化焦油加氢过程中脱氮及结焦的研究[J].煤炭学报.1996,21(2):183~186.
    [21]舒歌平,史士东、金嘉璐,等.气化焦油加氢制汽油、柴油研究[J].煤化工.1998年5月,第二期,34~39
    [22]燕京,吕才山,刘爱华.高温煤焦油加氢制取汽油和柴油[J].石油化工.2006,35(1):33~36.
    [23]刘军,王少青.我国煤焦油加工业发展状况及煤沥青应用[J].内蒙古石油化工.2009,(11):60~62
    [24]吕春祥,凌历程,周智峰等.煤焦油和煤沥青的净化比较[J].炭素.2000,(3):1~3.
    [25]古映莹,刘磊,唐课文,等.煤焦油过滤分离的研究,过滤与分离,2007,17(2),25~27
    [26]陈爱萍,彭建国.低品质煤焦油的加工利用[J].燃料与化工,2007,38(6):41~43.
    [27]黄谦昌.煤气化焦油加工制取汽油和柴油的研究[J].煤炭转化.1995,18(4):75-83.
    [28]Oberlin A. Chmistry and physics of carbon[M]. New York:Dekker,1989:113~141.
    [29]Lafdi K, Bonnaamy S, Oberlin A, et al. Mechanism of anisotropy occurrence in a pitch precursor of carbon fibres:part I-pitches A and B[J]. Carbon,1982,29(7):831~847.
    [30]Daguerre E, Nauguier F, Py X. The molecular scaling of raw pitches by oscillatory rheometry[J]. Carbon,1999,37(8):1189~1197.
    [31]周风山,吴瑾光.稠油化学降黏技术研究进展[J].油田化学,2001,18(3):133~134.
    [32]Chambrion P, Bertau R, Ehrburger P. Physicochemical properties of bitumen-coal tar mixtures[J]. Fuel,1996,75(5):531~535.
    [33]Chambrion P, Bertau R, Ehrburger P. Effect of polar components on the physical-chemical properties of coal tar[J]. Fuel,1995,74(5):1284~1290.
    [34]罗道成,刘俊峰.煤焦油脱除喹啉不溶物的净化处理研究[J].煤化工,2008,2(135):11~13.
    [35]许斌,欧阳春发.油酸改性沥青流变性能的研究[J].武汉科技大学学报:自然科学版,2002,25(4):345~348.
    [36]许斌,欧阳春发,等.硬脂酸改性沥青流变性能的研究[J].煤炭转化,2002,25(2):82~86.
    [37]古力虎.煤沥青流变性能及其改性研究[硕士学位论文].武汉:武汉科技大学,2004.
    [38]杨琴,李铁虎,林起浪,等.呋喃树脂对煤沥青流变性能的影响[J].新型炭材料,2005,20(1):81~82.
    [39]陆王琳.废轮胎换砖窑热解油品分析及加氢精制的研究[硕士学位论文].浙江:浙江大学,2007,40~64.
    [40]Mengxiang Fang, Zhongyang Luo, Xuantian Li,et al.A multi-product cogeneration system using combined coal gasificatin and combustion[J].Energy.1998,23(3):203~212.
    [41]薛江涛.流化床煤热解气化过程中焦油析出特性研究[硕士学位论文]浙江:.浙江大学,2005.
    [42]吕俊复,岳光溪.氧化钙条件下焦油组分的催化裂解[M].清华大学学报,1997,37.
    [43]GilbertF.Froment, Kennet 卜 B.Bi.e 卜 off.Chemiea.Reac-torAnalysisandDesign, Znd划 ition, JohmWiley&Sons, NewYork.1990,316~388
    [44]何国锋,戴和武,金嘉璐,等.低温热解煤焦油产率、组成性质与热解温度的关系[J].煤炭学报,1994,19(6):591~597.
    [45]葛宜掌.煤低温热解液体产物中的酚类化合物-生成机理[J].煤炭转化.1997,20(1):14~19.
    [46]庞雁原,杜铭华,戴和武.煤热解过程中酚类化合物生成机理及数学模型[J].煤炭学报.1995,18(1):75~81.
    [47]XuWei ehun and Akira Tomita.Effeet of temperature on the flash Pyrolysis of various coals[J].Fuel,1987,66:632~636.
    [48]药明康德新药开发有限公司分析部(译).波谱分析有机化合物的波谱解析.上海,华东理工大学出版社,2008,71~130.
    [49]薛改风,林立成.煤焦油净化处理的国内外发展动态[J].煤炭转化,1998,(4);21~22.
    [50]葛宜掌,金红.沉淀法回收煤焦油和含酚废水中酚类的研究[J].煤炭学报,1995,(10):20~25.
    [51]屈明达,鄂忠明.煤焦油中二甲酚的提取[J].化工技术经济.2005,23(10):34~39.
    [52]K.Tiwari, Bani P.Das.Processing of byproducts from carbonization of non-caking coals recovery of tar acids[J]. Fuel Processing Technology.1998,57()131~147
    [53]Kaushal K. Tiwari, Somnath Banerjee, Bani P.Das, Kumaresh C.Bit, Umesh C.Dumka. Isolation of prime value products from crude xylenol fraction of nocaking coal-derived tar acids. Fuel Processing Technology 86(2004) 13~21.
    [54]陈绍洲,常可怡.石油加工工艺学.上海:华东理工大学出版社,1997.
    [55]林世雄.《石油炼制工程》第二版,下册.北京:石油工业出版社,1988.
    [56]董振国,李凯等.工业NiW/A1203催化剂上喹啉的加氢脱氮宏观动力学[J].高校化学工程学报.2006,20(5):717~722.
    [57]GB/T1914722003,车用柴油[S].(GB/T1914722003, Automobile diesel fuels [S]).
    [58]方向晨,关明华,廖士纲.加氢精制.北京:中国石化出版社,2005,24~250.
    [59]金余其,陆王琳,池涌,严建华,岑可法废轮胎热解油加氢精制硫氮脱除特性研究[J],燃料化学学报,2007,35(6):772~776.
    [60]W ILL IAMS P T, CHISHTI H M. Reaction of nitrogen and sulphur compounds during catalytic hydrotreatment of shale oil[J]. Fuel,2001,80(7):957~963.
    [61]王勤辉,骆仲泱,方梦祥等.2002.12兆瓦热电气多联产装置的开发[J].燃料化学学报.30(2):141~146.
    [62]K. Chen, Y. Lin.Degradation of phenol by PAA-immobilized Candida tropocalis[J]. Enzyme Microb Technol.2002,31:490~497.
    [63]Guido Busca, Silvia Berardinelli, Carlo Resini,et al.Technologies for the removal of phenol from fluid streams:Ashort review of recent developments[J] Journal of Hazardous Materials.2008,160(2-3):265~288.
    [64]Wojciech Kujawski, Andrzej Warszawski, Wodzimierz Ratajczak. Removal of phenol from wastewater by different separation techniques[J].Desalination.2004,163 (1-3):287~296.
    [65]D. Mohan, S. Chander..Single component and multi-component adsorption of phenols by activated carbons[J]. Colloids Surf. A:Physicochem. Eng. Aspects.2001.177:183~196.
    [66]A.T. El-Gendi, S.A. Ahmed, H.A. Talaat. Preparation and evaluation of flat membranes for phenols separation[J]. Desalination.2007.206 (1-3):226~237
    [67]Y. Yavuz, A.S. Koparal. Electrochemical oxidation of phenol in a parallel plate reactor using ruthenium mixed metal oxide electrode[J].Hazard. Mater.2006.13:296~302.
    [68]Hong Jiang, Ying Fang, Yao Fu, Qing-Xiang Guo. Studies on the extraction of phenol in wastewater[J]. Journal of Hazardous Materials.2003.101 (2):179~190
    [69]T. Godjevargova, Z. Aleksieva, D. Ivanova, et al. Biodegradation of phenol by Trichosporon cutaneum cells covalently bound to polyamide granules[J]. Process Biochemistry.1998,33(8):831~835.
    [70]M. Kibret, W. Somitsch. Characterization of a phenol degrading mixed population by enzyme assay[J].Water Research.2000.34 (4):1127~1134.
    [71]S. Rengaraj, S.H. Moon, R. Sivabalan, et al. Removal of phenol from aqueous solution and resin manufacturing industry wastewater using an agricultural waste:rubber seed coat[J] Journal of Hazardous Materials.2002.89(2-3).185~196.
    [72]K.Tiwari, Bani P.Das. Processing of byproducts from carbonization of non-caking coals recovery of tar acids[J]. Fuel Processing Technology.1998.57(4):131~147
    [73]杨群,宁平,李树根.煤焦油在含酚废水治理上的应用[J].云南化工.2007.34(6):45~48.
    [74]Hong Jiang, Ying Fang, Yao Fu, Qing-Xiang Guo. Studies on the extraction of phenol in wastewater[J]. Journal of Hazardous Materials.2003.101 (2):179~190
    [75]Yang Yiyan, Yang Tianxue, Dai Youyuan. Extraction mechanism of phenol with tributyl Phosphate (TBP) [J].Environ. Chem.1995,14(5):410~416.
    [76]Chufen Yang, Yu Qian, Lijuan Zhang, Jianzhong Feng. Solvent extraction process development and on-site trial-plant for phenol removal from industrial coal-gasification wastewater[J]. Chemical Engineering Journal.2006,117(2):179-185.
    [77]Denise L. Venter,Izak Nieuwoudt. Liquid-Liquid Equilibria for Phenolic Compounds, Neutral Oils, and Nitrogen Bases at 313.15 K[J]. J. Chem. Eng. Data.2001.46 (4):813-822
    [78]Juergen Gmehling, Jiding Li, Martin Schiller. A modified UNIFAC model.2. Present parameter matrix and results for different thermodynamic properties[J]. Ind. Eng. Chem. Res.1993.32 (1):178-193.
    [79]P,T.P. Pinto, L.Lintomen, L.F.L.Luz Jr, M.R. Wolf-Maciel. Strategies for recovering phenol from wastewater:thermodynamic evaluation and envirmental concerns[J]. Fluid phase equilibria.2005.228-229:447-457.
    [80]J.R.A Gonzalez, E.A Macedo, M.E. Soares,et al. Liquid-liquid equlibria for ternary systems of water-phenol and solvents:data and representation with models[J].Fluid Phase Equilibria. 1986.26:289-302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700