Ni/H-BEA催化剂上选择性还原贫燃尾气中的氮氧化物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
选择性催化还原法(SCR)是机动车贫燃尾气氮氧化物(NOx)控制的主要方法,分子筛催化剂是一类颇具应用前景的SCR催化剂。本文选用H-BEA分子筛为载体,过渡金属元素Ni为主要活性组分,并以Fe为助剂,采用浸渍法制备了一系列Ni/H-BEA和Ni-Fe/H-BEA催化剂,并以NH3、CH4、C3H8等为还原剂,对Ni/H-BEA和Ni-Fe/H-BEA催化剂上NH3-SCR、HC-SCR以及低温等离子体协同HC-SCR三种过程脱除贫燃尾气NOx进行了深入研究,得到了以下一些结论:
     (1)在NH3-SCR体系,3%Ni/H-BEA的活性最高,最佳活性温度范围为350-500℃,NOx转化率最高可达100%。在较高空速范围内(20000~100000 h-1),Ni/H-BEA的活性随空速的增加而下降。催化剂的活性随着NH3/NO摩尔比的上升而上升,较适宜的NH3/NO比为1。在一定的O2浓度范围内(4-10%),Ni/H-BEA的活性受O2浓度的变化影响较小。SO2和H2O在300℃下对催化剂活性有不可逆的抑制作用,NOx转化率最高降幅可达20%,主要是因为铵盐在催化剂表面的形成。
     (2)在HC-SCR体系,Ni/H-BEA的C3H8-SCR活性远高于其CH4-SCR活性。Fe掺杂的Ni-Fe/H-BEA催化剂具有很好的低温活性,其中3%Ni-1%Fe/H-BEA的C3H8-SCR活性最高。Ni-Fe/H-BEA催化剂上的活性组分以NiO和a-Fe2O3为主,Fe的掺杂提高了催化剂活性组分的分散度和酸性。O2在C3H8-SCR反应中扮演重要角色。在300℃下,1000 ppm之内的NO浓度水平对催化剂活性没有明显影响,在其他考察温度下,随着NO浓度增高,NOx去除率下降。随着C3H8/NO升高,在所有考察温度下NOx转化率也逐渐上升。在300℃时,C3H8/NO=1.25时,NOx转化率达到了100%。此外,Fe掺杂极大地改善了Ni-Fe/H-BEA催化剂的抗水抗硫性。
     (3)引入DBD低温等离子与C3H8-SCR的结合,在低温下具有明显的协同效应,在250℃和275℃时协同因子为1.07;此外,NTP的引入有效地提高了催化剂的抗水抗硫性。
Selective catalytic reduction (SCR) will be the mainstay for nitrogen oxides (NOx) removal from lean-burn conditions, and zeolite-based catalysts are considered to be SCR catalysts with prospective. In this work, we developed a series of Ni/H-BEA and Ni-Fe/H-BEA catalysts by impregnation. Then the catalytic activities of these catalysts for NH3-SCR, HC-SCR, and NTP-assisted C3H8-SCR processes were carried out under a lean-burn condition. The main conclusions are as follows:
     In the NH3-SCR system, the 3%Ni/H-BEA showed the highest activity among all samples, its optimum reaction temperature range from 350 to 500℃. The activity of Ni/H-BEA declined as the GHSV increased from 20000 to 100000 h"1. NOx conversion increased as the NH3/NO molar ratio increased, the most suitable NH3/NO molar ratio was 1. The effect of oxygen concentration (4-10%) on catalytic activity of Ni/H-BEA was insignificant. The activity of Ni/H-BEA was inhibited in the presence of SO2 and H2O, mainly due to the ammonium salts formed on the catalyst.
     In the HC-SCR system, the C3H8-SCR activity was higher than the CH4-SCR activity over Ni/H-BEA. The addition of iron significantly lowered the optimum reaction temperature of Ni/H-BEA. The 3%Ni-1%Fe/H-BEA had the highest activity among samples with different bimetal loadings. The main active components over Ni-Fe/H-BEA were NiO andα-Fe203. The addition of iron increased the nickel dispersion on the surface of catalyst and the acidity as well. Oxygen played an important role in activating NO and propane during the C3H8-SCR reaction. The NOx conversions decreased as the initial NO concentration increased at all investigated temperatures except 300℃. NOx conversion increased as the C3H8/NO molar ratio increased, a complete conversion of NOx was achieved with C3H8/NO=1.25 at 300℃. The addition of iron to Ni/H-BEA notably improved the tolerance of SO2 and H2O.
     The synergetic effect between NTP and C3H8-SCR was obvious at low temperature, the inhibition of SO2/H2O was eliminated by the introduction of NTP.
引文
[1]郝吉明,马广大,王书肖.大气污染控制工程(第三版)[M].北京:高等教育出版社,2010.
    [2]中华人民共和国环境保护部,中华人民共和国国家统计局,中华人民共和国农业部.第一次全国污染源普查公报[R].2010.
    [3]中华人民共和国环境保护部.2010中国环境状况公报[R].2011.
    [4]张新民,柴发合,王淑兰,孙新章,韩梅.中国酸雨研究现状[J].环境科学研究.2010,23(5):527-532.
    [5]Richter A, Burrows J P, Nuβ H, Granier C, Niemeier U. Increase in tropospheric nitrogen dioxide over China observed from space [J]. Nature.2005,437(7055): 129-132.
    [6]United States Environmental Protection Agency. National summary of nitrogen oxides emissions [DB/OL]. [2011-12-17]. http://www.epa.gov/air/emissions/.
    [7]European Environment Agency. Nitrogen oxides (NOx) emissions (APE 002) [J/OL]. [2011-12-17]. http://www.eea.europa.eu/.
    [8]中国电力企业联合会.全国电力工业统计快报(2010年)[R].2011.
    [9]刘孜,易斌,高晓晶,井鹏,岳涛,庄德安.我国火电行业氮氧化物排放现状及减排建议[J].环境保护.2008,(16):7-9.
    [10]中华人民共和国环境保护部.中国机动车污染防治年报(2010年度)[R].2010.
    [11]United States Environmental Protection Agency. The plain English guide to the clean air act, EPA-400-K-93-001.1993.
    [12]王文炎,陈碧峰,卢彬.轻型汽车欧V排放标准解析[J].质量与标准化.2011,(3):29-34.
    [13]Moden B, Donohue J M, Cormier W E, Li H X. The uses and challenges of zeolites in automotive applications [J]. Topics in Catalysis.2010,53:1367-1373.
    [14]国家环境保护总局,国家质量监督检验检疫总局.GB 18352.3-2005,轻型汽车污染物排放限值及测量方法(中国Ⅲ、Ⅳ阶段)[S].北京:中国环境科学出版社,2005.
    [15]陈彦广,王志,郭占成.燃煤过程NO抑制与脱除技术的现状与进展[J].过 程工程学报.2007,7(3):632-638.
    [16]Skalska K, Jacek S M, Ledakowicz S. Trends in NOx abatement:A review [J]. Science of the Total Environment.2010,408:3976-3989.
    [17]Javed M T, Irfan N, Gibbs B M. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction [J]. Journal of Environmental Management.2007,83(3):251-289.
    [18]Forzatti P. Present status and perspectives in de-NOx SCR catalysis [J]. Applied Catalysis A:General.2001,222:221-236.
    [19]中国环境保护产业协会锅炉炉窑除尘脱硫委员会.我国火电厂脱硫脱硝行业2010年发展综述[J].中国环保产业.2011,(7):4-12.
    [20]利锋.电子束照射法脱硫脱氮技术工艺[J].环境保护科学.2004,30(123):4-6.
    [21]任岷,毛本将,黄文凤.电子束氨法烟气脱硫脱硝装置的设计[J].中国电力.2005,38(7):69-73.
    [22]王晓臣,刘向宏,商克峰.低温等离子体烟气脱硫脱硝技术的研究进展[J].环境保护与循环经济.2009,29(7):26-28.
    [23]曾克思,余刚,蒋彦龙.等离子体NOx脱除技术概述[J].能源研究与利用.2006,(4):21-24.
    [24]Li J H, Chang H Z, Ma L, Hao J M, Yang R T. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts-A review [J]. Catalysis Today.2011,175:147-156.
    [25]Brandenberger S, Krocher O, Tissler A, Althoff R. The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts [J]. Catalysis Reviews.2008,50:492-531.
    [26]Qi G S, Wang Y, Yang R T. Selective catalytic reduction of nitric oxide with ammonia over ZSM-5 based catalysts for diesel engine applications [J]. Catalysis Letters.2008,121:111-117.
    [27]张秋林,邱春天,徐海迪,林涛,龚茂初,陈耀强.整体式Cu-ZSM-5催化剂上NH3选择性催化还原NO活性[J].催化学报.2010,31:1411-1416.
    [28]Sultana A, Nanba T. Sasaki M, Haneda M, Suzuki K, Hamada H. Selective catalytic reduction of NOx with NH3 over different copper exchanged zeolites in the presence of decane [J]. Catalysis Today.2011,164:495-499.
    [29]Sultana A, Nanba T, Haneda M, Sasaki M, Hamada H. Influence of Co-cations on the formation of Cu+ species in Cu/ZSM-5 and its effect on selective catalytic reduction of NOx with NH3 [J]. Applied Catalysis B:Environmental.2010,101: 61-67.
    [30]Sjovall H, Olsson L, Fridell E, Blint R J. Selective catalytic reduction of NOx with NH3 over Cu-ZSM-5:The effect of changing the gas composition [J]. Applied Catalysis B:Environmental.2006,64:180-188.
    [31]Sjovall H, Fridell E, Blint R J, Olsson L. Identification of adsorbed species on Cu-ZSM-5 under NH3 SCR conditions [J]. Topics in Catalysis.2007,42-43:113-117.
    [32]Moden B, Donohue J M, Cormier W E, Li H X. Effect of Cu-loading and structure on the activity of Cu-exchanged zeolites for NH3-SCR [C]. Zeolites and Related Materials:Trends, Targets and Challenges. In:Proceedings of the 4th International Feza Conference.2008,174:1219-1222.
    [33]Fickel D W, D'Addio E, Lauterbach J A, Lobo R F. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites [J]. Applied Catalysis B:Environmental.2011,102:441-448.
    [34]Komatsu T, Nagai T, Yashima T. Cu-Loaded dealuminated Y zeolites active in selective catalytic reduction of nitric oxide with ammonia [J]. Research on Chemical Intermediates.2006,32(3-4):291-304.
    [35]Delahay G, Villagomez E A, Ducere J-M, Berthomieu D, Goursot A, Coq B. Selective catalytic reduction of NO by NH3 on Cu-faujasite catalysts:An experimental and quantum chemical approach [J]. Chemphyschem.2002,3:686-692.
    [36]Goursot A, Coq B, Fajula F. Toward a molecular description of heterogeneous catalysis:Transition metal ions in zeolites [J]. Journal of Catalysis.2003,216: 324-332.
    [37]Delahay G, Kieger S, Tanchoux N, Trens P, Coq B. Kinetics of the selective catalytic reduction of NO by NH3 on a Cu-faujasite catalyst [J]. Applied Catalysis B: Environmental.2004,52:251-257.
    [38]Coq B, Delahay G, Durand R, Berthomieu D, Villagomez E A. The influence of cocations H, Na, and Ba on the properties of Cu-faujasite for the selective catalytic reduction of NO by NH3:An operando DRIFT study [J]. Journal of Physical Chemistry B.2004,108:11062-11068.
    [39]Qi G S, Yang R T. Ultra-active Fe/ZSM-5 catalyst for selective catalytic reduction of nitric oxide with ammonia [J]. Applied Catalysis B:Environmental.2005, 60:13-22.
    [40]Brandenberger S, Krocher O, Wokaun A, Tissler A, Althoff R. The role of Br(?)nsted acidity in the selective catalytic reduction of NO with ammonia over Fe-ZSM-5 [J]. Journal of Catalysis.2009,268:297-306.
    [41]Brandenberger S, Krocher O, Tissler A, Althoff R. The determination of the activities of different iron species in Fe-ZSM-5 for SCR of NO by NH3 [J]. Applied Catalysis B:Environmental.2010,95:348-357.
    [42]Iwasaki M, Yamazaki K, Banno K, Shinjoh H. Characterization of Fe/ZSM-5 DeNOx catalysts prepared by different methods:Relationships between active Fe sites and NH3-SCR performance [J]. Journal of Catalysis.2008,260:205-216.
    [43]Delahay G, Valade D, Guzman-Vargas A, Coq B. Selective catalytic reduction of nitric oxide with ammonia on Fe-ZSM-5 catalysts prepared by different methods [J]. Applied Catalysis B:Environmental.2005,55:149-155.
    [44]Mauvezin M, Delahay G, KiBlich F, Coq B, Kieger S. Catalytic reduction of N2O by NH3 in presence of oxygen using Fe-exchanged zeolites [J]. Catalysis Letters. 1999,62:41-44.
    [45]Mauvezin M, Delahay G, Coq B, Kieger S, Jumas J C, Olivier-Fourcade J. Identification of iron species in Fe-BEA:influence of the exchange level [J]. Journal of Physical Chemistry B.2001,105:928-935.
    [46]Iwasaki M, Yamazaki K, Shinjoh H. NOx reduction performance of fresh and aged Fe-zeolites prepared by CVD:Effects of zeolite structure and Si/Al2 ratio [J]. Applied Catalysis B:Environmental.2011,102:302-309.
    [47]Long R Q, Yang R T. Selective catalytic reduction of NO with ammonia over Fe3+-exchanged mordenite (Fe-MOR):catalytic performance, characterization, and mechanistic study [J]. Journal of Catalysis.2002,207:274-285.
    [48]Frey A M, Mert S, Due-Hansen J, Fehrmann R, Christensen C H. Fe-BEA zeolite catalysts for NH3-SCR of NOx [J]. Catalysis Letters.2009,130:1-8.
    [49]Rahkamaa-Tolonen K, Maunula T, Lomma M, Huuhtanen M, Keiski R L. The effect of NO2 on the activity of fresh and aged zeolite catalysts in the NH3-SCR reaction [J]. Catalysis Today.2005,100:217-222.
    [50]Doronkin D E, Stakheev Y A, Kucherov A V, Tolkachev N N, Bragina G O, Baeva G N, Gabrielsson P, Gekas I, Dahl S. Nature of active sites in a Fe-Beta catalyst for NOx selective catalytic reduction by NH3 [J]. Mendeleev Communication. 2007,17:309-310.
    [51]H(?)j M, Beier M J, Grunwaldt J-D, Dahl S. The role of monomeric iron during the selective catalytic reduction of NOx by NH3 over Fe-BEA zeolite catalysts [J]. Applied Catalysis B:Environmental.2009,93:166-176.
    [52]Balle P, Geiger B, Kureti S. Selective catalytic reduction of NOx by NH3 on Fe/HBEA zeolite catalysts in oxygen-rich exhaust [J]. Applied Catalysis B: Environmental.2009,85:109-119.
    [53]Balle P, Geiger B, Klukowski D, Pignatelli M, Wohnrau S, Menzel M, Zirkwa I, Brunklaus G, Kureti S. Study of the selective catalytic reduction of NOx on an efficient Fe/HBEA zeolite catalyst for heavy duty diesel engines [J]. Applied Catalysis B:Environmental.2009,91:587-595.
    [54]Klukowski D, Balle P, Geiger B, Wagloehner S, Kureti S, Kimmerle B, Baiker A, Grunwaldt J-D. On the mechanism of the SCR reaction on Fe/HBEA zeolite [J]. Applied Catalysis B:Environmental.2009,93:185-193.
    [55]Maier S M, Jentys A, Metwalli E, Muller-Buschbaum P, Lercher J A. Determination of the redox processes in FeBEA catalysts in NH3 SCR reaction by Mossbauer and X-ray absorption spectroscopy [J]. Journal of Physical Chemistry Letters.2011,2:950-955.
    [56]Fedeyko J M, Chen B, Chen H Y. Mechanistic study of the low temperature activity of transition metal exchanged zeolite SCR catalysts [J]. Catalysis Today.2010, 151:231-236.
    [57]Lin Q C, Li J H, Ma L, Hao J M. Selective catalytic reduction of NO with NH3 over Mn-Fe/USY under lean burn conditions [J]. Catalysis Today.2010,151: 251-256.
    [58]Park J-H, Park H J, Baik J H, Nam I S, Shin C H, Lee J H, Cho B K, Oh S H. Hydrothermal stability of CuZSM5 catalyst in reducing NO by NH3 for the urea selective catalytic reduction process [J]. Journal of Catalysis.2006,240:47-57.
    [59]Brandenberger S, Krocher O, Tissler A, Althoff R. Effect of structural and preparation parameters on the activity and hydrothermal stability of metal-exchanged ZSM-5 in the selective catalytic reduction of NO by NH3 [J]. Industrial & Engingeering Chemistry Research.2011,50:4308-4319.
    [60]Brandenberger S, Krocher O, Casapua M, Tissler A, Althoff R. Hydrothermal deactivation of Fe-ZSM-5 catalysts for the selective catalytic reduction of NO with NH3 [J]. Applied Catalysis B:Environmental.2011,101:649-659.
    [61]He C H, Wang Y H, Cheng Y S, Lambert C K, Yang R T. Activity, stability and hydrocarbon deactivation of Fe/Beta catalyst for SCR of NO with ammonia [J]. Applied Catalysis A:General.2009,368:121-126.
    [62]Li J H, Zhu R H, Cheng Y S, Lambert C K, Yang R T. Mechanism of propene poisoning on Fe-ZSM-5 for selective catalytic reduction of NOx with ammonia [J]. Environmental Science & Technology.2010,44:1799-1805.
    [63]Malpartida I, Marie O, Bazin P, Daturia M, Jeandel X. An operando IR study of the unburnt HC effect on the activity of a commercial automotive catalyst for NH3-SCR [J]. Applied Catalysis B:Environmental.2011,102:190-200.
    [64]Suzuki K, Haneds M, Sasaki M, Hamada H. Effect of organics on activity of Cu/ZSM-5 [J]. Journal of the Japan Petroleum Institute.2010,53(6):355-358.
    [65]Kern P, Klimczak M, Heinzelmann T, Lucas M, Claus P. High-throughput study of the effects of inorganic additives and poisons on NH3-SCR catalysts. Part Ⅱ: Fe-zeolite catalysts [J]. Applied Catalysis B:Environmental.2010,95:48-56,
    [66]Silver R G, Stefanick M O, Todd B I. A study of chemical aging effects on HDD Fe-zeolite SCR catalyst [J]. Catalysis Today.2008,136:28-33.
    [67]Putluru S S R, Riisager A, Fehrmann R. Alkali resistant Cu/zeolite deNO* catalysts for flue gas cleaning in biomass fired applications [J]. Applied Catalysis B: Environmental.2011,101:183-188.
    [68]Choung J W, Nam I-S. Role of cerium in promoting the stability of CuHM catalyst against HC1 to reduce NO with NH3 [J]. Applied Catalysis A:General.2006, 312:165-174.
    [69]张涛,任丽丽,林励吾.甲烷选择催化还原NO研究进展[J].催化学报.2004,25(1):75-83.
    [70]Wichterlova B. Structural analysis of potential active sites in metallo-zeolites for selective catalytic reduction of NOx:An attempt for the structure versus activity relationship [J]. Topics in Catalysis.2004,28(1-4):131-140.
    [71]李月丽,尹华强,楚英豪,郭家秀.烟气HC-SCR脱硝技术的研究进展[J].电力环境保护.2009,2(6):29-33.
    [72]Yang T T, Bi B T, Cheng X. Effects of O2, CO2 and H2O on NOx adsorption and selective catalytic reduction over Fe/ZSM-5 [J]. Applied Catalysis B:Environmental. 2011,102:163-171.
    [73]Fierro G, Moretti G, Ferraris G, Andreozzi G B. A Mossbauer and structural investigation of Fe-ZSM-5 catalysts:Influence of Fe oxide nanoparticles size on the catalytic behaviour for the NO-SCR by C3H8 [J]. Applied Catalysis B:Environmental. 2011,102:215-223.
    [74]Delahay G, Guzman-Vargas A, Coq B. Deactivation of a Fe-ZSM-5 catalyst during the selective catalytic reduction of NO by n-decane:An operando DRIFT study [J]. Applied Catalysis B:Environmental.2007,70:45-52.
    [75]Krishna K, Makkee M. Preparation of Fe-ZSM-5 with enhanced activity and stability for SCR of NO, [J]. Catalysis Today.2006,114:23-30.
    [76]Ruiz-Martinez E, Sanchez-Hervas J M, Otero-Ruiz J. Catalytic reduction of nitrous oxide by hydrocarbons over a Fe-zeolite monolith under fluidised bed combustion conditions [J]. Applied Catalysis B:Environmental.2004,50:195-206.
    [77]Vradman L, Herskowitz M, Capek L, Wichterlova B, Brosius R, Martens J A. Kinetic experiments and modeling of a complex DeNOx system:Decane selective catalytic reduction of NOx in the gas phase and over an Fe-MFI type zeolite catalyst [J]. Industrial & Engingeering Chemistry Research.2005,44:4523-4533.
    [78]Long J L, Zhang Z Z, Ding Z X, Ruan R S, Li Z H, Wang X X. Infrared study of the NO reduction by hydrocarbons over iron sites with low nuclearity:Some new insight into the reaction pathway [J]. Journal of Physical Chemistry C.2010,114: 15713-15727.
    [79]Yu S S, Wang X P, Wang C, Xu Y. Using acetylene for selective catalytic reduction of NO in excess oxygen [J]. Chinese Journal of Chemistry.2006,24: 598-602.
    [80]Serra R, Vecchietti M J, Miro E, Boix A. In, Fe-zeolites:Active and stable catalysts for the SCR of NOx-Kinetics, characterization and deactivation studies [J]. Catalysis Today.2008,133-135:480-486.
    [81]Erkfeldt S, Palmqvist A, Petersson M. Influence of the reducing agent for lean NOx reduction over Cu-ZSM-5 [J]. Applied Catalysis B:Environmental.2011,102: 547-554.
    [82]Houel V, James D, Millington P, Pollington S, Poulston S, Rajaram R, Torbati R. A comparison of the activity and deactivation of Ag/Al2O3 and Cu/ZSM-5 for HC-SCR under simulated diesel exhaust emission conditions [J]. Journal of Catalysis. 2005,230:150-157.
    [83]Komvokis V G, Iliopoulou E F, Vasalos I A, Triantafyllidis K S, Marshall C L. Development of optimized Cu-ZSM-5 deNOx catalytic materials both for HC-SCR applications and as FCC catalytic additives [J]. Applied Catalysis A:General.2007, 325:345-352.
    [84]Rico M J O, Moreno-Tost R, Jimenez-Lopez A, Rodriguez-Castellon E, Pereniguez R, Caballero A, Holgado J P. Study of nanoporous catalysts in the selective catalytic reduction of NOx [J]. Catalysis Today.2010,158:78-88.
    [85]万颖,马建新,王正,周伟,张益群Cu-Al-MCM-41的Si/Al比对贫燃条件下NO选择性催化还原的影响[J].催化学报.2004,25(1):27-32.
    [86]Wan Y, Ma J X, Wang Z, Zhou W, Kaliaguine S. Selective catalytic reduction of NO over Cu-Al-MCM-41 [J]. Journal of Catalysis.2004,227:242-252.
    [87]Li L D, Guan N J. HC-SCR reaction pathways on ion exchanged ZSM-5 catalysts [J]. Microporous and Mesoporous Materials.2009,117:450-457.
    [88]De Lucas A, Valverde J L, Dorado F, Romero A, Asencio I. Influence of the ion exchanged metal (Cu, Co, Ni and Mn) on the selective catalytic reduction of NOx over mordenite and ZSM-5 [J]. Journal of Molecular Catalysis A:Chemical.2005,225: 47-58.
    [89]Petersson M, Holma T, Andersson B, Jobson E, Palmqvist A. Lean hydrocarbon selective catalytic reduction over dual pore system zeolite mixtures [J]. Journal of Catalysis.2005,235:114-127.
    [90]Resini C, Montanari T, Nappi L, Bagnasco G, Turco M, Busca G, Bregani F, Notaro M, Rocchini G. Selective catalytic reduction of NOx by methane over Co-H-MFI and Co-H-FER zeolite catalysts:characterisation and catalytic activity [J]. Journal of Catalysis.2003,214:179-190.
    [91]Boix A V, Aspromonte S G, Miro E E. Deactivation studies of the SCR of NOx with hydrocarbons on Co-mordenite monolithic catalysts [J]. Applied Catalysis A: General.2008,341:26-34.
    [92]Ferreira A P, Henriques C, Ribeiro M F, Ribeiro F R. SCR of NO with methane over Co-HBEA and PdCo-HBEA catalysts:The promoting effect of steaming over bimetallic catalyst [J]. Catalysis Today.2005,107-108:181-191.
    [93]张燕婷,潘华,李伟,施耀.高空速条件Zn改性Co/H-beta催化剂上C3H8催化还原NO, [J].高校化学工程学报.2009,23(2):236-239.
    [94]刘于英,张金桥,贺勇.富氧条件下Co/H-ZSM-5催化剂上CH4选择催化还原NO的研究[J].工业催化,2006,14(4):55-59,
    [95]Chen X M, Zhu A M. Au C T, Shi C. Enhanced low-temperature activity of Ag-Promoted Co-ZSM-5 for the CH4-SCR of NO [J]. Catalysis Letters.2011,141: 207-212.
    [96]Li F, Xiao D H, Li J, Yang X. Effect of the addition of In to Co/HMCM-49 catalyst for the selective catalytic reduction of NO under lean-burn conditions [J]. Zeitschrift Fur Physikalische Chemie-International Journal of Research in Physical Chemistry & Chemical Physics.2010,224(6):907-920.
    [97]张惠,方和良,李伟,谭天恩,郑小明. H-USY负载MnO,催化剂上CH4选择催化还原NOx性能的研究[J].高校化学工程学报.2006,20(5):820-824.
    [98]陈树伟,闫晓亮,陈佳琪,马静红,李瑞丰.富氧条件下Mn/ZSM-5选择催化CH4还原NO[J].催化学报.2010,31(9):1107-1114.
    [99]Pan H, Su Q F, Chen J, Ye Q, Liu Y T, Shi Y. Promotion of Ag/H-BEA by Mn for lean NO reduction with propane at low temperature [J]. Environmental Science & Technology.2009,43:9348-9353.
    [100].Ting B L, Li W, Shi Y. The selective catalytic reduction of NO with propane over Ni loaded on H-USY in the presence of excess oxygen [J]. International Journal of Environment and Pollution.2009,36(1-3):224-240.
    [101]Mosqueda-Jimenez B I, Jentys A, Seshan K, Lercher J A. Reduction of nitric oxide by propene and propane on Ni-exchanged mordenite [J]. Applied Catalysis B: Environmental.2003,43:105-115.
    [102]Mosqueda-Jimenez B I, Jentys A, Seshan K, Lercher J A. Structure-activity relations for Ni-containing zeolites during NO reduction:I. Influence of acid sites [J]. Journal of Catalysis.2003,218:348-353.
    [103]Kim M H, Nam I-S. Tolerance of DeNOx SCR catalysts using hydrocarbons: Findings, improvements and challenges [J]. Korean Journal of Chemical Engineering. 2001,18(5):725-740.
    [104]万颖,王正,马建新,周伟,张益群,邬敏忠.水蒸气对Cu-Al-MCM-41上NO选择性还原的影响[J].催化学报.2002,23(3):257-261.
    [105]Capek L, Novoveska K, Sobalik Z, Wichterlova B, Cider L, Jobson E. Cu-ZSM-5 zeolite highly active in reduction of NO with decane under water vapor presence:Comparison of decane, propane and propene by in situ FTIR [J]. Applied Catalysis B:Environmental.2005,60:201-210.
    [106]Shichi A, Hattori T, Satsuma A. Involvement of NCO species in promotion effect of water vapor on propane-SCR over Co-MFI zeolite [J]. Applied Catalysis B: Environmental.2007,77:92-99.
    [107]Guzman-Vargas A, Delahay G, Coq B, Lima E, Bosch P, Jumas J-C. Influence of the preparation method on the properties of Fe-ZSM-5 for the selective catalytic reduction of NO by n-decane [J]. Catalysis Today.2005,107-108:94-99.
    [108]张金桥,刘于英,贺勇,樊卫斌,李瑞丰.S02对CoH-ZSM-5催化CH4还原NO催化性能的影响[J].环境科学.2006,27(9):1717-1721.
    [109]Gorce O, Baudin F, Thomas C, Costa P D, Djega-Mariadassou G. On the role of organic nitrogen-containing species as intermediates in the hydrocarbon-assisted SCR of NOx [J]. Applied Catalysis B:Environmental.2004,54:69-84.
    [110]Mosqueda-Jimenez B I, Jentys A, Seshan K, Lercher J A. On the surface reactions during NO reduction with propene and propane on Ni-exchanged mordenite [J]. Applied Catalysis B:Environmental.2003,46:189-202.
    [111]Wei Z S, Zeng G H, Xie Z R, Ma C Y, Liu X H, Sun J L, Liu L H. Microwave catalytic NOx and SO2 removal using FeCu/zeolite as catalyst [J]. Fuel.2011,90: 1599-1603.
    [112]陈刚,孙琪,石雷,牛金海,宋志民.介质阻挡放电与CuZSM-5结合方式对脱除NOx的影响[J].催化学报.2010,31(7):817-821.
    [113]Wei Z S, Lin Z H, Niu H J Y, He H M, Ji Y F. Simultaneous desulfurization and denitrification by microwave reactor with ammonium bicarbonate and zeolite [J]. Journal of Hazardous Materials.2009,162:837-841.
    [114]Shi Y, Su Q F, Chen J, Wei J W, Yang J T, Pan H. Combination of nonthermal plasma and low temperature-C3H8-selective catalytic reduction over Co-In/H-beta catalyst for nitric oxide abatement [J]. Environmental Engineering Science.2009, 26(6):1107-1113.
    [115]Fan H Y, Shi C, Li X S, Yang X F, Xu Y, Zhu A M. Low-temperature NOx selective reduction by hydrocarbons on H-Mordenite catalysts in dielectric barrier discharge plasma [J]. Plasma Chemistry and Plasma Processing.2009,29:43-53.
    [116]孙琪,任亮,牛金海,宋志民.介质阻挡放电等离子体与吸附在CuZSM-5上的NO或NO/O2的相互作用[J].物理化学学报.2008,24(7):1214-1218.
    [117]汪晶毅,聂勇,钟侃,王黎明,关志成.等离子体协助InZSM-5选择性催化还原贫燃NOx[J].高电压技术.2007,33(2):141-144.
    [118]Niu J H, Yang X F, Zhu A M, Shi L L, Sun Q, Xu Y, Shi C. Plasma-assisted selective catalytic reduction of NOx by C2H2 over Co-HZSM-5 catalyst [J]. Catalysis Communications.2006,7(5):297-301.
    [119]Li J H, Ke R, Li W, Hao J M. A comparison study on non-thermal plasma-assisted catalytic reduction of NO by C3H6 at low temperatures between Ag/USY and Ag/Al2O3 catalysts [J]. Catalysis Today.2007,126(3-4):272-278.
    [120]Niu J H, Zhang Z H, Liu D P, Wang Q. Low-temperature plasma-catalytic reduction of NOx by C2H2 in the presence of excess oxygen [J]. Plasma Science & Technology.2008,10(4):466-470.
    [121]Kwak J H, Peden C H F, Szanyi J. Non-thermal plasma-assisted NOx reduction over Na-Y zeolites:The promotional effect of acid sites [J]. Catalysis Letters.2006, 109(1-2):1-6.
    [122]Sun Q, Zhu A M, Yang X F, Niu J H, Xu Y, Song Z M, Liu J. Plasma-catalytic selective reduction of NO with C2H4 in the presence of excess oxygen [J]. Chinese Chemical Letters.2005,16(6):839-842.
    [123]Rappe K G, Hoard J W, Aardahl C L, Park P W, Peden C H F, Tran D N. Combination of low and high temperature catalytic materials to obtain broad temperature coverage for plasma-facilitated NOx reduction [J]. Catalysis Today.2004, 89(1-2):143-150.
    [124]Kwak J H, Szanyi J, Peden C H F. Non-thermal plasma-assisted NOx reduction over alkali and alkaline earth ion exchanged Y, FAU zeolites [J]. Catalysis Today. 2004,89(1-2):135-141.
    [125]Tonkyn R G, Barlow S E, Hoard J W. Reduction of NOx in synthetic diesel exhaust via two-step plasma-catalysis treatment [J]. Applied Catalysis B: Environmental.2003,40(3):207-217.
    [126]Kwak J H, Szanyi J, Peden C H F. Nonthermal plasma-assisted catalytic NOx reduction over Ba-Y, FAU:The effect of catalyst preparation [J]. Journal of Catalysis. 2003,220(2):291-298.
    [127]Yoon S, Panov A G, Tonkyn R G, Ebeling A C, Barlow S E, Balmer M L. An examination of the role of plasma treatment for lean NOx reduction over sodium zeolite Y and gamma alumina Part 1:Plasma assisted NOx reduction over NaY and A12O3 [J]. Catalysis Today.2002,72(3-4):243-250.
    [128]Yoon S, Panov A G, Tonkyn R G, Ebeling A C, Barlow S E, Balmer M L. An examination of the role of plasma treatment for lean NOx reduction over sodium zeolite Y and gamma alumina Part 2:Formation of nitrogen [J]. Catalysis Today.2002, 72(3-4):251-257.
    [129]Miessner H, Francke K-P, Rudolph R, Hammer, T. NOx removal in excess oxygen by plasma-enhanced selective catalytic reduction [J]. Catalysis Today.2002, 75(1-4):325-330.
    [130]Kim H H, Takashima K, Katsura S, Mizuno A. Low-temperature NOx reduction processes using combined systems of pursed corona discharge and catalysts [J]. Journal of Physics D:Applied Physics.2001,34(4):604-613.
    [131]牛金海,朱爱民,石川,史玲玲,宋志民,徐勇.甲烷参与下催化剂填充型介质阻挡放电等离子体脱除NO, [J].催化学报.2005,26(9):803-808.
    [132]余刚,余奇,翟晓东,顾璠,徐益谦.铜分子筛协同等离子体脱除氮氧化物的实验研究[J].燃烧科学与技术.2004,10(5):388-391.
    [133]Johnson T V. Review of diesel emissions and control [J]. International Journal of Engine Research.2009,10:275-285.
    [134]Higgins J B, LaPierre R B, Schlenker J L, Rohrman A C, Wood J D, Kerr G T, Rohrbaugh W J. The framework topology of zeolite beta [J]. Zeolites.1988,8: 446-452.
    [135]范广,林诚.β分子筛的改性研究进展[J].分子催化.2005,19(5):408-417.
    [136]Van Kooten W E J, Kaptein J, Van den Bleek C M, Calis H P A. Hydrothermal deactivation of Ce-ZSM-5, Ce-beta, Ce-mordenite and Ce-Y zeolite deNOx catalysts [J]. Catalysis Letters.1999,63:227-231.
    [137]Wilken N, Kamasamudram K, Currier N W, Li J H, Yezerets A, Olsson L. Heat of adsorption for NH3, NO2 and NO on Cu-Beta zeolite using microcalorimeter for NH3 SCR applications [J]. Catalysis Today.2010,151:237-243.
    [138]林德海.低温氨选择还原NO催化剂的研究[D].北京化工大学,北京,2010.
    [139]Si Z C, Weng D, Wu X D, Yang J, Wang B. Modifications of CeO2-ZrO2 solid solutions by nickel and sulfate as catalysts for NO reduction with ammonia in excess O2 [J]. Catalysis Communications.2010,11:1045-1048.
    [140]Suarez S, Jung S M, Avila P, Grange P, Blanco J. Influence of NH3 and NO oxidation on the SCR reaction mechanism on copper/nickel and vanadium oxide catalysts supported on alumina and titania [J]. Catalysis Today.2002,75:331-338.
    [141]Blanco J, Avila P, Suarez S, Martin J A, Knapp C. Alumina-and titania-based monolithic catalysts for low temperature selective catalytic reduction of nitrogen oxides [J]. Applied Catalysis B:Environmental.2000,28:235-244.
    [142]Moreno-Tost R, Santamaria-Gonzalez J, Maireles-Torres P, Rodriguez-Castellon E, Jimenez-Lopez A. Nickel oxide supported on zirconium-doped mesoporous silica for selective catalytic reduction of NO with NH3 [J]. Journal of Materials Chemistry.2002,12:3331-3336.
    [143]Nassos S, Svensson E E, Boutonnet M, Jaras S G. The influence of Ni load and support material on catalysts for the selective catalytic oxidation of ammonia in gasified biomass [J]. Applied Catalysis B:Environmental.2007,74:92-102.
    [144]Kaspar J, Fornasiero P, Hickey N. Automotive catalytic converters:current status and some perspectives [J]. Catalysis Today.2003,77:419-449.
    [145]Lee J S, Baik D S. Evaluation of SCR system in heavy-duty diesel engine [J]. SAE Paper, No.2008-01-1320,2008.
    [146]郭红松,关敏,景晓军,包俊江.尿素-SCR技术对NOx转化率和NH3排 放的影响[J].车用发动机.2011,(3):55-59.
    [147]李哲.贫燃条件下Fe-Mo/ZSM-5催化剂上氮氧化物的选择性催化还原研究[D].太原理工大学,太原,2006.
    [148]Izquierdo R, Rodrigueza L J, Anezb R, Sierraalta A. Direct catalytic decomposition of NO with Cu-ZSM-5:A DFT-ONIOM study [J]. Journal of Molecular Catalysis A:Chemical.2011,348(1-2):55-62.
    [149]Blanco J, Avila P, Suarez S, Yates M, Martin J A, Marzo L, Knapp C. CuO/NiO monolithic catalysts for NOx removal from nitric acid plant flue gas [J]. Chemical Engineering Journal.2004,97:1-9.
    [150]Kondratenko E V, Kondratenko V A, Richter M, Fricke R. Influence of O2 and H2 on NO reduction by NH3 over AglAl2O3. A transient isotopic approach [J]. Journal of Catalysis.2006,239:23-33.
    [151]Coq B, Mauvezin M, Delahay G, Butet J-B, Kieger S. The simultaneous catalytic reduction of NO and N2O by NH3 using an Fe-zeolite-beta catalyst [J]. Applied Catalysis B:Environmental.2000,27:193-198.
    [152]Ke R, Li J H, Liang X, Hao J M. Novel promoting effect of SO2 on the selective catalytic reduction of NOx by ammonia over CO3O4 catalyst [J]. Catalysis Communications.2007,8(12):2096-2099.
    [153]Tong H, Dai J H, He Y, Tong Z Q. The effects of H2O and SO2 on the behaviour of CuSO4-CeO2/TS for low temperature catalytic reduction of NO with NH3 [J]. Environmental Technology.2011,32:891-900.
    [154]Carja G, Kameshima Y, Okada K, Madhusoodana C D. Mn-Ce/ZSM5 as a new superior catalyst for NO reduction with NH3 [J]. Applied Catalysis B:Environmental. 2007,73:60-64.
    [155]Ham S W, Nam I S, Kim Y G. Activity and durability of iron-exchanged Mordenite-type zeolite catalyst for the reduction of NO by NH3 [J]. Korean Journal of Chemical Engineering.2000,17(3):318-324.
    [156]Huang J H, Tong Z Q, Huang Y, Zhang J F. Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica [J]. Applied Catalysis B:Environmental.2008,78:309-314.
    [157]Piehl G, Liese T, Grunert W. Activity, selectivity and durability of VO-ZSM-5 catalysts for the selective catalytic reduction of NO by ammonia [J]. Catalysis Today. 1999,54:401-406.
    [158]Li X H, Zhu P, Wang F R, Wang L F, Tsang S C. Simultaneous catalytic reductions of NO and SO2 by H2 over nickel-tungsten catalysts [J]. Journal of Physical Chemistry C.2008,112(9):3376-3382.
    [159]Loiha S, Klysubun W, Khemthong P, Prayoonpokarach S, Wittayakun J. Reducibility of Ni and NiPt supported on zeolite beta investigated by XANES [J]. Journal of the Taiwan Institute of Chemical Engineers.2011,42:527-532.
    [160]Zielinski J. Morphology of nickel/alumina catalysts [J]. Journal of Catalysis. 1982,76:157-163.
    [161]Hu C W, Yang H Q, Chen Yu, Tian A M. On the inhomogeneity of low nickel loading methanation catalyst [J]. Journal of Catalysis.1997,166:1-7.
    [162]Iwamoto M. Selective catalytic reduction of nitric oxide by propylene over copper ion-exchanged ZSM-5 zeolite [C]. In:Proceedings of the Meeting of Catalytic Technology for Removal of NO. Tokyo:Catalysis Society of Japan.1990:17-22.
    [163]Held W, Konig A, Rihter T, Puppe L. Catalytic NOx reduction in net oxidizing exhaust gas [J]. SAE paper, No.900496,1990.
    [164]Li Y, Armor J N. Catalytic reduction of nitrogen oxides with methane in the presence of excess oxygen [J]. Applied Catalysis B:Environmental.1992,1(4): L31-L40.
    [165]Dzwigaj S, Janas J, Machej T, Che M. Selective catalytic reduction of NO by alcohols on Co-and Fe-Siβ catalysts [J]. Catalysis Today.2007,119(1-4):133-136.
    [166]Capek L, Dedecek J, Wichterlova B. Co-beta zeolite highly active in propane-SCR-NOx in the presence of water vapor:effect of zeolite preparation and Al distribution in the framework [J]. Journal of Catalysis.2004,227,352-366.
    [167]Chen H H, Shen S C, Chen X Y, Kawi S. Selective catalytic reduction of NO over Co/beta-zeolite:effects of synthesis condition of beta-zeolites, Co precursor, Co loading method and reductant [J]. Applied Catalysis B:Environmental.2004,50(1): 37-47.
    [168]Tabata T, Kokitsu M, Ohtsuka H, Okada O, Sabatino L M F, Bellussi G. Study on catalysts of selective reduction of NOx using hydrocarbons for natural gas engines [J]. Catalysis Today.1996,27(1-2):91-98.
    [169]McAdams R, Beech P, Shawcross J T. Low temperature plasma assisted catalytic reduction of NOx in simulated marine diesel exhaust [J]. Plasma Chemistry and Plasma Processing.2008,28:159-171.
    [170]苏清发.低温等离子体诱导丙烷催化还原NOx研究[D].浙江大学,杭州,2010.
    [171]张惠,方和良,施耀,李伟,谭天恩,郑小明. Ni/USY催化剂上甲烷选择性催化还原Nq的性能[J].化工学报.2006,57(2):306-310.
    [172]Li Y, Armor J N. Metal exchanged ferrierites as catalysts for the selective reduction of NOx with methane [J]. Applied Catalysis B:Environmental.1993,3: L1-L11.
    [173]Li Y, Armor J N. Selective catalytic reduction of NOx with methane over metal exchanged zeolites [J]. Applied Catalysis B:Environmental.1993,2,239-256.
    [174]Nagayama T, Iizuka H, Katougi K, Mukai T. Hydrocarbon desorption characteristic of metal-impregnated zeolite and its evaluation in vehicle test [J]. Journal of Japan Petroleum Institute.2009,52(4):205-210.
    [175]Shimizu K, Maeshima H, Satsuma A, Hattori T. Transition metal-aluminate catalysts for NO reduction by C3H6 [J]. Applied Catalysis B:Environmental.1998,18: 163-170.
    [176]Ren L L, Zhang T, Liang D B, Xu C H, Tang J W, Lin L W. Effect of addition of Zn on the catalytic activity of a Co/HZSM-5 catalyst for the SCR of NOx with CH4 [J]. Applied Catalysis B:Environmental.2002,35(4):317-321.
    [177]Chen H Y, Sachtler W M H. Promoted Fe/ZSM-5 catalysts prepared by sublimation:de-NOx activity and durability in H2O-rich streams [J]. Catalysis Letters. 1998,50:125-130.
    [178]Palomares A E, Prato J G, Imbert F E, Corma A. Catalysts based on tin and beta zeolite for the reduction of NOx under lean conditions in the presence of water [J]. Applied Catalysis B:Environmental.2007,75:88-94.
    [179]Isarangura na ayuthaya S, Mongkolsiri N, Praserthdam P, Silveston P L. Carbon deposits effects on the selective catalytic reduction of NO over zeolites using temperature programmed oxidation technique [J]. Applied Catalysis B:Environmental. 2003,43:1-12.
    [180]Narbeshuber T F, Vinek H, Lercher J A. Monomolecular conversion of light alkanes over H-ZSM-5 [J]. Journal of Catalysis.1995,157:388-395.
    [181]Alstrup I, Petersen U E, Rostrup-Nielsen J R. Propane hydrogenolysis on sulfur-and copper-modified nickel catalysts [J]. Journal of Catalysis.2000,191:401-408.
    [182]Graat P, Somers M A J. Quantitative analysis of overlapping XPS peaks by spectrum reconstruction:Determination of the thickness and composition of thin iron oxide films [J]. Suface and Interface Analysis.1998,26:773-782.
    [183]Shi Y, Pan H, Li Z J, Zhang Y T, Li W. Low-temperature decomposition of NOx over Fe-Mn/H-beta catalysts in the presence of oxygen [J]. Catalysis Communications. 2008,9(6):1356-1359.
    [184]Chen H Y, Sachtler W M H. Activity and durability of Fe/ZSM-5 catalysts for lean burn NOx reduction in the presence of water vapor [J]. Catalysis Today.1998,42: 73-83.
    [185]Yang T T, Bi H T, Cheng X X. Novel fluidized bed reactor for integrated NOx adsorption-reduction with hydrocarbons [J]. Environmental Science & Technology. 2009,43:5049-5053.
    [186]Kucherov A V, Montreuil C N, Kucherova T N, Shelef M. In situ high-temperature ESR characterization of FeZSM-5 and FeSAPO-34 catalysts in flowing mixtures of NO, C3H6, and O2 [J]. Catalysis Letters.1998,56,173-181.
    [187]Pieterse J A Z, Pirngruber G D, Van Bokhoven J A, Booneveld S. Hydrothermal stability of Fe-ZSM-5 and Fe-BEA prepared by wet ion-exchange for N2O decomposition [J]. Applied Catalysis B:Environmental.2007,71:16-22.
    [188]Dorado F, De Lucas A, Garcia P B, Romero A, Valverde J L, Asencio I. SCR of NO by propene on monometallie(Co or Ni)and bimetallic (Co/Ag or Ni/Ag) mordenite-based catalysts [J]. Industrial & Engineering Chemistry Research.2005, 44(24):8988-8996.
    [189]Qi G S, Yang R T. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania [J]. Applied Catalysis B: Environmental.2003,44:217-225.
    [190]Shen B X, Liu T, Zhao N, Yang X Y, Deng L D. Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3 [J]. Journal of Environmental Sciences.2010,22(9):1447-1454.
    [191]Liu F D, He H, Zhang C B, Feng Z C, Zheng L R, Xie Y N, Hu T D. Selective catalytic reduction of NO with NH3 over iron titanate catalyst:Catalytic performance and characterization [J]. Applied Catalysis B:Environmental.2010,96(3-4):408-420.
    [192]Miessner H, Francke K-P, Rudolph R. Plasma-enhanced HC-SCR of NOx in the presence of excess oxygen [J]. Applied Catalysis B:Environmental.2002,36:53-62.
    [193]Mizuno A, Shimizu K, Chakrabarti A, Furuta S, Dascalescu L. NOx removal process using pulsed discharge plasma [J]. IEEE Transactions on Industry Applications.1995,31(5):957-963.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700