Zn对Mg-Gd-Y系合金相平衡的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金因其比强度高、易回收等许多优点,在国防工业和民用工业中的应用日益广泛,引起国际材料界与工业界的广泛关注和研究。相图对于金属材料的研究与开发具有非凡的指导意义,通过相图可以对合金中的相组成做出确切的理论说明,使得研究者能够对合金的成分设计、热处理工艺的制定等做出合理和正确的判断。镁合金的强化行为主要集中在沉淀相强化方面,通过向纯镁中添加一些金属元素形成强化相进而起到改善各项性能的作用。所以,搞清楚金属元素对合金的作用显得尤为重要,对其所形成沉淀相的研究也显得尤为迫切。本文正是针对这一点切入,用CALPHAD(CALcuation of Phase Diagram)计算相图作为指导,向Mg-Gd-Y系合金中添加Zn元素,进而研究了Zn对该合金的主要影响。
     本文首先利用Pandat相图计算软件绘制了Mg-Zn、Mg-Gd-Y、Mg-3Gd-3Y-0.5Zr-xZn、Mg-6Gd-3Y-0.5Zr-xZn、Mg-9Gd-3Y-0.5Zr-xZn及Mg-12Gd-3Y-0.5Zr-xZn合金的富镁区域相图,并计算了各合金相比例随温度变化曲线。计算相图表明,Zn元素的加入促进了Mg24Y5相、Mg5Gd相的形成,合金液相线温度逐渐降低,MgZn相比例增大;而随着Gd含量的增加,促进了Mg5Gd相的形成,对Mg24Y5相、MgZn相影响较小。
     在相图计算基础上,采用差示量热扫描仪(DSC)测定了几种镁合金的相转变温度(Mg-xGd-3Y(x=3,6,9wt%)、Mg-9Gd-xY(x=1,5,7 wt%)、Mg-3Gd-3Y-xZn-0.5Zr(x=0,1,3,6wt%)和Mg-9Gd-3Y-xZn-0.5Zr(x=1,3,6 wt%))。结果表明,在简单的三元合金中,由于相区较大,各相转变点间隔较大,且相转变能量波动较大,试验测定值与预测值相差不大。当合金系多元化后,合金的高温相变仍可以测定,但是,随着合金相区增多,一些固相转变中相变潜热较小,采用差示量热扫描仪难以准确测定相变点。综合总体试验结果,表明利用Pandat软件所计算的合金相图是可靠的。
     最后,利用光学金相显微镜(OM)、扫描电镜(SEM)、能谱仪(EDX)和透射电镜(TEM)对部分合金进行了试验验证及观察。结果表明,MgZn相在铸态Mg-Zn二元合金中,主要存在于晶界处,且随着锌含量的增加而增加,经过520℃,8h+200℃,168h处理后,含锌较少的合金晶界处MgZn相基本消失,含锌量较多时,晶界处还有一定残留。在Mg-Gd-Y三元合金中,不论钆还是钇增加,合金中的第二相都增多,铸态合金中Mg-Gd相弥散分布,钆含量增多时会出现聚集,而Mg-Y相主要沿晶界分布。Gd含量9%以上的合金经过520℃,8h+400℃,168h处理后析出了短棒状的Mg5Gd相。对Mg-3Gd-3Y-xZn-0.5Zr、Mg-6Gd-3Y-xZn-0.5Zr、Mg-9Gd-3Y-xZn-0.5Zr和Mg-12Gd-3Y-xZn-0.5Zr四组Zn(x=0,1,3,6 wt%)含量不同的合金进行了对比分析,在铸态合金中,第二相都是随着锌含量的增加而增加,最后形成网状沿晶界分布;经过520℃,8h+200℃,168h处理后,第二相普遍有所减少,含锌量为6%的合金中,除了板条状的第二相,还产生了颗粒状的Mg(Zn,Gd,Y)相。随着Gd和Zn含量的增加,合金中第二相数量增多,对合金中晶粒的长大起到很好的抑制作用,Gd含量的增加对MgZn相的形成影响较小,而Zn的增加会促进Mg24Y5相、Mg5Gd相的形成,试验很好地验证了这一点,随着含Zn量的增加,在合金的晶界处产生了越来越多的富含Gd和Y的第二相。
Magnesium alloy have a wide application in Defense-industry and Civil-industry for its advantage as high strength weight ratio, easy recycling, etc.Phase diagram is important for metal material design, which can explain the phase composition of alloy by theory, and allow researcher to make reasonable and correct judgments about design the composition of the alloy, heat treatment process, etc. To strengthen magnesium alloy by the precipitates strengthening phase, some metal elements was added in pure magnesium. It is particularly important that find out the influence of metal element on the alloy. So,the research on the precipitate process is urgent. In this paper, the CALPHAD phase diagram was used to studied the influence of Zn on Mg-Gd-Y alloy system.
     First of all, The Mg-Zn, Mg-Gd-Y, Mg-3Gd-3Y-0.5Zr-xZn, Mg-6Gd-3Y-0.5Zr-xZn, Mg-9Gd-3Y-0.5Zr-xZn, Mg-12Gd-3Y-0.5Zr-xZn alloys phase diagram and phase ratio varies with temperature was calculated with a phase diagram calculation software Pandat.The result shows that The addition of Zn element in Mg-Gd-Y alloy promoted the formation of Mg5Gd and result to the fall of liquid temperature.The increase of Gd content, promoted the formation of Mg5Gd phase and Mg24Y5 phase, but less affected to the MgZn phase.
     In the foundation of CALPHAD, the phase-chage temperature of Mg-xGd-3Y (x=3,6,9wt%),Mg-9Gd-xY(x=1,5,7wt%),Mg-3Gd-3Y-xZn-0.5Zr(x=0,1,3,6wt%)and Mg-9Gd-3Y-xZn-0.5Zr(x=1,3,6 wt%) alloys, was tested with a DSC instrument to verified the calculated phase diagram. The result shows that tested result close to that calculated in ternary alloys, because of the large phase region, the broad interval between phase transition point and larger phase transition energy fluctuations. But, in complicate alloys, with the increase of phase region amount, a number of solid-phase transitions energy are too small to test by DSC, some process could not be well verified by this method. Anyway, the Pandat soft is practical and reliable.
     At last, the microstrcture of some MG-Gd-Y-Zn system alloy was observed with the OM, SEM, EDX, and TEM.The results show that, MgZn phase mainly distributes in the grain boundaries in the as-cast Mg-Zn binary alloys, and manifold with the zinc content increases. After 520℃for 8h and 200℃for168h treatment, MgZn phase almost disappeared in less Zine content alloy, but in mass zinc content alloy, there is a certain residue in the grain boundary. In the Mg-Gd-Y ternary alloy, no matter gadolinium or yttrium to increase, the second phases were increased. Mg-Gd phase diffuse distribution in cast alloy, aggregated when the Gd content increased. Mg-Y phase mainly distributed along the grain boundary distributed. Gd content with more than 9% after treatment at 520℃for 8h for 400℃,168h, short rod-like Mg5Gd phase was found. Four groups of different Zn (x=0,1,3,6 wt%)content alloy, Mg-3Gd-3Y-xZn-0.5Zr, Mg-6Gd-3Y-xZn-0.5Zr, Mg-9Gd-3Y-xZn-0.5Zr, Mg-12Gd-3Y-xZn-0.5Zr were compared and analyzed. In the as-cast alloy, the network-like second phase manifolded with the zinc content increases, and distributed along the grain boundary eventually. After 520℃for 8h and 200℃for 168h treatment, the second phase general decline in the 6% zinc content alloy, plate shape,strip shape also a granular Mg (Zn, Gd, Y) phase was found. With the increase of Gd and Zn content, the second phase increased, and inhibited the grain growth. Gd content was less affect to formation of MgZn phase,the increase in Zn content would promote the formation of Mg24Y5 phase, Mg5Gd phase. Test result well confirm that with the increase in the amount of Zn element a number of rich Gd and Y second phase appear in the grain boundaries.
引文
[1]Avedesian M M,Baker H eds. Magnesium and Magnesium Alloys[M]. Ohio:Materials Park,1999.3-36.
    [2]Brown R E. Magnesium at NADCA Congress and Exposition [J]. Light Metal Age,2000, 58(3-4):103-105.
    [3]Schumann S,Friedrich F. The Use of Magnesium in Cars-Today and in Future. in:Mordike B L, Kainer K U(Ed.), Proc Magnesium Alloys and Their Applications. Wolfsburg, Germany.1998,3-13.
    [4]Brown R.57th Annual World Magnesium Conference. Light Metal Age,2000, (9-10):54-57.
    [5]Edgar R L.Global Overview on Demand and Applications for Mag-nesium Alloys. in:Kainer K U(Ed.),Proc. Magnesium Alloys and Their Applications. Munich, Germany:2000,3-8
    [6]Brown R. Australian Magnesium Projects-Update. Light MetalAge,2000, (9-10):54-57.
    [7]吕宜振,王渠东,曾小勤等.镁合金在汽车上的应用现状及发展趋势.材料导报,2000,14(特刊:57-60.
    [8]王渠东,吕宜振,曾小勤等.镁合金在电子器材壳体中的应用.材料导报,2000,14(6):22-24.
    [9]余昆,黎文献,李松瑞等.含稀土镁合金的研究与发展[J].特种铸造及有色金,2001,(1):41-43.
    [10]余强国,翁国庆.稀土镁合金的发展、应用及开发[J].稀有金属与硬质合金,2006,34(3):36-38.
    [11]王渠东,吕宜振.稀土在铸造镁合金中的应用[J].特种铸造及有色合金,1999(1):40.
    [12]罗治平,张少卿.稀土在镁合金溶液中作用的热力学分析[J].中国稀土学报,1995,13(2)
    [13]张崧,唐建新,冯可芹,等.高强度镁合金的研究现状及发展[J].热加工工艺,2004,8(15):52-54.
    [14]丁文江,王渠东,刘满平.轻合金技术新进展.中国科学院编.2002高技术发展报告,北京:科学出版社,2002:60-74.
    [15]周娜,董杰,靳丽,等.镁合金化阻燃的研究进展[J],材料导报,2009,23(6):109-114.
    [16]余强国,翁国庆.稀土镁合金的发展、应用及开发[J],稀有金属与硬质合金,2006,34(3):36-38
    [17]Nair K S, Mittal M C. Rare Earths in Magnesium Alloys[J].Mater.Sci. Forum.1988, 30:89-104.
    [18]黄德明,刘红梅,陈云贵,等.耐热铸造镁合金的研究应用进展[J].2005(8):49-54.
    [19]王渠东,吕宜振,曾小勤,等.稀土在铸造镁合金中的应用[J].特种铸造及有色合 金,2002,(S1).
    [20]Wei L Y, Dunlop G L, Westengen H. Age hardning and precipitation in a cast magnesium-rare earth alloy [J].Journal of Materials Science.1996,31(2):387.
    [21]孙明,吴国华,王玮,等.Mg-Gd系镁合金的研究进展[J],材料导报,2009,23(6):98-106.
    [22]J.P. Li, Z. Yang, T. Liu, et al. Microstructures of extruded Mg-12Gd-1Zn-0.5Zr and Mg-12Gd-4Y-1Zn-0.5Zr alloys, Scripta Materialia [J],2007(56):137-140.
    [23]GUO Yong-chun, LI Jian-ping, LI Jin-shan, et al. Mg-Gd-Y system phase diagram calculation and experimental clarification [J]. Journal of Alloys and Compounds, 2008(450):446-451.
    [24]Yang Z, Li J P, Guo Y C. Precipitation process and effect on mechanical properties of Mg-9Gd-3Y-0.6Zn-0.5Zr alloy [J]. Materials Science and Engineering:A, Volumes 454-455,25 April 2007, Pages 274-280.
    [25]Jun Wang, Jian Meng. Effect of Y for enhanced age hardening response and mechanical properties of Mg-Gd-Y-Zr alloys [J].Materials Science and Engineering:A Volume 456, Issues 1-2,15 May 2007, Pages 78-84.
    [26]Gao Yan, Wang Qudong. Behavior of Mg-15Gd-5Y-0.5Zr alloy during solution heat treatment from 500 to 540℃[J].Materials Science and Engineering:A Volume 459, Issues 1-2,25 June 2007, Pages 117-123.
    [27]Peng Q M, Wu Y M.Microstructures and properties of Mg-7Gd alloy containing Y[J].Journal of Alloys and Compounds Volume 430, Issues 1-2,14 March 2007, Pages 252-256.
    [28]Gao X, He S M, Zeng X Q. Microstructure evolution in a Mg-15Gd-0.5Zr (wt.%) alloy during isothermal aging at 250℃[J]. Materials Science and Engineering:A Volume 431, Issues 1-2,15 September 2006, Pages 322-327.
    [29]He S M, Zeng X Q, Precipitation in a Mg-10Gd-3Y-0.4Zr (wt.%) alloy during isothermal ageing at 250℃ [J].Journal of Alloys and Compounds, Volume 421, Issues 1-2,14 September 2006, Pages 309-313.
    [30]Parka E S, Kyeong J S.Enhanced glass forming ability and plasticity in Mg-based bulk metallic glasses[J]. Materials Science and Engineering:A Volume 449-451,25 March 2007, Pages 225-229.
    [31]Geun Tae Baea, Sang Bok Lee.Effect of alloying elements on the crystallization kinetics of Mg-Cu-(Y,Gd) bulk amorphous alloys[J].Materials Science and Engineering:A Volumes 449-451,25 March 2007, Pages 489-492.
    [32]希拉特.合金热力学和扩散[M].赖和怡,刘国勋译.北京:冶金工业出版社,1984.
    [33]张洪杰,孟健.高性能镁-稀土结构材料的研制、开发与应用[J].中国稀土学报, 2004(2):40-47.
    [34]余琨,黎文献,王日初,等.变形镁合金的研究、开发及应用[J].中国有色金属学报,2004(4):277-288.
    [35]黄少东,唐全波,赵祖德,等.用镁合金促进武器装备的轻量化[J].金属成形工艺,2002(5):8-10.
    [36]张菘,唐建新,冯可芹,等.高强度镁合金的研究现状及发展[J].热加工工艺,2004(8):52-54.
    [37]张静,潘复生,郭正晓,等.含锆镁合金系中的合金相[J].兵器材料科学与工程,2002(11):50-56.
    [38]麻彦龙,潘复生,佐汝林.高强度变形镁合金ZK60的研究现状[J]重庆大学学报,2004(9):80-85.
    [39]周海涛,马春江,曾小勤,等.变形镁合金材料的研究进展[J].材料导报,2003(11):16-19.
    [40]余琨,黎文献,李松瑞,等.含稀土镁合金的研究与开发[J].特种铸造及有色合金,2002(压铸专刊):314-316.
    [41]张新明,彭卓凯,陈健美,等.耐热镁合金及其研究进展[J].中国有色金属学报,2004(9):1443-1450.
    [42]Saunders N, Miodownik A P. CALPHAD (Calculation of Phase 205Diagrams) A,Comprehensive Guide, Elsevier Science Ltd. Great Britain,1998:206-207.
    [43]Kaufman L, Bernstein H. Computer Calculation of Phase Diagrams, Aca-208demic Press, NY,1970.
    [44]张津,章宗和.镁合金及应用[M].北京:化学工业出版社,2004.
    [45]Matsudaa M, lib S, Kawamuraa Y, et al. Interaction between long period stacking order phase and deformation twin in rapidly solidified Mg97Zn1Y2alloy [J]. Materials Science and Engineering,2004, A386:447.
    [46]Nie J F, Mudle B C. Precipitation in Mg alloy WE54 during isothermal ageing at 250 ℃ (J). Scripta Materalia,1999, (10):1089-1094.
    [47]Horikir H, kato A. New Mg based amorphous alloys in Mg-Y-Mish metal systems[J]. Material Science & Engineering,1994,(2):702-70.
    [48]孙连超,田荣璋.锌及锌合金物理冶金学[M],湖南:中南工业大学出版社,1994:25-27.
    [49]张静,潘复生,郭正晓,等.含锆镁合金系中的合金相[J].兵器材料科学与工程,2002,25(6):50-56.
    [50]彭卓凯,张新明,陈健美,等.Zr在Mg-9Gd-4Y合金中的晶粒细化机制[J].北京科技大学学报,2006,28(2):148-152.
    [51]陆文华,李隆盛,黄良余.铸造合金及其熔炼[M],北京:机械工业出版社2002:378-382.
    [52]陈振华,严红革,陈吉华,等.镁合金[M].北京:化学工业出版社,2004.
    [53]Kim N J, Lee C S, Eylon D, et al. LiMAT-2001[C]. Pusan:Centerfor Advanced Aerospace Materials, POSTECH,2001:175.
    [54]Aghion E, Eliezer D. Magnesium 2000 [C]. Dead Sea:DeadSea Magnesium Company, 2000:43.
    [55]Kainer K V. Magnesium Alloys and Their Applications[C].Munich:DGM,2000:3
    [56]Aghion E, Eliezer D. Magnesium 2000[C]. Dead Sea:Dead Sea Magnesium Company, 2000:1.
    [57]Kojima Y. Materials Transactions [J],2001,42(7):1154-1159.
    [58]Aghion E, Eliezer D. Magnesium 2000[C]. Dead Sea:DeadSea Magnesium Company, 2000:478-485.
    [59]闫蕴琪,张廷杰,邓炬等.耐热镁合金的研究现状与发展方向[J].稀有金属材料与工程,2004,33(6):561-565.
    [60]S.L.Chen. Pandat5.0 User's Guide.2000-2005 CompuTherm LLC.
    [61]刘正,张奎,曾小勤.镁基轻质合金理论基础及应用(M).机械工业出版,2002,9:59.
    [62]黄新民,解挺.材料分析测试方法(M).国防工业出版社,2005,7:136-141.
    [63]Apps P J, KARIMZADEH H, KING J F,et al. Phase compositions in magnesium-rare earth alloys containing yttrium, gadolinium or dysprosium [J].Scripta Materialia, 2003(48):475-481
    [64]朱先勇,于思荣,刘耀辉,等.普通凝固Mg-Zn-Y系合金组织[J],中南大学学报:自然科学版,2009,40(4):940-943.
    [65]肖阳,张新明,蒋浩,等.Gd和Y偏析对Mg-Gd-4Y-0.6Zr和Mg-7Gd-4Y-0.6Zr合金组织性能的影响[J],中南大学学报:自然科学版,2007,38(1):24-29.
    [66]陈部湘,张新明,邓运来,等.时效对Mg-9Gd-4Y-0.6Zr挤压合金组织与性能的影响[J],湖南有色金属,2007,23(1):35-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700