苏云金杆菌和麦蛾柔茧蜂对印度谷螟的联合控制作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
许多发展中国家都面临着严重的粮食短缺问题。而这些国家又不能很好的防治在粮食储存过程中发生的微生物、脊椎动物以及昆虫。据估计,在世界范围内每年由于昆虫为害而造成的损失为粮食储藏量的5%。印度谷螟Plodiainterpunctella(Hübner)以幼虫为害各种粮食及其加工品、豆类、油料、干果、干菜、奶粉、蜜饯果品、烟叶、药材等中成药,是极重要的初期性害虫,分布世界各地,其防治仍然依赖化学农药,近年尽管有部分试用苏云金杆菌和天敌昆虫防治,但又有报道印度谷螟同样能对苏云金杆菌产生抗性。目前还没有苏云金杆菌和天敌联合控制印度谷螟的研究报道。为更好利用印度谷螟生物防治因子,我们开展本研究,主要研究内容和结果如下:
     本研究通过筛选获得对印度谷螟高毒力苏云金杆菌,并分析了其杀虫晶体蛋白及其基因型组成。首次系统研究了印度谷螟幼虫龄期与食料庇护对麦蛾柔茧蜂(Habrobracon hebetor Say)寄生率的影响,考察了苏云金杆菌和麦蛾柔茧蜂对印度谷螟的联合控制作用。分析了苏云金杆菌对天敌麦蛾柔茧蜂的影响。同时还研究了麦蛾柔茧蜂的搜索行为与利它素。这些研究结果将有利于阐明苏云金杆菌对印度谷螟的控制潜力,不仅为印度谷螟的生物防治提供高毒力苏云金杆菌,而且为制定印度谷螟生物防治方案奠定理论基础。因此,本研究对印度谷螟的生物防治具有重要的科学意义和实践意义。
     通过对在封闭环境中,麦蛾柔茧蜂对印度谷螟寄生过程中不同营养水平和寄主所处位置相互作用的研究,评估了食料庇护、寄主龄期及其两者互作对印度谷螟死亡率和麦蛾柔茧蜂羽化率的影响。结果表明,麦蛾柔茧蜂能寄生所有龄期的印度谷螟幼虫(1~4龄),但低龄(1龄和2龄)幼虫被寄生的概率显著低于高龄(3龄和4龄),3龄和4龄幼虫之间被寄生的概率没有显著性差异。在无选择条件下,24和48小时后只有龄期对麦蛾柔茧蜂的寄生率有显著的影响,而食料庇护及其两者互作对麦蛾柔茧蜂的寄生率无显著的影响。但是在选择条件下,24和48小时后龄期和食料庇护对麦蛾柔茧蜂的寄生率都有显著的影响。一般来说,低龄(1龄和2龄)幼虫在无选择条件下的被寄生率显著高于选择条件下的被寄生率。寄生率随着寄生时间的延长而升高,但4龄幼虫的寄生率无论何时都比其他龄期幼虫的寄生率高。在有食料庇护的情况下,印度谷螟幼虫的被寄生率较低。食料庇护和龄期的交互作用没有显著性差异说明,无论有无食料庇护,寄生率都随着虫龄的增长而升高。不同处理间,麦蛾柔茧蜂后代羽化的性比没有显著差异。无论何种处理,在有选择条件下的寄生蜂后代羽化数都比在无选择条件下的高。从上述结果可以看出,麦蛾柔茧蜂具有选择性和专一性的寄生行为,为麦蛾柔茧蜂应用释放提供理论依据。
     通过初步的生物测定,我评估了收集到的122株苏云金杆菌(Bt)对印度谷螟的毒性,筛选获得3株比标准株(B.thuringiensis subsp.kurstaki HD-1)对印度谷螟幼虫具有更强毒力的分离株。结果显示全部的Bt分离株能引起印度谷螟58.2%的死亡率,其中,13种分离株能引起90-100%的死亡率。结果,具有最高毒力(引起印度谷螟100%死亡率)的分离株属于H_7,同时最低毒力的分离株属于H_8,相同血清型的不同分离株对印度谷螟的毒力存在差异。在对122种Bt分离株的研究中,IMM-130,IMM-368和IMM-408这三种分离株对防治印度谷螟具高毒力(df=3,f=48.35,P<0.001),它们的LC_(50)低于标准菌株HD-1。在标准菌株HD-1的LC_(50)是8.48μg/ml的情况下,IMM-408、IMM-130和IMM-368的LC_(50)分别为1.24、2.86和4.62μg/ml。其中以IMM-408的毒力最强。SDS-PAGE分析结果表明,和标准Bt菌株HD-1一样,IMM-130和IMM-368均包含135 kDa和65kDa的杀虫晶体蛋白,而IMM-408包含135kDa晶体蛋白,包括crylAb9,crylCal,crylDal和cry2基因。血清学检测表明IMM-130、IMM-368和IMM-408分别属于H_3、H_4和H_7血清型。
     本研究评估了Bt和麦蛾柔茧蜂对印度谷螟的联合控制作用。Bt和麦蛾柔茧蜂引起印度谷螟幼虫的死亡率分别为41.67%和35.35%。Bt和麦蛾柔茧蜂联合使用时能引起86%的校正死亡率,显著高于其它的处理。Bt感染影响麦蛾柔茧蜂产卵和后代的发育,它在正常寄主上产的卵显著多于在被Bt感染的寄主上产的卵,用Bt和天敌联合防治后寄主产生的寄生蜂数少于不用Bt处理寄主产生的寄生蜂数。联合防治试验中麦蛾柔茧蜂幼虫的死亡率显著高于对照,产生的麦蛾柔茧蜂后代个体显著小于对照,但用联合防治和对照的麦蛾柔茧蜂后代发育历期没有显著差异,后代成虫的寿命也没有显著差异。对照处理的后代性比1:2.27(雄性:雌性),显示雌性较多,而联合防治处理的后代性比也有相同的趋势。研究结果显示用Bt和寄生蜂联合防治印度谷螟比任何一种单一防治效果要好。
     最后,研究了麦蛾柔茧蜂雌虫对干净食料、幼虫取食过的食料、幼虫以及幼虫排泄物提取物的反应。结果显示,正己烷提取物能引起麦蛾柔茧蜂的寄生行为。幼虫排泄物提取物比其它提取物能显著刺激更多的寄生行为。寄生经验在寄生蜂寻觅寄主的过程中发挥了巨大作用,也就是和寄主接触过的寄生蜂雌虫对滤纸片的反映会比没有寄生经验的雌虫强烈。正己烷比丙酮、乙醚、甲醇更易溶解与印度谷螟相关物质的活性组分。用硅胶柱层析法分馏幼虫和幼虫排泄物的粗提物,各馏分再用麦蛾柔茧蜂雌虫检测,最能引起麦蛾柔茧蜂的寄生行为的馏分用气质联用(GC-MS)分析,两种馏分都有三个主要的波峰,结果显示提取物主要含有碳氢化合物。两种提取物的碳氢化合物都主要是饱和的长烷烃链(1,3二甲基苯、2-acyl-1,3-cyclohexanediones)。起作用的馏分中还包括其他的化学物质:甲苯、异三十烷、乙基环己烷、二十九烷和十六烷。这些结果显示,这些成分包含能引起麦蛾柔茧蜂搜寻和寄生行为的利他素类化学物质,而且这些混合物(利它素)将来可能被合成,并用于储藏物表面以提高麦蛾柔茧蜂的寄生率等印度谷螟生物防治实践。
Many developing countries are confronted with acute food shortage,and this could probably be linked to their inability to protect and preserve their food produce from quality and quantity deterioration that result from microbial,vertebrate and insect pest infestation.The annual losses incurred in storage due to insect attack are estimated as 5%worldwide.Plodia interpunctella Hübner(Lepidoptera:Pyralidae) is a cosmopolitan insect infesting a broad range of commodities,including raw or processed cereal.
     The key objectives of this research were to:a.screen and evaluate some Bacillus thuringiensis isolates against P.interpunctella and determine the LC_(50) of highly toxic strains,b.to evaluate the role of host-instar and refuge on the parasitization behavior of Habrobracon hebetor Say(Hymenoptera:Braconidae),c. Investigate the effect of combining B.thuringiensis with H.hebetor for management of P.interpunctella infestation and to assess the influence of B.thuringiensis on H. hebetor during this combination treatment,d.investigate the host-finding behavior in H.hebetor,by extracting and identifying kairomone from P.interpunctella responsible for eliciting parasitization behavior in the parasitoid.
     A study was conducted to examine the interactions between trophic levels during parasitism and host location by H.hebetor within a closed environment,by carrying out multiple tests to evaluate the role of refuge and host-instar on the mortality of P.interpunctella and on the emergence of H.hebetor.Results showed that H.hebetor was able to parasitize all(first-fourth) instars of P.interpunctella,but significantly fewer early(first and second) instars were parasitized.Interaction among instar x refuge had no significant effect on parasitism.In no-choice condition,only instar factor was observed to have any significant effect on parasitism at both 24 h and 48 h post treatment.While under choice condition:instar,refuge and not interaction abetween them,significantly affected parasitism by the wasp at both 24 h and 48 h post treatment.Generally,the percentage of early(first and second) instars parasitized was higher under no-choice condition than parasitism observed for the same larvae stages in choice condition.Parasitism appeared to increase in conjunction with the increase in exposure time.Significantly more fourth instar larvae were parasitized than other larvae from the other stages irrespective of the duration of exposure.Fewer hosts were parasitized in the presence of refuge as opposed to the higher parasitism observed in the absence of refuge.The non significant interaction between instar x refuge explained that,irrespective of the presence of refuge or not,percentage of host parasitized by H.hebetor also increased with increase in larval stage.Differences between male and female emergences appeared non significant.Results also revealed that only host-instar significantly affected parasitoid yield.It was however noted that parasitoid emergence was higher under no-choice condition than in choice.There was no significant difference between the parasitoid yield of third and fourth instar larvae. Based on the results from this investigation,H.hebetor could therefore be described as a weak competitor with an opportunistic and specialized behavior,thereby giving more insight to its ecology and biology.
     Through preliminary bioassays,the toxicity of a collection of 122 isolates of B. thuringiensis were evaluated against P.interpunctella.Afterwards,3 strains that demonstrated significantly greater potency than the standard strain(B.thuringiensis serovar kurstaki HD-1) against Lepidoptera were selected and analyzed in detail. Results indicated that 58.2%of the entire B.thuringiensis isolates evoked≥60% mortality to P.interpunctella and were thus considered toxic.Among these,13 isolates were distributed within the 90%to 100%mortality groups.The results also showed that different isolates belonging to the same serotype had different toxic level to P.interpunctella.The highest frequency of toxicity(causing 100%mortality of Indianmeal moth) was observed in isolates belonging to H_7,while the lowest frequency of toxicity was recorded in isolates belonging to H_8.Among the 122 B. thuringiensis isolates evaluated,3 three isolates exhibited a significantly(df=3,f= 48.35,P<0.001) greater potency against P.interpunctella,with their LC_(50) lower than the standard strain HD-1.Treatments with spore-crystal mixture caused higher larval mortality than soluble protein.The LC_(50) s for these 3 isolates IMM-408,IMM-130 and IMM-368 are 1.24,2.86 and 4.62μg/ml respectively while that of isolate HD-1 was 8.48μg/ml.Of the 3 highly toxic strains,IMM-408 was found to be most toxic. SDS-PAGE of 3 isolates that yielded 100%mortality against P.interpunctella indicated that both isolates IMM-130 and IMM-368 contained~135 kDa and 65 kDa crystal proteins,similar to standard B.thuringiensis strain HD-1,while isolate IMM-408 contained~135 kDa crystal protein,and contained cry1Ab9,cry1Ca1,cry1Da1 and cry2 gene.The serological tests conducted showed that isolates IMM-130,IMM-368 and IMM-408 belong to serotypes H_3,H_4 and H_7 respectively
     Furthermore,the suitability of combining microbial pesticides and natural enemies for integrated pest management(IPM) of stored cereal in China was evaluated using laboratory assays.This was achieved by studying the interactions between B.thuringiensis,B.thuringiensis-intoxicated host larvae and H.hebetor during control of P.interpunctella.B.thuringiensis or H.hebetor alone caused 41.67%and 35.35%P.interpunctella larval mortality respectively.The B. thuringiensis-parasitoid combination treatment significantly evoked more P. interpunctella mortality(86%) than other treatments.Progeny development of H. hebetor was dependent upon its susceptibility to B.thuringiensis contaminated host. However,more eggs were significantly laid by H.hebetor on hosts placed in control (257 eggs) than on hosts in B.thuringiensis contaminated diets(93 eggs).Hatchability of H.hebetor eggs were not affected in all treatments,data between treatment and control did not vary significantly.Fewer wasps emerged from B.thuringiensis-parasitoid combine treatment than in none B.thuringiensis treatments.H.hebetor larval mortality was significantly higher in combine treatments than in control. Although the size of adult parasitoids that emerged from combine treatments appeared smaller than those in the control,their developmental period was not significantly different.Similarly,no significant difference was observed in the longevity of adult wasps emerging from both treatments.The sex ratio of H.hebetor progeny in control experiment was female biased in the ratio of 1:2.27 male:female and this trend is similar to the observations in combine treatment Therefore,since B.thuringiensis did not prevent parasitoid development,this investigations is suggestive that a combine treatment with B.thuringiensis and parasitoid release,would produce better protection against P.interpunctella.
     Lastly,the response of gravid female H.hebetor to extracts from clean diet, infested diet,larvae and frass of P.interpunctella was investigated.Result revealed that acetone and hexane extracts elicited searching behavior in H.hebetor.Extracts of frass significantly stimulated more parasitization behavior in the parasitoid than extracts of other P.interpunctella-related materials tested.It was also noted that experience plays a huge role in parasitoid foraging efficiency.Females that had previous contact with host produced stronger responses towards treated patch,than their inexperienced counterparts.The active components in P.interpunctella-related materials were more soluble in hexane,than in acetone,ethyl ether or methanol. Using silica gel flash column chromatography,crude extracts of larva and frass were fractionated,then the response of H.hebetor to each fraction was evaluated and most active fractions were analyzed by gas chromatography-mass spectrometry(GC-MS). Three main peaks were observed on the GC of both fractions.Result showed that extracts contained hydrocarbons.The hydrocarbons which are mainly saturated long chain alkanes(1,3-dimethyl benzene,2-acyl-1,3-cyclohexanediones) are present in both extracts.Other chemicals extracted from the active fractions are toluene, squalane,ethyl cyclohexane,nonacosane and hexadecane.These results showed that P.interpunctella-related materials that were tested contained infochemicals which elicits searching/ parasitization behavior in the parasitoid H.hebetor.And these compounds(kairomone),may be synthesized and applied to surface of stored produce in other to enhance H.hebetor parasitization performance.
引文
1. Abbott W.S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265-267.
    2. Agelopoulos N. G., Dicke M., and Posthumus M. A. (1995). Role of volatile infochemicals emitted by feces of larvae in host-searching behavior of parsitoid Cotesia rubecula (Hymenoptera: Braconidae): A behavioral and chemical study. Journal of Chemical Ecology, 21:1789-1811.
    3. Ahmad, S., J.R. O'Neill, D.L. Mague and R.K. Nowalk (1978) Toxicity of Bacillus thuringiensis to gypsy moth larvae parasitized by Apanteles melanoscelus. Environ. Entomol. 7: 73-76.
    4. Akindele S. O. (1996). Basic experimental designs in agricultural research. 1st edition Montem Paperbacks, Akure/ Nigeria.
    5. Akinkurolere R.O. (2003). Use of plant products as protectants of cereals and grain legumes against five coleopterous pests. M.Tech. Thesis, Federal University of Technology, Akure.
    6. Akinkurolere R.O., Zhang H. and Qiong R. (2007). Response of Plodia interpunctella to treatments with different strains of Bacillus thuringiensis (Lepidoptera:Pyralidae). Entomologia Generalis, 30(4): 263-271.
    7. Al-Deeb M.A., Wilde G.E., Higgins R. A. (2001). No effect of Bacillus thuringiensis corn and Bacillus thuringiensis on the predator Orius insidiosus. Environmental Entomology, 30:624-629.
    8. Allotey J. and L. Goswami. (1990). Comparative biology of two phytictid moths, Plodia interpunctella (Hubner) and Ephestia cautella (Walker.) on some selected food media. Insect Science and its Application, 11: 209-215.
    9. Antolin M. F. and M. R. Strand. (1992). Mating system of Bracon hebetor (Hymenoptera: Braconidae). Ecologigical Entomology, 17: 1-7.
    10. Arbogast R.T. and Mullen M.A. (1978). Spatial distribution of eggs by ovipositing Indianmeal moths, Plodia interpunctella (Hubner) (Lepidoptera: Pyralidae). Researches on Population Ecology, 19(2): 148-154.
    11. Arbogast R.T., Kendra P.E., Mankin R.W. and McGovern J.E. (2000). Monitoring insect pests in retail stores by trapping and spatial analysis. Journal of Economic Entomology, 93: 1531-1542.
    12. Arbogast R.T., Kendra P.E., Mankin R.W. and McDonald R.C. (2002). Insect infestation of a botanicals warehouse in north-central Florida. Journal of Stored Products Research, 38: 349-363.
    13. Arlian L.G. (2002). Arthropod allergens and human health. Annual Review of Entomology, 47:395-434
    14. Armes N.J., Jadhav D.R., De Souza K.R. (1996). A survey of insecticide resistance in Helicoverpa armigera in the Indian sub-continent. Bulletin of Entomological Research, 86:499-514.
    15. Arnason J.T., Baum B., Gale J., Lambert J.D.H., Bergvinson D.J., Philogene B.J.R., Fuicher R.G., Serratos J.A., Mihm J.A. and Jewell D.C. (1994). Variation in resistance of Mexican landraces of maize to maize weevil Sitophilus zeamais, in relation to taxonomic and biochemical parameters. Euphytica, 74:227-236
    16. Arthur F.H. and Rogers T. (2003). Legislative and regulatory actions affecting insect pest management for postharvest systems in the United States. In: P.F. Credland, D.M. Armitage, C.H. Bell, P.M. Cogan, and E. Highley (Eds.), Advances in Stored Product Protection, Proceedings of the 8th International Working Conference on Stored Product Protection, July 22-26, 2002, York, UK. pp. 435-438.
    17. Arthur F.H. and Phillips T.W. (2003). Stored-product insect pest management and control. In: Hui, Y.H., B.L. Bruinsma, J.R. Gorham, W.K. Nip, P.S. Tong, and P. Ventresca, P. (Eds). Food Plant Sanitation. Marcel Decker, New York, pp. 341-358.
    18. Arthur F.H., Zettler J.L. and Halliday W.R. (1988). Insecticide resistance among populations of almond moth and Indianmeal moth, Lepidoptera: Pyralidae in stored peanuts. Journal of Economic Entomology, 81: 1283-1287.
    19. Aspelin A.L. and Grube A.H. (1998). Pesticide Industry Sales and Usage: 1996 and 1997 Market Estimates. Office of Prevention, Pesticides and Toxic Substances, U. S. Environmental Protection Agency. 733-R-98- 0001. Washington, DC 20460. 37 pp.
    20. Athanassiu C.G., Palyvos N.E., Eliopoulos P.A. and Papadoulis G.T. (2001). Distribution and migration of insects and mites in flat storage containing wheat. Phytoparasitica, 29:379-392.
    21. Attia F.I. (1977). Insecticide resistance in Plodia interpunctella Lepidoptera Pyralidae in New South Wales, Australia. Journal of Australian Entomological Society, 16: 149-152.
    22. Atwood, D.W., Young III S.Y. and Kring T.J. (1997). Development of Cotesia marginiventris (Hymenoptera: Braconidae) in tobacco budworm (Lepidoptera: Noctuidae) larvae treated with Bacillus thuringiensis and Thiodicarb. Journal of Economic Entomology, 90: 751-756.
    23. Awadallah K.T., Tawfik M.F.S. and Abdella M.M.H. (1985). Biocycle of Bracon hebetor Say (Hymenoptera: Braconidae) on the wax moth Galleria mellonella, L. (Lepidoptera: Galleridae). Annals of Agriculture Science of Moshtohor, 23: 343-350.
    24. Baker J. E. and Mabie J.A. (1973). Feeding behavior of larvae of Plodia interpunctella. Environmental Entomology, 2(4): 627-632.
    25. Baker J. E., Weaver D.K., Throne J.E. and Zettler J.L. (1995). Resistance to protectant insecticides in two field strains of the stored-product insect parasitoid Bracon hebetor (Hymenoptera: Braconidae). Journal of Economic Entomology, 88(3): 512-519.
    26. Beegle C.C.and Yamamoto T. (1992). Invitation paper (C.P. Alexander Fund): history of Bacillus thuringiensis Berliner research and development. Cananadian Entomologist, 124: 587-616.
    27. Begon M, Harper J.L. and Townsend D.J. (1995). Persistence of a parasitoid- host system: refuge and generation cycles? Proceeding of the Royal Society of London B, 260:131-137.
    28. Bell C.H. (1975). Effects of temperature and humidity on development of four pyralid moth pests of stored products. Journal of Stored Products Research, 11: 167-175.
    29. Bell C.H. (1976). Factors influencing the duration and termination of diapause in the Indianmeal moth Plodia interpunctella. Physiological Entomology, 1: 93-102.
    30. Bell C.H. (1995). In: Current and future prospects for stored product protection using fumigants and gases. Proceedings of the International Forum on Stored Product Protection and Postharvest Treatment of Plant Products, Council of Europe: Strasbourg, 61-68.
    31. Bell C.H. and Walker D.J. (1973). Diapause induction in Ephestia elutella and Plodia interpunctella Lepidoptera: Pyralidae with a dawn dusk lighting system. Journal of Stored Products Research, 9: 149-158.
    32. Bellows T.S. and Hassell M.P. (1988). The dynamics of age structured host - parasitoid interactions. Journal of Animal Ecology, 57: 259-268.
    33. Benson J.F. (1973). Intraspecific competition in the population dynamics of Bracon hebetor Say (Hymenoptera: Braconidae). Journal of Animal Ecology, 42: 105-142.
    34. Bird J. Lisa and Raymond J. Akhurst (2007). Variation in susceptibility of Helicoverpa annigera (Hubner) and Helicoverpa punctigera (Wallengren) (Lepidoptera: Noctuidae) in Australia to two Bacillus thuringiensis toxins. Journal of Invertebrate Pathology, 94(2): 84-94.
    35. Boo K. S. and Yang J. P. (2000). Kairomones used by Trichogramma chilonis to find Helicoverpa assulta eggs. Journal of Chemical Ecology, 26:359-375.
    36. Bond E.J (1984). Manual of fumigation for insect control; FAO, Rome (Italy).
    37. Bourque SN, Valero J.R., Mercier J., Lavoie M.C. and Levesque R.C. (1993). Multiplex polymerase chain reaction for detection and differentiation of the microbial insecticide Bacillus thuringiensis. Applied and Environmental Microbiology, 59(2): 523-527.
    38. Bradley, D., M. A. Harkey, M.-K. Kim, D. Biever, and L. S. Bauer. 1995. The insecticidal CryIB protein of Bacillus thuringiensis ssp. thuringiensis hasdual specificity to coleopteran and lepidopteran larvae. Journal of Invertebrate Pathology, 65:162-173.
    39. Bravo A., Saravia S., Lopez L., Ontiveros H., Abarca C, Ortiz A., Ortiz M., Lina L., Villalobos F.J., Pena G., Nunez-Valdez M.E., Soberon M. and Quintero R. (1998). Characterization of Cry genes in a Mexican Bacillus thuringiensis strain collection. Applied and Environmental Microbiology, 64: 4965-4972.
    40. Brooks W. M. (1993). Host-parasitoid-pathogen interactions. In Thompson S. N., Federici B. A., and Beckage N. E. (eds.), Parasites and pathogens of insects, vol. 2.Pathogens. Academic, London, pp. 231-272
    41. Brower J.H. (1984). Trichogramma: potential new biological control method for stored-product Lepidoptera In: Bozek, J.H. (Chairman). Stored Product Protection: Proceedings of the3th International Working Conference on Stored-Product Protection; Manhattan, Kansas USA. CAB International.
    42. Brower J.H. (1990). Interaction of Bracon hebetor (Hymenoptera: Braconidae) and Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) in suppressing stored-product moth populations in small inshell peanut storages. Journal of Economic Entomology, 83(3): 1096-1101.
    43. Brown K. L. and Whiteley H. R. (1992). Molecular characterization of two novel crystal protein genes from Bacillus thuringiensis subsp. thompsoni. Journal of Bacteriology, 174:549-557.
    44. Campbell J.F. and Arbogast R.T. (2004). Stored-product insects in a flour mill: population dynamics and response to fumigation treatments. Entomologia Experimentalis et Applicata, 112: 217-225.
    45. Campbell J.F. and Mullen M.F. (2004). Distribution and dispersal behavior of Trogoderma variable and Plodia interpunctella outside a food processing plant. Journal of Economic Entomology, 97: 1455-1464.
    46. Campbell J.F., Mullen M.F. and Dowdy A.K. (2002). Monitoring stored product pests in food processing plants with pheromone trapping contour mapping and mark recapture. Journal of Economic Entomology, 95: 1089-1101.
    47. Canale A. and Loni A. (2006). Host location and acceptance in Psytallia concolor: role of host instar. Bulletin of Insectology, 59: 7-10.
    48. Cao Dongfeng, Pimentel D. Hart Kelsey (2002). Postharvest crop losses (insects and mites). In: Pimentel D. (eds), encyclopedia of pest management. Marcel Dekker Inc. 270, Madison Avenue, New York, NY 10016. pp645-647.
    49. Ceron J., Ortiz A., Quintero R., Guereca L. and Bravo A. (1995). Specific PCR primers directed to identify cryl and cryIII genes within a Bacillus thuringiensis strain collection. Applied and Environmental Microbiology, 61: 3826-3831.
    50. Champ B.R., Dyte C.E. (1976). Report of the FAO global survey of pesticide susceptibility of stored grain pests. FAO Plant Production and Protection Series No. 5. FAO, Rome, Italy, 297pp.
    51. ChilcuttC.F. and Tabashnik B. E. (1997). Host-mediated competition between the pathogen Bacillus thuringiensis and the parasitoid Cotesia plutellae of the diamond back moth (Lepidoptera: Plutellidae). Environmental Entomology, 26: 38-45.
    52. Chuche Julien, Anne Xuereb and Denis Thiery (2006). Attraction of Dibrachys cavus(Hymenoptera: Pteromalidae) to its Host Frass Volatiles. Journal of Chemical Ecology, 32: 2721-2731.
    53. Clausen C. P. (1956). Biological control of insect pests in the continental United States. U.S. Department of Agricultural Technology Bulletin, 1139.
    54. Cline L.D. and Press J.W. (1990). Reduction in almond moth (Lepidoptera: Pyralidae) infestations using commercial packaging of foods in combination with the parasitic wasp, Bracon hebetor (Hymenoptera: Braconidae). Journal of Economic Entomology, 83(3): 1110-1113.
    55. Cline L.D., Press J.W. and Flaherty B.R. (1984). Preventing the spread of the almond moth (Lepidoptera: Pyralidae) from infested food debris to adjacent uninfested packages, usig the parasite Bracon hebetor (Hymenoptera: Braconidae). Journal of Economic Entomology, 77(2): 331-333.
    56. Cloutier C, Duperron J., Tertuliano M. and McNeil J.N. (2000). Host instar, body size and fitness in the koinobiotic parasitoid Aphidius nigripes. Entomologia Experimentalis et Applicata, 97: 29-40.
    57. Colazza S., Rosi M. C. and Clemente A. (1997). Response of the egg parasitoid Telenomus busseolae to sex pheromone of Sesamia nonagrioides. Journal of Chemical Ecology, 23: 2437-2444.
    58. Copping L.G. and Menn J.J. (2000). Biopesticides: a review of their action, applications and efficacy. Pesticides Management Science, 56: 651-651.
    59. Corbet S.A. (1971). Mandibular gland secretion of larvae of the flour moth, Anagasta kuehniella, contains an epideictic pheromone and elicits oviposition movements in a hymenopteran parasite. Nature, 232: 481-484.
    60. Cox P.D. and Bell C.H. (1991). Biology and ecology of moth pests on stored food. In: Gorham J. R. (Ed.). Ecology and management of food-industry pests. Association of Official Analytical Chemists, Arlington, VA, USA, pp. 181- 193.
    61. Crickmore N., Zeigler D., Feitelson J., Schnepf E., Van Rie J., Lereclus D., Baum J., Dean D. (1998). 'Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins' Microbiology and Molecular Biology Review, 62:807-813.
    62. Crickmore N., Zeigler D.R., Schnepf E., Van Rie 1, Lerculus D., Baum J., Bravo A., Dean D.H.(2004). Bacillus thuringiensis toxin nomenclature. http://www.biols.susx.ac.uk/Home/Neil_Crickmore/Bt/
    63. Croft B. A. and Brown A. W. A. (1975). Responses of Arthropod Natural Enemies to Insecticides. Annual Review of Entomology, 20: 285-335.
    64. Cushman R.A. (1926). Location of individual hosts versus systematic relation of host species as a determining factor in parasite attack. Proceedings of the Entomological Society of Washington, 28: 5-6.
    65. Darwish E., El-Shazly M. and El-Sherif H. (2003). The choice of probing sites by Habrobracon hebetor Say (Hymenoptera: Braconidae) foraging for Ephestia kuehniella Zeller (Lepidoptera : Pyralidae). Journal of Stored Product Research, 39: 265-276.
    66. De Maagd R.A., Weemen-Hendriks M., Stiekema W. and Bosch D. (2000). Bacillus thuringiensis delta-endotoxin Cry1C domain III can function as a specificity determinant for Spodoptera exigua in different, but not all, Cryl-Cry1C hybrids. Applied and Environmental Microbiology, 66: 1559-1563.
    67. Denis S. Hill (1983). Agricultural insect Pests of the tropics and their control (second edition). Cambridge University Press, Cambridge CB2 1RP page 329
    68. Dhadiallah T. S., Carlson G.R. and Le D.P. (1998). New insecticides with ecdysteroidal and juvenile hormone activity. Annual Review of Entomology, 43:545-569.
    69. Dicke M., Sabelis M. W., Takabayashi J., Bruin J. and Posthumus M. A. (1990). Plant strategies of manipulating predator prey interactions through allelochemical: Prospects for application in pest control. Journal of Chemical Ecology, 16:3091-3118.
    70. Dobie P. (1974). The laboratory assessment of the inherent susceptibility of maize varieties to post-harvest infestation by Sitophilus zeamais Motsch. (Coleoptera, Curculionidae). Journal of Stored Products Research, 10:183-197.
    71. Dorn S., Schumacher P., Abivardi C. and Meyhofer R. (1999). Global and Regional Pest Insects and Their Antagonists. In Orchards: Spatial Dynamics. Agricultural Ecosystem and Environment, 1422:1-8.
    72. Doud C.W. and Phillips T.W. (2000). Activity of Plodia interpunctella (Lepidoptera: Pyralidae) in and around flour mills. Journal of Economic Entomology, 93: 1842-1847.
    73. Doutt R.L. (1964). Biological characteristics of entomophagous adults. In: DeBach P. (Ed.), Biological Control of Insect, Pests and Weeds. Chapman and Hall, London, pp. 145-167 (Chapter 6).
    74. Duan, J.J., and R.H. Messing. 2000. Effect of Diachasmimorpha tryoni on two non-target flowerhead-feeding tephritids. Biocontrol. 45: 113-125.
    75. Dulmage H. T., Graham H. M. and Martinez E. (1978). Interactions between the tobacco budworm, Heliothis virescens, and the 8-endotoxin produced by the HD-1 isolate of Bacillus thuringiensis var. kurstaki: relationship between length of exposure to the toxin and survival. Journal of Invertebrate Pathology, 32: 40-50.
    76. Eden W.G. (1952). Effect of husk cover on rice weevil damage in Alabama. Journal of Economic Entomology, 45: 543-544.
    77. Erb S. L., Bourchier R. S., Van Frankenhuyzen K. and Smith S.M. (2001). Sublethal Effects of Bacillus thuringiensis Berliner subsp. Kurstaki on Lymantria dispar (Lepidoptera: Lymantriidae) and the Tachinid Parasitoid Compsilura concinnata (Diptera: Tachinidae). Environmental Entomology, 30(6): 1174-1181.
    78. FAO (1966). Proceedings of the FAO Symposium on Integrated Pest Control (11-15th October 1965). FAO, Rome (Italy).
    79. FAO (1980). Handling and storage of food grains in tropical and subtropical areas by Hall D.W. FAO, Rome (Italy).
    80. Flexner J.L., Lightheart B. and Croft B.A. (1986). The effects of microbial pesticides on non-target, beneficial arthropods. Agricultural Ecosystem and Environment, 16: 203-254.
    81. Flinn P.W. and Hagstrum D.W. (2001). Augmentative releases of parasitoid wasps in stored wheat reduces insect fragments in flour. Journal of Stored Products Research, 37: 179-186.
    82. Flinn P.W., Hagstrum D.W, and McGaughey W.H. (1994). Suppression of insects in stored wheat by augmentation with parasitoid wasps In: Highley E., Wright E.J., Banks H.J. and Champ B.R. (Eds). Stored Product Protection: Proceedings of the 6th International Working Conference on Stored-Product Protection; Canberra, Australia. CAB International pp. 1103-1105.
    83. Flint M. L. and Dreistadt S. H. (1998). Natural enemies handbook. U. California Press.
    84. Fukushima J., Yasumasa K. and Takahisa S. (1989). Isolation and identification of a kairomone responsible for the stinging behavior of Bracon hebetor Say (Hymenoptera: Braconidae) from frass of the almond moth Cadra cautella Walker. Agricultural and Biological Chemistry, 53 3057-3059.
    85. Genieys P. (1924). Habrobracon brevicornis Wesm.: The effects of the environment and the variation which it produces. Annals of the Entomological Society of America, 18: 143-202.
    86. Gill S.S., Cowles E.A. and Pietrantonio P.V. (1992). The mode of action of Bacillus thuringiensis endotoxin. Annual Review Entomology, 37:615-636.
    87. Glass E. H. (1975). Integrated Pest Management: rationale, potentials, needs and implementation. Entomological society of America, Special Publication, 141pp.
    88. Godfray H.C.J. and Hunter M.S. (994). Heteronomous hyperparasitoids, sex ratios and adaptations - a reply. Ecological Entomology, 19: 93-95.
    89. Golob P., Broadhead P. and Wright M.A.P. (1990). Susceptibility of Teretriosoma nigrescens Lewis (Coloeptera: Histeridae) to insecticides. In: Proceedings of the 5th International Working Conference on Stored Products Protection, Vol. 2. Fleurat-Lessard F. and Ducom P. (Eds.), pp. 1259-1263. Bordeaux, France, 9-14 September, 1990.
    90. Golob P., Farrell G., Orchard J.E. (2002). Crop post-harvest: science and technology, volume I. Principles and practice. Blackwell Publishing, Oxford, p 554.
    91. Golob P. J., Mwambula V. Mhango and Ngulube F. (1982). The use of locally available materials as protectants of maize grain against insect infestation during storage in Malawi, Journal of Stored Products Research, 18: 67-74.
    92. Grbin L.C. (1997). Sublethal effects of Bacillus thuringiensis Berliner on the diamondback moth, Plutella xylostella (L.) and its natural enemy, Cotesia plutellae Kurdjumov: implications for resistance management. PhD Thesis, The University of Adelaide, Adelaide, 188pp
    93. Gudrups I., Harris A. and Dales M. (1994). Are residual insecticide applications to store surfaces worth using? In: Highley E., Wright E.J., Banks H.J. and Champ B.R. (Eds.), Proceedings of the Sixth International Working Conference on Stored-Product Protection, Canberra, Australia, Vol. 2. CAB International, Wallingford, UK, pp. 785-789.
    94. Hagstrum D.W. (1983). Self-provisioning with paralyzed hosts and age, density, and concealment of hosts as factors influencing parasitism of Ephestia cautella (Walker) (Lepidoptera: Pyralidae) by Bracon hebetor (Say) (Hymenoptera: Braconidae). Environmental Entomology, 12: 1727-1732.
    95. Hagstrum D.W. and Smittle B.J. (1977). Host finding ability of Bracon hebetor and its influence upon adult parasite survival and fecundity. Environmental Entomology, 6: 437-439.
    96. Haines C.P. (1982). Pest management in stored products. Protection Ecology, 4: 321-330.
    97. Haines C.P. (1991). Insects and arachnids from stored products: Their biology and identification. A training manual (2nd edition). -Natural Research Institute, Central Avenue, Clatham Maritime/United Kingdom.
    98. Haines C.P. (1994). Grain storage in the tropics. In: Jayas D.S., White N.D.G. and Muir W.E. (Eds.), Stored-Grain Ecosystems. Marcel Dekker Inc., New York, USA, pp. 55-99.
    99. Haines C.P. (1998). Eat no weevil - pest management in tropical food stores. Inaugural lecture delivered at the University of Greenwich, 14 January 1998. Inaugural Lecture Series, Greenwich University Press, UK, ii+36pp.
    100. Haines C.P., (1999). Arthropod natural enemies in stored products - overlooked and under-exploited. In: Jin Z., Liang Q., Liang Y., Tan X., Guan L. (Eds.), Proceedings of the Seventh International Working Conference on Stored- Product Protection, 14-19 October 1998, Beijing, China, Vol. 2. Sichuan Publishing House of Science and Technology, Chengdu, Sichuan, China, pp. 1205-1226.
    101. Haines C. P. (2000). IPM for food storage in developing countries: 20th Century aspirations for the 21st Century. Crop Protection, 19(8-10): 825-830.
    102. Hare J.D. Morgan D.J.W. and Nguyun T. (1997). Increased parasitization of California red scale in the field after exposing its parasitoid, Aphytis melinus, to a synthetic kairomone. Entomologia Experimentalis et Applicata, 82: 73-81.
    103. Heimpel G.E., Rosenheim J.A. and Mangel M. Predation on adult Aphytis parasitoids in the field. Oecologia, 110: 346-352.
    104. Herrero S., Oppert B. and Ferre J. (2001). Different mechanisms of resistance to Bacillus thuringiensis toxins in the Indianmeal moth. Applied and Environmental Microbiology, 67: 1085-1089.
    105. Hochberg M. E. (1991). Non-linear transmission rate and the dynamics of infectuous disease. Journal of Theoritical Biology, 153: 301-321.
    106. Hochberg M.E. and Hawkins B.A. (1992). Refuges as a predictor of parasitoid diversity. Science, 255: 973-976.
    107. Hofteh and Whiteley H.R., (1989). Insecticidal crystal proteins of Bacillus thuringiensis. Microbiological Reviews, 53:242-255.
    108. Hsieh C. Y. and Allen W. W. (1986). Effects of insecticides on emergence, survival, longevity, and fecundity of the parasitoid Diaeretiella rapae (Hymenoptera: Aphidiidae) from mummified Myzus persicae (Homoptera: Aphididae. Journal of Economic Entomology, 79(6): 1599-1602.
    109. Hubert J., Stejskal V., Kubatova A., Munzbergova Z., Vanova M. and Zdarkova E. (2002). Mites as selective fungal carriers in stored grain. Experimental and Applied Acarology, 29:69-87.
    110. Hwang S.H., Saitoh H., Mizuki E., Higuchi K. and Kang S.K. (1998). A novel class of mosquitocidal d-endotoxin, Cry19B, encoded by Bacillus thuringiensis serovar higo gene. Systematic and Applied Microbiology, 21: 179-184.
    111. Isenhour D.J., Wiseman B.R. (1987). Foliage consumption and development of the fall armyworm (Lepidoptera: Noctuidae) as affected by the interactions of a parasitoid, Campoletis sonorensis (Hymenoptera: Ichneumonidae), and resistant corn genotypes. Environmental Entomology, 16:1181-1184.
    112. Jeffords M. R., Post S. L., Wiedenmann R. N., Nixon C. N. and Sadof C. S. (1997). The good guys! Natural enemies of insects card set. Illinois Natural History Survey. Champaign, IL.
    113. Johnson D.E., Brookhart G.L., Kramer K.J., Barnett B.D. and McGaughey W.H. (1990). Resistance to Bacillus thuringiensis by the Indianmeal moth Plodia interpunctella comparison of midgut proteinases from susceptible and resistant larvae. Journal of Invertebrate Pathology, 55: 235-244.
    114. Keever D.W., Mullen M.A., Press J.W. and Arbogast R.T. (1986). Augmentation of natural enemies for suppressing two major insect pests in stored farmers stock peanuts. Environmental Entomology, 15: 767-770.
    115. Kohno K., Takeda M. and Hamamura T. (2007). Insecticide susceptibility of a generalist predator Labidura riparia (Dermaptera: Labiduridae). Applied Entomology and Zoology, 42: 501-505.
    116. Kim H.S., Lee D.W., Woo S.D., Yu Y.M. and Kang S.K. (1998). Distribution, serological identification, and PCR analysis of Bacillus thuringiensis isolated from soils of korea. Current Microbiology, 89: 16-23
    117. Kinsinger R.A. and McGaughey W.H. (1979). Susceptibility of populations of Indianmeal moth and almond moth to Bacillus thuringiensis. Journal of Economic Entomology, 72: 346-349.
    118. Kou W.S. and Chak K.F. (1996). Identification of novel Cry-type genes from Bacillus thuringiensis strains on the basis of restriction fragment length polymorphism of PCR amplified DNA. Applied Environmental Microbiology, 62(4): 1369-1377.
    119. Kraszpulski P. and Davis R. (1988). Interactions of a parasite, Bracon hebetor (Hymenoptera: Braconidae), and a predator, Xylocoris flavipes (Hemiptera: Anthocoridae), with populations of Tribolium castaneum and Plodia interpunctella. The American Midland Naturalist, 119(1): 71-76.
    120. Lacey L.A. and Kaya H.A. (2000). Field Manual of Techniques in Invertebrate Pathology. Kluwer Academic Publ., Boston. 911 pp.
    121. Lewis W. J. and Takasu K. (1990). Use of learned odors by a parasite wasp in accordance with host and food needs. Nature, 348: 635-636.
    122. Liu X., Zhang Q., Zhao J.Z., Cai Q., Xu H., Li J. (2005). Effects of the Cry1Ac toxin of Bacillus thuringiensis on Microplitis mediator, a parasitoid of the cotton bollworm, Helicoverpa armigera. Entomologia Experimentalis et Applicata, 114:205-213
    123. Lou Yong-gen and Jia-an Cheng (2001). Host-recognition kairomone from Sogatella furcifera for the parasitoid Anagrus nilaparvatae.Entomologia Experimentalis et Applicata, 101: 59-67.
    124. Madrid F.J. and Sinha R.N. (1982). Feeding damage of 3 stored product moths (Lepidoptera, Pyralidae) on wheat. Journal of Economic Entomology, 75: 1017-1020.
    125. Mahr D. L. and Ridgway N. M. (1993). Biological control of insects and mites: An introduction to beneficial natural enemies and their use in pest management. NCR-481. University of Wisconsin. Van Driesche.
    126. Mangel M. (1987).Oviposition site selection and clutch size in insects. Journal of Mathematical Biology, 25: 1-22.
    127. Mangel M. (1989). Evolution of host selection in parasitoids: Does the state of the parasitoid matter. American Nature, 133: 688-705.
    128. Markham R.H., Bosque-Perez N.A., Borgermeister C. and Meikle W.G. (1994). Developing pest management strategies for Sitophilus zeamais (Motschulsky) and Prostephanuss truncactus (Horn) in the tropics. FAO Plant Protection Bullettin,42:97-116.
    129. Markham R.H., Wright V.F., Rios I.R.M. (1991) A selective review of research on Prostephanus truncatus (Col.: Bostrichidae) with an annotated and updated bibliography. Ceiba, 32:1-90.
    130. Mattiacci L. and Dicke M. (1995a). Host-age discrimination during host location by Cotesia glomerata, a larval parasitoid of Pieris brassicae. Entomologia Experimentalis et Applicata, 76: 37-48.
    131. Mattiacci L. and Dicke M. (1995b). The parasitoid Cotesia glomerata (Hymenoptera, Braconidae) discriminates between first and fifth larval instars of its host Pieris brassicae, on the.basis of contact cues from frass, silk, and herbivore damaged leaf tissue. Journal of Insect Behaviour, 8: 485-498.
    132. Mayer M.S. and McLaughlin J.R. (1990). Insect pheromones and sex attractants. CRC Press, Boca Raton, FL. 235 pp.
    133. Mbata G.N. (1987). Studies on induction of larval diapause in a Nigerian strain of Plodia interpunctella Hubner Lepidoptera Pyralidae. Insect Science and its Application, 8:317-322.
    134. Mbata G.N. and Osuji F.N.C. (1983). Some aspects of the biology of Plodia- interpunctella (Hubner) (Lepidoptera, Pyralidae), a pest of stored groundnuts in Nigeria. Journal Stored Product Research, 19: 141-151.
    135. Mcgaughey W., and Beeman R. (1988). Resistance to Bacillus thuringiensis in colonies of Indianmeal moth and almond moth (Lepidoptera, Pyralidae). Journal of Economic Entomology, 81: 28-33.
    136. McGaughey W.H. and Johnson D.E. (1992). Indianmeal moth (Lepidoptera: Pyralidae) Resistance to different strains and mixtures of Bacillus thuringiensis. Journal of Economic Entomology, 85(5): 1594-1600.
    137. Meyhofer R. and Casas J. (1999). Vibratory stimuli in host location by parasitic wasps. Journal of Insect Physiology, 45: 967-971.
    138. Milonas P.G. (2005). Influence of initial egg density and host size on the development of the gregarious parasitoid Habrobracon hebetor on three different host species. Biocontrol, 50: 415-428.
    139. Mohan M., Sushil S. N., Bhatt J. C, Gujar G. T. and Gupta H. S. (2008). Synergistic interaction between sublethal doses of Bacillus thuringiensis and Campoletis chlorideae in managing Helicoverpa armigera. Biocontrol, 53:375-386.
    140. Monnerat R.G., Masson L., Brousseau R., Pusztai-Carey M., Bordat D. and Frutos R. (1999). Differential activity and activation of Bacillus thuringiensis insecticidal proteins in diamondback moth, Plutella xylostella. Current Microbiology, 39: 159-162.
    141. Meadows M.P. (1993). Bacillus thuringiensis in the environment: ecology and risk Assessment. In: Bacillus thuringiensis an environmental biopesticide: theory and practice. In: Entwistle P.F., Cory J.S., Bailey M.J. and Higgs S. (Eds.). John Wiley and Sons, New York, pp. 193-220.
    142. Morgan D.J.W. and Hare J.D., (1998). Volatile cues used by the parasitoid, Aphytis melinus, for host location: California red scale revisited. Entomologia Experimentalis et Applicata, 88: 235-245.
    143. Mossadegh M.S. (1978). Mechanism of secretion of the contents of the mandibular glands of Plodia interpunctella larvae. Physiological Entomology, 3:335-340.
    144. Mossadegh M.S. (1980). Inter- and intra-specific effects of the mandibular gland secretion of the larvae of the Indian-meal moth, Plodia interpunctella. Physiological Entomology, 5: 165-173.
    145. Mudd A. and Corbet S.A. (1973). Mandibular gland secretion of larvae of the stored product pests Anagasta kuehniella, Ephestia cautella, Plodia interpunctella and Ephestia elutella. Entomologia Experimentalis et Applicata 16,291-293.
    146. Mullen M.A. (1994). Rapid determination of the effectiveness of insect resistant packaging. Journal of Stored Product Research, 30(1): 95-97.
    147. Mullen M.A. and Pedersen J.R. (2000). Sanitation and Exclusion In: Subramanyam B. and Hagstrum D. W. Alternatives to Pesticides in Stored- Product IPM. Boston//Dordrecht//London: Kluwer Academic Publishers pp. 29-50.
    148. Mullen M.A. and Arbogast R.T. (1977). Influence of substrate on oviposition by 2 species of stored product moths. Environmental Entomology, 6: 641-644.
    149. Mullen M.A. and Mowrey S.V. (2003). Packaging. In: Hui, Y.HBruinsma B.L., Gorham J.R., Nip W.K., Tong P.S. and Ventresca P. (Eds). Food Plant Sanitation. Marcel Decker, New York, pp. 423-433.
    150. Musser F.R. and Shelton A.M. (2003). Bt sweet corn and selective insecticides: impact on pests and predators. Journal of Economic Entomology, 96:71-80
    151. Nansen C. and Phillips T.W. (2003). Ovipositional responses of the Indianmeal moth, Plodia interpunctella (Hubner) (Lepidoptera: Pyralidae) to oils. Annals of the Entomological Society of America, 96: 524-531.
    152. Naranjo S., Head G., Dively G. (2005). Field studies assessing arthropod nontarget effects in Bt transgenic crops: Introduction. Environment Entomology, 34: 1178-1180.
    153. Nealis V. and Van Frankenhuyzen K. (1990). Interactions between Bacillus thuringiensis Berliner and Apanteles fumiferanae Vier. (Hymenoptera: Braconidae), a parasitoid of the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). Canadian Entomology, 122: 585-594.
    154. Nelson D. R. and Blomquist G. J. (1995). Insect Waxes: In Hamilton R. J. 155. (ed). Waxes: Chemistry, Molecular Biology and Functions. Christie W.W. The Oily Press, England. Pp. 1-90
    156. Niber T.B. (1994): The ability of powders and slurries from ten plant species to protect stored grain from attack by Prostephanus truncaus Horn (Coleoptera: Bostrichidae) and Sitophilus oryzae L. (Coleoptera: Curculionidae). Journal of Stored Products Research, 30(4): 297 - 301.
    157. Noteborn H.P.J.M., Bienenmann-Ploum M.E., van den Berg J.H.J., Alink G.M., Zolla L., Reynaerts A., Pensa M. and Kuiper H.A. (1995). "Safety assessment of the Bacillus thuringiensis insecticidal crystal protein Cry1A(b) expressed in transgenic tomatoes". In: Engel K.-H., Takeoka G.R. and Teranishi R. (eds.) ACS Symposium Series 605, Washington DC: ACS, pp. 134-147.
    158. Ode P.J., Antolin M.F., and Strand R.R. (1997). Constrained oviposition and female-biased sex allocation in a parasitic wasp. Oecologia, 109: 547-555.
    159. Ohara Y., Takafuji A. and Takabayashi J. (2003b). Response to host-infested plants in females of Diadegma semiclausum Hellen (Hymenoptera: Ichneumonidae). Applied Entomology and Zoology, 38: 157-162.
    160. Perez-Mendoza J. and Aguilera-Pena M. (2004). Development, reproduction, and control of the Indianmeal moth, Plodia interpunctella (Hubner) (Lepidoptera: Pyralidae) in stored seed garlic in Mexico. Journal of Stored Product Research, 40: 409-421.
    161. Phillips T.W. (1997). Semiochemicals of stored-product insects: research and applications. Journal of Stored Products Research 33: 17-30.
    162. Phillips T.W. and Strand M.R. (1994). Larval secretions and food odors affect orientation in female Plodia interpunctella. Entomologia Experimentalis et Applicata, 71: 185-192.
    163. Pimentel D. (1991). World resources and food losses to pests. In: Gorham J.R. Ecology and management of food-industry pests. The Association of Official Analytical Chemists, Arlington VA. pp. 5-11
    164. Platt R.R., Cuperus G.W., Payton M.E., Bonjour E.L. and Pinkston K.N. (1998). Integrated pest management perceptions and practices and insect populations in grocery stores in South-central United States. Journal of Stored Products Research, 34: 1-10.
    165. Powell K. A. and Jutsum A.R. (1993). Technical and commercial aspects of biological control. Pesticides science, 37: 315-321.
    166. Press J.W., Cline L.D. and Flaherty B.R. (1982). A comparison of two parasitoids, Bracon hebetor (Hymenoptera: Braconidae) and Venturia canescens (Hymenoptera: Ichnemonidae), and a predator Xylocoris flavipes (Hemiptera: Anthocoridae) in suppressing residual populations of the almond moth, Ephestia cautella (Lepidoptera: Pyralidae). Journal of the Kansas Entomological Society, 55(4): 125-128.
    167. Press J.W., Flaherty B.R. and Arbogast R.T. (1974). Interactions among Plodia interpunctella, Bracon hebetor, and Xylocoris flavipes. Environmental Entomology, 3(1): 183-184.
    168. Price N.R. (1985). The mode of action of fumigants. Journal of Stored Products Research, 21 (4): 157-164.
    169. Prijono D. and Manuwoto S. (1997). Evaluation of insecticidal activity of seed extracts of annonaceous, fabaceous and meliaceous plants against mungbean beetle, Callosobruchus maculatus (F.). Proceedings of the Symposium on Pest Management for Stored Food and Feed. BIOTROP Special Publication 59. BIOTROP, Bogor, Indonesia, pp. 161-171.
    170. Prokopy R.J. and Lewis W.J. (1993). Application of learning to pest management. In: Papaj D.R. and Lewis A.C., Editors, Insect Learning: Ecological and Evolutionary Perspectives, Chapmari and Hall, New York 308- 342.
    171. Prozell S., Scholler M., Hassan S.A. and Reichmuth C.H. (1996). Release of Trichogramma evanescens as a component of an integrated pest management programme in organic food bakeries and stores (Hymenoptera: Trichogrammatidae). Proceedings of the 20th International Congress of Entomology, Firence, Italy, August 25-31. 555 pp.
    172. Puttarudriah M. and Channabasavanna G. (1956). A study on the identity of Habrobracon hebetor Say and Bracon brevicornis Wesmael. Bulletin of Entomological Research, 47: 183-191.
    173. Raguraman S. and Singh R.P. (1998). Behavioral and physiological effects of neem (Azadirachta indica) seed kernel extracts on larval parasitoid, Bracon hebetor. Journal of Chemical Ecology, 24: 1241-1250.
    174. Rani P. Usha, Kumari S. Indu, Sriramakrishna T. and Sudhakar T. Ratna (2007). Kairomones Extracted from Rice Yellow Stem Borer and their Influence on Egg Parasitization by Trichogramma japonicum Ashmead. Journal of Chemical Ecology, 33:59-73.
    175. Riggin T.M., Wiseman B.R., Isenhour D.J. and Espelie K.E. (1992). Incidence of fall armyworm (Lepidoptera: Noctuidae) parasitoids on resistant and susceptible corn genotypes. Environmental Entomology, 21: 888-895.
    176. Roesli, R., Subramanyam B., Campbell J.F. and Kemp K. (2003). Stored- product insects associated with a retail pet store chain in Kansas. Journal of Economic Entomology, 96(6): 1958-1966.
    177. Rogers D. (1972). Random search and insect population models. Journal of Animal Ecology, 41 369-383.
    178. Romeis J., Meissle M., and Bigler F. (2006). Transgenic crops expressing Bacillus thuringiemis toxins and biological control. Nature Biotechnology, 24: 63-71.
    179. Romeis J., Shanower T.G, and Zebitz C.P.W. (1997).Volatile plant infochemicals mediate plant preference of Trichogramma chilonis. Journal of Chemical Ecology, 23(11): 2455-2465.
    180. Royama T. (1971). A comparative study of models for predation and parasitism. Researches in Population Ecology Kyoto, Supplement, 1: 1-91.
    181. Ruiu L., Satta A., Floris I.(2007). Susceptibility of the house fly pupal parasitoid Muscidifurax raptor (Hymenoptera: Pteromalidae) to the entomopathogenic bacteria Bacillus thuringiensis and Brevibacillus laterosporus. Biological Control, 43: 188-194.
    182. Rutledge C. E. (1996). A survey of identified kairomones and synomones used by insect parasitoids to locate and accept their hosts. Chemoecology, 7:121- 131.
    183. Sait S.M., Andreev R.A., Begon M., Thompson D.J., Harvey J.A. and Swain R.D. (1995). Venturia canescens parasitizing Plodia interpunctella - Host vulnerability a matter of degree. Ecological Entomology, 20: 199-201.
    184. Sait S.M., Begon M., Thompson D.J., Harvey J.A. and Hails R.S. (1997). Factors affecting host selection in an insect host-parasitoid interaction. Ecological Entomology, 22: 225-230.
    185. Salama H.S., El-Moursy A., Zaki F.N. and Aboul-Ela R. Abdel-Razek (1991) Parasites and predator of the meal moth Plodia interpunctella Hbn. as affected by Bacillus thuringiensis Berl. Journal of Applied Entomology, 112:144-253.
    186. Salgado V.L. (1997). The modes of action of spinosad and other insect control products. Down to Earth, 52(2):35-43.
    187. Sambrook J., Fritsch E.F. and Maniatis T. (2001). Molecular cloning: A laboratory manual, 3rd edition. Cold Spring Habor Laboratory, Cold Spring Habor, New York, United States of America.
    188. Sanders Christopher J., Judith K. Pell, Guy M. Poppy, Alan Raybould, Monica Garcia-Alonso and Tanja H. Schuler (2007). Host-plant mediated effects of transgenic maize on the insect parasitoid Campoletis sonorensis (Hymenoptera: Ichneumonidae). Biological Control, 40: 362-369.
    189. Savidan Anita (2002). Tritrophic interactions in maize storage systems. PhD dissertation, University of Neuchatel, Neuchatel Switzerland 225pp.
    190. Sayyed A.H and Wright D.J (2002). Genetic diversity of Bt resistance: implications for resistance management. Pakistan Journal of Biological Sciences, 5:1330-1344.
    191. Scholler M. and P. Fields. (2003). Evaluation of North American species of Trichogramma Westwood (Hymenoptera: Trichogrammatidae) for control of the Indianmeal moth, Plodia interpunctella (Hubner) (Lepidoptera: Pyralidae). In: Credland P.F., Armitage D.M., Bell C.H., Cogan P.M. and Highley E. (Eds.). Advances in Stored Product Protection. Proceedings of the 8th International Working Conference on Stored Product Protection, 22-26. July 2002, York, United Kingdom 233-237.
    192. Scholler M. and Flinn P.W. (2000). Parasitoids and Predators. In: Subramanyam, B. and Hagstrum D.W. (Eds.). Alternatives to Pesticides in Stored-Product IPM. Boston//Dordrecht//London: Kluwer Academic Publishers, pp. 229-272.
    193. Scholler M., Flinn P.W., Grieshop M.J. and Zd'arkova E. (2005). Biological control of stored product pests. In: Jerry Heaps, (Ed.). Insect management for food storage and processing. 2nd Edition. American Association of Cereal Chemists.
    194. Scholler M., Reichmuth C.H. and Hassan S.A. (1994). Studies on biological control of Ephestia kuehniella Zeller (Lep: Pyralidae) with Trichogramma evanescem Westwood (Hym: Trichogrammatidae) - host finding ability in wheat under laboratory conditions. In: Highley, E., E.J. Wright, H.J. Banks, and B.R. Champ (Eds). Stored Product Protection: Proceedings of the 6th International Working Conference on Stored-Product Protection; Canberra, Australia. CAB International.
    195. Scholler M, Prozell S., Al-Kirshi A. G. and Reichmuth C. (1997). Towards biological control as a major component in integrated pest management in stored product protection. Journal of Stored Products Research, 33: 81-97.
    196. Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D. and Dean D. (1998). Bacillus thuringiensis its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62: 775-806.
    197. Sedlacek J.D., Weston P.A. and Barney R.J. (1995). Lepidoptera and Psocoptera.. In: Subramanyam B. and Hagstrum D.W. (Eds). Integrated Management of Insects in Stored Products. New York: Marcel Dekker Inc.; pp. 41-70.
    198. Shonouda M.L. and F.N. Nasr. (1998). Impact of larval-extract kairomone of Ephestia kuehniella Zell. (Lep., Pyralidae), on the behavior of the parasitoid Bracon hebetor Say (Hym., Braconidae). Journal of Applied Entomology, 122:33-35.
    199. Singh S.P., Ballal C.R., Poorani J. (2002). Old world bollwomi Helicoverpa armigera, associated Heliothinae and their natural enemies. Project Directorate of Biological control, Bangalore, India, Technical Bulletin, 31: 135.
    200. Smith G. P. and Ellar D. J. (1994). Mutagenesis of two surface-exposed loops of the Bacillus thuringiensis CrylC d-endotoxin affects insecticidal specificity. Biochemical Journal, 302:611-616.
    201. Smith K.L. (2000). Ohio state university extension fact sheet. Indianmeal moth. HYG 2089-97. (http://ohioline.osu.edu/hyg-fact/2000/2089.html).
    202. SPSS. 2007. Statistical Package for Social Sciences. Chicago, Il, USA.
    203. Steidle J. L. M. and Joachim Ruther (2000). Chemicals used for host recognition by the granary weevil parasitoid Lariophagus distinguendus. Journal of Chemical Ecology, 26(12): 2665-2675.
    204. Steidle J.L.M., Rees D. and Wright E.J. (2001). Assessment of Australian Trichogramma species (Hymenoptera: Trichogrammatidae) as control agents of stored product moths. Journal of Stored Product Research, 37: 263-275.
    205. Stejskal V. (2002). Inversion relationship between action threshold and economic/aesthetic injury level for the control of urban and quarantine pests. Anz Schadlingskunde , Journal of Pesticides Science, 75:158-160.
    206. Strand M. R. and Vinson S. B. (1982). Behavioral response of the parasitoid Cardiochiles nigriceps to a kairomone. Entomologia Experimentalis et Applicata, 31:308-315.
    207. Strand M.R., Williams H.J., Vinson S.B. and Mudd A. (1989). Kairomonal activities of 2-acylcyclohexane-l,3-diones produced by Ephestia kuehniella Zeller in eliciting searching behavior by the parasitoid Bracon hebetor (Say). Journal of Chemical Ecology, 15: 1491- 1500.
    208. Subramanaym B.H. and Hagstrum D.W. (1996). Integrated management of insects in stored products. Marcel Dekker, New York, p 426
    209. Subramanyam B.H., Campbell H. J. and Kemp K. (2001). It's in the detail for retail. Pest Control, May: 26-28.
    210. Sumner W.A., Harein P.K. and Subramanyam B. (1988). Malathion resistance in larvae of some Southern Minnesota USA populations of the Indianmeal moth Plodia interpunctella, Lepidoptera: Pyralidae infesting bulk-stored shelled corn. Great Lakes Entomologist, 21: 133-138.
    211. Sweetman, H.L., 1963. Principles of Biological Control. Dubridge, W.M. C. Brown Co, Iowa, 560pp.
    212. Talukder F.A. and Howse P.E. (1994). Repellent, toxic and food protectant effects of pithraj, Aphanamixis polystachya extracts against the pulse beetle, Callosobruchus chinensis in storage. Journal of Chemical Ecology, 20(4): 899-908.
    213. Tamez-Guerra Patricia, Maria M. Iracheta, Benito Pereyra-Alferez, Luis J Galan-Wong, Ricardo Gomez-Flores, Reyes S. Tamez-Guerra, and Cristina Rodriguez-Padilla (2004). Characterization of Mexican Bacillus thuringiensis strains toxic for Lepidopteran and Coleopteran larvae. Journal Invertebrate Pathology, 86:7-18.
    214. Tang Q.Y. and Feng M.G. (1997). Practical statistics and DPS data processing system. In: (Tang QY and Feng MG ed.); China Agricultural Press Beijin, China, pp. 188
    215. Taylor A. D. (1988a). Host effects on larval competition in the gregarious parasitoid Bracon hebetor. Journal of Animal Ecology, 57: 163-172.
    216. Taylor A. D. (1988b). Host effects on functional ovipositional response of Bracon hebetor. Journal of Animal Ecology, 57: 173-184.
    217. Taylor R.W. (1989). Phosphine: a major grain fumigant at risk. International Pest Control, 31: 10-14.
    218. Taylor R.W.D. (1991). Resistance to grain fumigants and future prospects for their use. Pesticide Outlook 22, pp. 22-24.
    219. Taylor R.W.D. (1994). Methyl bromide - is there any future for this noteworthy fumigant? Journal of Stored Products Research, 30, pp. 253-260.
    220. Thibout E. (2005). Role of Caterpillar Silk Thread in Location of Host Pupae by the Parasitoid Diadromus pulchellus. Journal of Insect Behavior, 18(6): 8117- 826.
    221. Thomson W.T. (2001) Agricultural Chemicals, Book I, Insecticides. Thomson Publications, Fresno, California. 249 pp.
    222. Tounsi, S.A., J'Mal A., Zouari N. and Jaoua S. (1999). Cloning and nucleotide sequence of a novel cry1Aa-type gene from Bacillus thuringiensis subsp. kurstaki. Biotechnology letters, 21: 771-775.
    223. Travers R.S., Martin P.A.W. and Reichelderfer C.F. (1978). Selective process for efficient isolation of soil Bacillus thuringiensis spp. Applied and Environmental Microbiology, 53(6): 1263-1266.
    224. Tsuji H. (1998). Experimental invasion of a food container by first-instar larvae of the Indianmeal moth, Plodia interpunctella Hubner, through pinholes. Medical Entomology and Zoology, 49: 99-104.
    225. Tsuji H. (2000). Ability of first instar larvae of the Indianmeal moth, Plodia interpunctella Hubner, to reach their food. Medical Entomology and Zoology, 51:283-287.
    226. Turlings T.C.J., Wackers F.L., Vet L.E.M., Lewis W.J., and Tumlinson J.H. (1992). Learning of host-location cues by hymenopterous parasitoids. In: Lewis, A.C. and Papaj D.R. (Eds), Insect learning: ecological and evolutionary perspectives. Chapman and Hall, New York. pp. 51-78.
    227. Ulpah S. and Kok L.T. (1996). Interrelationship of Bacillus thuringiensis Berliner to the diamondback moth (Lepidoptera: Noctuidae) and its primary parasitoid, Diadegma insulare (Hymenoptera: Ichneumonidae). Journal of Entomological Science,. 31: 371-377.
    228. Uribe D., Martinez W. and Ceron J. (2003). Distribution and diversity of cry genes in native strains of Bacillus thuringiensis obtained from different ecosystems from Colombia. Journal of Invertebrate Pathology, 82(2):119-127.
    229. Verdcourt B. and Trump E.C. (1969). Common Poisonous Plants of East Africa, Collins, London, p. 169.
    230. Vet L. E. M. and Dicke M. (1992). Ecology of infochemicals use by natural enemies in a tritrophic context. Annual Review of Entomology 37: 141-72.
    231. Vinson B. (1976). Host selection by insect parasitoids. Annual Review Entomology, 21:109-133.
    232. Vinson S. B., Harlan D. P. and Hart W. G. (1978). Response of the parasitoid Microterys flavus to the brown soft scale and its honeydew. Environmental Entomology, 7: 874-878.
    233. Waage J. K. (1978). Arrestment responses of the parasitoid, Nameritis canescens, to a contact chemical produced by its host, Plodia interpunctella. Physiological Entomology, 3:35-146.
    234. Wallner W.E., Dubois N.R. and Grinberg P.S. (1983). Alteration of parasitism by Rogas lymantriae (Hymenoptera: Braconidae) in Bacillus thuringiensis- stressed gypsy moth (Lepidoptera: Lymantriidae) hosts. Journal of Economic Entomology, 76: 275-277.
    235. Wang Y., Bai C. and Wen J. (1980). Study on separation of Bacillus thuringiensis spore and crystal. Acta Microbiological Sinica, 20: 285-288.
    236. Ware G.W. and Whitacre D.M. (2004) The Pesticide Book, 6th Ed. 496 pp. Meister Media Worldwide, Willoughby, Ohio.
    237. Weseloh R. M. (1980). Behavioral changes in Apanteles melanoscelus females exposed to gypsy silk moth. Environmental Entomology, 9:345-349.
    238. Weseloh R. M. (1987). Orientation behavior and effect of experience and laboratory rearing on responses of Cotesia melanoscela (Ratzeburg) (Hymenoptera: Braconidae) to gypsy moth silk kairomone. Journal of Chemical Ecology, 13: 1493-1502.
    239. Weseloh R.M. and Andreadis T.G. (1982). Possible mechanism for synergism between Bacillus thuringiensis and the gypsy moth (Lepidoptera: Lymantriidae) parasitoid, Apanteles melanoscelus (Hymenoptera: Braconidae). Annals of Entomological Society of America, 75: 435-438
    240. XLSTAT. 1995-2007. Addinsoft SARL. New-York, USA.
    241. Yaman, M., R. Nalcacioglu and Z. Demirbag (2002). Studies on bacterial flora in the population of the fall webworm, Hyphantria cunea Drury. (Lep.,Arctiidae). Journal of Applied Entomology, 126: 470-474.
    242. Yang Y.Z., Yu Y.S., Ren L., Shao Y.D., Qian K. and Myron P.Z. (2005). Possible incompatibility between transgenic cottons and parasitoids. Australian Journal of Entomology, 44: 442-445.
    243. Yu S.H., Ryoo M.I., Na J.H. and Choi W.I. (2003). Effect of host density on egg dispersion and the sex ratio of progeny of Bracon hebetor (Hymenoptera : Braconidae). Journal of Stored Products Research, 39: 385-393.
    244. Zhang Hongyu, Li Zhongkui and Yu Ziniu (1997). A review on the research progress of transgenic Bacillus thuringiensis and its commercialization. Biotechnology, 3: 13-15.
    245. Zhang Hongyu, Yu Ziniu and Deng Wangxi (2000). Isolation, distribution and toxicity of Bacillus thuringiensis from warehouses in China. Crop Protection, 19:449-154.
    246. Zhang Hongyu, Zeng Xiaohui, Yu Ziniu and Deng Wangxi (2001). characterization and toxicity of Bacillus thuringiensis isolates from warehouses to Spodoptera exigua (Lepidoptera: Noctuidae). Journal of Applied Entomology, 125: 211-214.
    247. Zhu Chang-Xiong, Jiang Xi-Liang, Ji Jun-Hong, Sun Dong-Yuan and Tian Yun- Long (2003). Research progress and some development suggestions on bio- pesticides in China. Modern Chemical Industry, 23(7): 1-4 (In Chinese with brief English abstract).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700