含Cu和Sb的ZA105高锌镁合金组织和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Mg-Zn-Al系合金由于具有高温性能较好、成本较低和铸造性能较好等方面的优势,被认为是一种有发展前途的高温镁合金。高锌镁合金的Zn含量一般在5wt.%以上,主要热强相为τ-Mg32(Al,Zn)49相和少量的φ-Al2Mg_5Zn_2相,但其铸造性能还未达到令人满意的程度,容易产生热裂倾向,并且常温和高温力学性能不能同时兼顾等方面也还存在问题。为了改善Mg-Zn-Al系合金所存在的力学性能方面的问题,本文选择以Mg-10Zn-5Al(ZA105)高锌镁合金为基础,以Sb为变质剂,Cu为合金化元素,优化合金成分,开发了一种新型低成本高锌镁合金。
     试验中采用金相组织观察(OM)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能量散射光谱(EDS)、显微硬度、冲击韧度以及常温和高温拉伸性能测试等分析手段,系统地研究了添加不同含量Sb、Cu合金元素及不同热处理工艺对Mg-10Zn-5Al镁合金显微组织及力学性能的影响,以期为高锌镁合金综合力学性能的提高提供依据。
     Sb的变质作用研究结果表明:Mg-10Zn-5Al-2Cu合金的显微组织由α-Mg基体、τ-Mg32(Al, Zn)49相、φ-Al2Mg_5Zn_2相和Mg_2Cu组成。与无变质的Mg-10Zn-5Al-2Cu合金相比,加入Sb后的合金中出现新的高熔点,具有六方D52结构的黑色Mg_3Sb_2弥散颗粒组织。Sb含量为0.1wt.%时,合金组织细化效果最明显。随着Sb量的增加,Mg-10Zn-5Al-2Cu镁合金的布氏硬度呈现出逐渐上升的趋势。当Sb量增加至0.1wt.%时,冲击韧度上升达到最大值6 J/cm2,比不含Sb时Mg-10Zn-5Al-2Cu镁合金的冲击韧度提高了50%,而合金的抗拉强度也达到190MPa。特别是Sb的含量为0.2wt.%时,合金的抗拉强度达到最大值195 MPa,较之不加Sb时提高5.4%,但其冲击韧度急剧下降。Sb量大于0.2wt.%时,合金的拉伸强度也开始逐渐下降。为此,本实验条件下,Sb合适的加入量为0.1wt.%,Mg-10Zn-5Al-2Cu镁合金的组织细化效果最好,具有良好的综合力学性能。
     Cu的合金化分析结果显示:Mg-10Zn-5Al-0.1Sb高锌镁合金中Cu的加入使合金第二相τ-Mg32(Al, Zn)4相上出现了新的鱼骨状Mg_2Cu相。合金中Cu的加入量不超过2.0wt.%时,随着Cu量的增加,合金的硬度、拉伸强度逐渐上升,冲击韧度逐渐下降。特别在Cu的含量为2.0wt.%时,合金的硬度达到最大值79.35HB,较之不加Cu时提高了9.65%;室温和高温(200℃)拉伸强度也达到190MPa和160MPa,比不加Cu时分别提高了21.1%和14.3%,但冲击韧度开始升高达6 J/cm2。随着Cu量的继续增加,合金的显微组织粗大化,其硬度、拉伸强度和冲击韧度均开始降低。因此,在本实验条件下,Cu的合适加入量为2.0wt.%,Mg-10Zn-5Al-0.1Sb高锌镁合金的合金化效果最明显,具有较高的力学性能。
     热处理的试验结果表明:
     (1)经过固溶处理后的Mg-10Zn-5Al-0.1Sb-XCu合金,晶界上τ-Mg32(Al,Zn)49相和晶内φ-Al2Mg_5Zn_2相周围的共晶α-Mg相均溶入到基体组织中,组织中第二相τ-Mg32(Al,Zn)49相的形状及分布都发生了明显的变化。但固溶处理并没有使晶界上的第二相τ相完全固溶到基体中,在晶界处仍存在高熔点的热稳定相τ-Mg32(Al,Zn)49相和Mg_2Cu相。与铸态合金相比,经过固溶处理24h后的Mg-10Zn-5Al-0.1Sb-XCu试验合金,基体的显微硬度明显提高,提高到85 Hv,比铸态合金提高了16.6%。
     (2)经过时效处理36h后的Mg-10Zn-5Al-0.1Sb-XCu合金,弥散分布的三元沉淀相会在晶界以及附近最大量析出,析出的三元沉淀强化相主要是τ-Mg32(Al,Zn)49相和φ-Al2Mg_5Zn_2相。合金的时效时间进一步延长至48h时,合金析出的三元相发生聚集长大。合金的显微硬度随时效时间的延长呈现先增长后降低的趋势。时效时间为36h时,合金的显微硬度达到最大值105.9Hv,比固溶时合金的显微硬度(85 Hv)提高了24.6%;随时效时间继续延长,合金显微硬度下降。固溶+时效处理后的实验合金,其室温和高温拉伸强度均比铸态要提高很多,但其变化趋势与铸态时一致。当Cu的含量为2.0wt.%时,固溶+时效处理后合金的室温和高温(200℃)拉伸强度分别达到228 MPa和176MPa,比铸态时提高了20%和10%。因此,本实验条件下,合金的最佳时效时间为36h。
Mg-Zn-Al alloy has been considered as a promising high-temperature magnesium alloy because of its high heat-resistance, lower cost and sound castiability. Generally, the main heat-resistant phases areτ-Mg32(Al,Zn)49 phase and a small amount ofφ-Al2Mg_5Zn_2 phase in ZA alloy, in which Zn content is above 5wt.%. However, the casting properties of this alloy are unsatisfactory and there are still some problems in mechanical properties both at elevated temperature and at room temperature. Therefore, in order to solve these problems, the new typical and low-cost high zinc magnesium alloy was developed by optimizing alloy composition of Mg-10Zn-5Al alloy in which Sb was used as modifier and Cu as alloying element.
     Effect of Sb、Cu and heat treatment on microstructure and mechanical properties of Mg-10Zn-5Al magnesium alloy were investigated by using modern analytical technology of optical microscopy(OM), X-ray diffraction(XRD), scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), micro-hardness test, impact-toughness test and tensile-strength test, hoping to provide theoretical foundation for the improvement of mechanical properties of high-zinc magnesium alloy.
     Results of Sb-added alloys indicate that : the microstructure of the Mg-10Zn-5Al-2Cu alloy are composed ofα-Mg、τ-Mg32(Al,Zn)49 phase、φ-Al2Mg_5Zn_2 phase and Mg_2Cu phase. Compared with the unmodified Mg-10Zn-5Al-2Cu alloy, the new dystectic Mg_3Sb_2 black particles with hexagonal D52 structure appear in the matrix. When the content of Sb is 0.1wt.%, the microstructures of the alloy is refined dramatically. The hardness of Mg-10Zn-5Al-2Cu alloy shows a gradually rising tendency with Sb increasing. When the addition amount of Sb is 0.1wt.%, the impact-toughness rises to the maximum 6J/cm2, which is 50% higher than that of Sb-free alloy, and the tensile strength is up to 190MPa. In particular, when the content of Sb is 0.2wt.%, the tensile-strength reaches the maximum 195 MPa, which increases by 5.4%, while the impact-toughness drops sharply. As the addition of Sb exceeds 0.2wt.%, the tensile-strength begins to decline either. So the appropriate Sb addition is 0.1wt.% in the experiment. The microstructure of Mg-10Zn-5Al-2Cu magnesium alloy is the most refined and better comprehensive mechanical properties are achieved.
     The analysis results of Cu strengthening indicate that: Cu addition into the Mg-10Zn-5Al-0.1Sb high-zinc magnesium alloys results in formation of the fishbone-like Mg_2Cu eutectic structure on theτ-Mg32(Al, Zn)49 second phase in the alloy. When the Cu addition is less than 2.0wt.%, the hardness and the tensile-strength arise gradually with the Cu increasing, while the impact-toughness shows downward trend. Especially when the content of Cu is 2.0wt.%, the hardness reaches the maximum, 79.35HB, 9.65% higher than that of mother alloy. The room temperature and elevated temperature (200℃) tensile strengths reach 190MPa and 160MPa, which increase by 21.1 % and 14.3%, while the impact-toughness is up to 6 J/cm2. Further Cu addition leads to the coarseness of microstructures and rapid decrease of hardness, tensile-strength, and impact-toughness. In a word, the microstructure of Mg-10Zn-5Al-0.1Sb magnesium alloy is the most strengthened and better comprehensive properties are obtained with appropriate Cu addition of 2.0wt.%.
     The experiment results of heat treatment indicate that:
     (1) After solution treatment, the eutecticα-Mg phase around in vicinity of grain boundaries and theφ-Al2Mg_5Zn_2 phase in grains of the Mg-10Zn-5Al-0.1Sb-2.0Cu alloy dissolve into to the matrix microstructure. And micro-morphology and distribution of theτ-Mg32(Al,Zn)49 phase change obviously. But theτ-Mg32(Al,Zn)49 phase does not completely dissolve into the matrix in the solid solution treatment. Dystectic heat-stabilityτ-Mg32(Al,Zn)49 phase and Mg_2Cu phase still exist at the grain boundaries, the micro-hardness of the matrix in the Mg-10Zn-5Al-0.1Sb-2.0Cu alloy is up to 85 Hv, which is 16.6% higher compared with as-cast alloys after 24h solution treatment.
     (2) The massive ternary phases are precipitated at or around grain boundary in Mg-10Zn-5Al-0.1Sb-2.0Cu alloy aging for 36h. The precipitated ternary strengthening phases are identified asτ-Mg32(Al,Zn)49 phase andφ-Al2Mg_5Zn_2 phase. With aging time elongating to 48h, the ternary precipitations enrich and grow. The micro-hardness increase first and then decrease with the elongating of aging time. When the aging time is 36h, the micro-hardness is up to the maximum, 105.9Hv, 24.6% higher than that of alloys in solid solution state. Tensile strengths at room temperature and high temperature by solution and ageing treatment are much higher than that of as-cast alloys and variation tendency of tensile strengths is the same as that of as-cast alloys. When the addition of Cu is 2.0wt.%, the tensile-strengths of solution and ageing treated alloys at room temperature and high temperature (200℃) are 228MPa and 176MPa, which are 20% and 10% higher than that of as-cast alloys respectively. Therefore, the optimal aging time in the experiment is 36h.
引文
[1]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002.9.
    [2]薛山.含Nd耐热镁合金显微组织和性能的研究[D]. [博士学位论文],南京:东南大学,2006.1.
    [3]陈振华.镁合金[M].北京:化学工业出版社,2004.5:1-22.
    [4]陈振华.耐热镁合金[M].北京:化学工业出版社,2006.10:150-152.
    [5]陈晓强,刘江文,罗承萍.高强度Mg-Zn系合金的研究现状与发展趋势[J].材料导报, 2008.5, 22(5):58-62.
    [6]罗治平,张少卿. Mg-Zr, Mg-Zn及Mg-Zn-Zr合金的微观结构[J].金属学报, 1993, 29(4):A176-181.
    [7]张青辉.耐热镁合金的组织与高温性能[D][硕士学位论文].四川:四川大学,2007.4.
    [8]张春香.硅和磷化铝对高锌镁合金显微组织及性能的影响[D]. [博士学位论文].郑州:郑州大学,2006.5.
    [9]黄华勇.耐热镁合金的研究[D][硕士学位论文].重庆:重庆大学,2005.4.
    [10]潘复生,张津,张喜燕.轻合金材料新技术[M].北京:化学工业出版社,2008.1:128-134.
    [11]王伟.新型Mg-Zn-RE系高强高韧镁合金的开发[D][硕士学位论文].兰州:兰州理工大学,2008.5.
    [12]沙桂英,徐永波,韩恩厚.铸造Mg-RE合金的显微结构及其蠕变行为[J].材料研究学报, 2003, 17(6):603-609.
    [13]张崧,唐建新,冯可芹等.高强度镁合金的研究现状及发展[J].热加工工艺, 2004, (8):52-54.
    [14]申泽骥,李玉胜,冯志军等.新型铸造镁合金开发现状[J].铸造, 2003, 52(3):153-156.
    [15]张诗昌,魏伯康,林汉同.耐高温压铸镁合金的发展及研究现状[J].中国稀土学报, 2003.12,21:150-152.
    [16]李萧,刘江文,罗承萍.铸造ZC62镁合金的时效行为[J].金属学报,2006,42(7):733-738.
    [17] J.Buha. Mechanical properties of naturally aged Mg–Zn–Cu–Mn alloy [J]. Materials Science and Engineering A, 2008.
    [18] Yuan G Y, Kato H, Amiya K, Inoue A. Excellent creep properties of Mg-Zn-Cu-Gd-based alloy strengthened by quasicrystals and Laves phases [J]. Journal of Materials Research, 2005, 20(5):1278-1286.
    [19]张静,潘复生.金属型铸造ZA73镁合金凝固特征和组织研究[J].材料热处理学报, 2006, 27(3):68-70.
    [20]赵玮霖,杨明波,潘复生.合金元素对Mg-Zn-Al(ZA)系耐热镁合金组织及性能的影响[J].材料导报,2007.7,21(7):70-73.
    [21]杨明波,潘复生,汤爱涛等. Mg-Zn-Al (ZA)系耐热镁合金的研究现状[J].热加工工艺,2007,36(8):73-77.
    [22]白亮. Mg-Al-Si系和Mg-Zn-Al系镁合金组织控制的基础研究[D][硕士学位论文].重庆:重庆大学,2006.5.
    [23]杨明波,潘复生,李忠盛等. Zn与Al质量比对Mg-Zn-Al三元镁合金铸态组织和凝固行为的影响[J].中国有色金属学报, 2008,18(7):1192-1198.
    [24]曾小勤,丁文江,姚正裔等. Mg-Zn-A1系合金组织和力学性能[J].上海交通大学学报, 2005, 39(1): 46-51.
    [25] Bourgeois L, Muddle B C and Nie J F. The crystal structure of the equilibriumφphase in Mg-Zn-Al casting alloys [J]. Acta Materialia, 2001, 49:2701-2711.
    [26] Zhang Z, Tremblay R, Couture A. Solidification microstructure of ZA102, ZA104 and ZA106 magnesium alloys and its effect on creep deformation [J]. Canadian Metallurgical Quarterly, 2000, 39 (4):503~512.
    [27] Vogel M, Kraft O, Dehm G and Arzt E. Quasi-crystalline grain-boundary phase in the magnesium die-cast alloy ZA85 [J]. Scripta Materialia, 2001, 45: 517-524.
    [28] Zhang Z, Couture A. Investigation of the properties of Mg-Zn-Al alloys [J]. Scripta Materialia, 1998, 39(1):45-49.
    [29] Zhang Z, Tremblay R, Dube D. Microstructure and mechanical properties of ZA104 (0.3–0.6Ca) die-casting magnesium alloys [J]. Materials Science and Engineering A,2004, 385: 286–291.
    [30]王迎新,关绍康,王建强. RE对Mg-8Zn-4Al-0.3Mn合金组织的影响[J].中国有色金属学报, 2003, 13(3):616-621.
    [31]王迎新. Mg-8Zn-4Al-0.3Mn-x(y)合金显微组织及力学性能的研究[D][硕士学位论文].郑州:郑州大学,2003.5.
    [32]丁文江等.镁合金科学与技术[M].北京:科学出版社,2007.1:1-22.
    [33]胡勇,闫洪,陈国香等. Si对原位自生Mg2Si/AM60复合材料组织及性能的影响[J].稀有金属材料与工程, 2009, 38(2):343-347.
    [34]陈晓.原位自生颗粒增强镁基复合材料的研究[D] [博士学位论文].长沙:中南大学,2005.3.
    [35]袁广银,刘满平等. Mg-Al-Zn-Si合金的显微组织细化[J].金属学报, 2002.10, 38(10):1105-1108.
    [36]吴玉锋,杜文博等.颗粒增强镁基复合材料研究进展[J].稀有金属材料与工程, 2007, 36(1):184-188.
    [37]王忠海,陈善华,康鸿越.镁基复合材料强化机制[J].轻金属, 2007, 11:37-40.
    [38] K.N.波尔特诺伊A.A.列别杰夫.镁合金手册[M].机械工业出版社.1959.8:50-60.
    [39] Jing Zhang, Z.X. Guo, Fusheng Pan, Zhongsheng Li, Xiaodong Luo. Effect of composition on the microstructure and mechanical properties of Mg-Zn-Al alloys [J]. Materials Science and Engineering A, 2007, 456: 43-51.
    [40] Jing Zhang, Zhongsheng Li, Zhengxiao Guo, Fusheng Pan. Solidification microstructural constituent and its crystallographic morphology of permanent-mould-cast Mg-Zn-Al alloys [J]. Transactions of Nonferrous Metals Society of China, 2006, 16: 452-458.
    [41] Wenlong Xiao, Shusheng Jia, Jun Wang. Investigation on the microstructure and mechanical properties of a cast Mg–6Zn–5Al–4RE alloy[J]. Journal of Alloys and Compounds, 2008, 458:178-183.
    [42] Wan Xiaofeng, Sun Yangshan, Xue Feng, Bai Jing, TaoWeijian. Effects of Sr and Ca on the microstructure and properties of Mg-12Zn-4Al-0.3Mn alloy[J]. Materials Science and Engineering A, 2009, 508:50-58.
    [43]王建强.微量Sb对Mg-8Zn-4Al-0.3Mn镁合金显微组织及阻尼性能的影响[D][硕士学位论文].郑州:郑州大学,2004.5.
    [44]李清华.几种变质剂对镁合金组织和性能的影响[D][硕士学位沦为].上海:上海交通大学,2002.1.
    [45]宋海宁.钙和锑对镁锌硅基合金显微组织和力学性能的影响[D][硕士学位文].上海:上海交通大学,2002.1.
    [46] Srinivasan, S. Ningshen, U. Kamachi Mudali, U.T.S. Pillai, B.C. Pai. Influence of Si and Sb additions on the corrosion behavior of AZ91 magnesium alloy [J]. Intermetallics, 2007, 15: 1511~1517.
    [47] N.Balasubramani, A. Srinivasan, U.T.S. Pillai, K. Raghukandan, B.C. Pai. Effect of antimony addition on the microstructure and mechanical properties of ZA84 magnesium alloy J]. Journal of Alloys and Compounds, 2008, 455: 168-173.
    [48]郭会廷.高锌镁合金组织和力学性能研究[D][硕士学位论文].太原:太原科技大学,2007.6.
    [49]田爱环.高锌镁合金的研究[D][硕士学位论文].太原:太原理工大学,2008.5.
    [50]姚三九,刘卫华,陈日月.高锌镁合金研究[J].特种铸造及有色合金, 2002:332-334
    [51]姚三九.铝对高锌镁合金力学性能的影响[J].铸造, 2002,51(6):355-357.
    [52]李杰华,介万奇,杨光昱ZAC843镁合金金属型铸造组织和力学性能[J].稀有金属材料与工程,2008,37(3): 428-432.
    [53] A. Daoud, M.T. Abou El-khair, M. Abdel-Aziz, P. Rohatgi. Fabrication microstructure and compressive behavior of ZC63 Mg–microballoon foam composites [J]. Composites Science and Technology, 2007, 67: 1842–1853.
    [54]田爱环,张金山,杜二玲等.富铈混合稀土对ZA155高锌镁合金组织和力学性能的影响[J].铸造, 2008,57(8): 783-787.
    [55]李松瑞,周善初.金属热处理[M].长沙:中南大学出版社, 2003. 249-250.
    [56]张宝昌,王世洪,何明等.有色金属及其热处理[M],国防工业出版社.北京:1981.
    [57]孙茂才.金属力学性能[M],哈尔滨:哈尔滨工业大学出版社. 2003.
    [58]杨德庄.位错与金属强化机制[M].哈尔滨:哈尔滨工业大学出版社.1999.
    [59]陈振华,夏伟军等.镁合金材料的塑性变形理论及其技术[J].化工进展,2004,23(2):130-131.
    [60]张青辉,黄维刚,郑天群等.热处理对Mg-Zn-Al合金力学性能的影响[J].热加工工艺,2007, 36(8):62-64.
    [61]蒋浩. Mg-Gd (Y)耐热镁合金材料及其热处理研究[D][硕士学位论文].长沙:中南大学,2006.7.
    [62] YANG Ming-bo, PAN Fu-sheng, CHENG Ren-ju. Effects of holding temperature and time on semi-solid isothermal heat-treated microstructure of ZA84 magnesium alloy [J]. Trans.Nonferrous Met.Soc.China 2008, 18: 566-572.
    [63] GUAN Shao-kang, ZHANG Chun-xiang, WANG Li-guo. Phase selection of ternary intermetallic compounds during solidification of high zinc magnesium alloy [J]. Trans.Nonferrous Met.Soc.China 2008, 18: 593-597.
    [64]王建强,关绍康等. RE对Mg-8Zn-4Al-0.3Mn镁合金阻尼性能的影响[J].材料科学与工程学报, 2002.22(2): 281-283.
    [65]王迎新,关绍康. RE对Mg-8Zn-4Al-0.3Mn合金组织的影响[J].中国有色金属学报, 2003.13(3): 616-621.
    [66] Z.Zhang, R.Trembiay, D.Dube. Microstructure and creep resistance of Mg-10Zn-4Al-0.15Ca permanent moulding alloy [J]. Materials science and technology, 2002.18(4): 433-437.
    [67]王慧敏,陈振华,严红革等.镁合金的热处理[J].金属热处理2005.30(11): 48-54.
    [68]麻彦龙,彭华东,潘承聪,秦旭,杜勇热处理对AZ91D镁合金显微组织的影响[J].热处理技术, 2008.5:50-53.
    [69] Wei-JenLai, Yi-YunLi, Yung-FuHsub. Aging behaviour and precipitate morphologies in Mg–7.7Al–0.5Zn–0.3Mn (wt. %) alloy [J]. Journal of Alloys and Compounds, 2008.
    [70] Horng-YuWu, Chang-ChuanHsu, Jen-BinWon. Effect of heat treatment on the microstructure, mechanical properties of the consolidated Mg alloy AZ91D Machined chips [J]. Journal of Materials Processing Technology, 2008: 1-29.
    [71] D.G.LeoPrakash, DorisRegener, W.J.J. Vorster E?ec to flongter mannealing on the microstructure of hpdc AZ91 Mg alloy: A quantitative eanalysis by image processing [J]. Computational Materials Science, 2008(43):759-766.
    [72] GAO Yan (高岩), WANG Qudong (王渠东), GU Jinhai (顾金海). Effects of heattreatments on microstructure and mechanical properties of Mg-15Gd-5Y-0.5Zr alloy [J]. JOURNAL OF RARE EARTHS, 2008.26(2):298.
    [73] Y.Wang, G.Liu, Z.Fan Microstructure alevolution of rheo-diecast AZ91D magnesium alloy during heat treatment [J]. Acta Materialia, 2006(54): 689-699.
    [74] J.Buha Reduced temperature (22–100℃) ageing of an Mg–Zn alloy [J]. Materials Science and Engineering A, 2008(492):11-19.
    [75]上海交通大学《合金断口分析》编写组合金断口分析[M],国防工业出版社.北京:1979.
    [76]冶金工业部钢铁研究院等编合金钢断口分析金相图谱[M],科学出版社.北京:1979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700