Mg-xGd-0.6Zr合金组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与其它金属结构材料相比,镁的密度低,阻尼性能高,电磁屏蔽性能优异,导热导电性能好,镁及镁合金的应用受到了一定关注。镁及镁合金是一种集结构与功能于一体的理想金属材料,但密排六方晶体结构的镁滑移系少,塑性成形困难;且纯镁强度低,抗拉强度仅为100MPa,弹性模量只有45GPa。塑性成形困难和强度低是影响镁及镁合金工业化应用的两个瓶颈。近年来,稀土镁合金特别是Mg-Gd系合金因其具有优异的室温和高温力学性能而得到重视。
     本课题通过半连续浇铸法在纯Mg基础上添加xGd(x=2,4,6%)和0.6%Zr(质量分数,下同),采用X射线荧光分析、光学显微分析、扫描电子显微镜结合能谱分析、X射线衍射分析以及透射电子显微分析等方法研究了Gd含量对不同热处理及挤压态的Mg-xGd-0.6Zr合金显微组织的影响,利用显微硬度及拉伸性能表征了材料各个状态下的力学性能,分析得到低Gd含量的Mg-Gd系合金的强化机理及塑性机理。
     研究结果表明:铸态Mg-xGd-0.6Zr(x=2,4,6%)合金呈明显的晶粒结构组织,没有出现Gd的枝晶偏析。随Gd含量增加,固溶态Mg-xGd-0.6Zr合金晶粒略微减小,退火态合金中第二相依次增加。退火态合金中第二相Mg5.05Gd主要有两种形貌,一种尺寸约5μm×5μm×1μm规则矩形相,一种不规则相。该Mg5.05Gd相在退火态Mg-4Gd-0.6Zr和Mg-6Gd-0.6Zr合金中质量百分比分别为2.787wt.%和5.340wt.%。
     随着Gd含量的增加,铸态和退火态Mg-xGd-0.6Zr合金单位质量百分比含量的强度增加率增加明显。固溶态合金中Gd的原子百分比与硬度呈直线关系,且与固溶态Mg-Gd二元合金相比,Zr的加入使单位Gd含量在镁合金中的固溶强化作用减弱。随固溶温度的增加,Mg-6Gd-0.6Zr合金的晶粒尺寸增大,420°C下合金显微硬度值最大,460°C下合金中原子基本完全固溶。Mg-6Gd-0.6Zr合金最佳固溶工艺为300°C×6h+460°C×10h。
     不同状态合金经挤压后,Mg-2Gd-0.6Zr和Mg-4Gd-0.6Zr合金强度相差不大,Mg-6Gd-0.6Zr合金强度最高;三种合金的延伸率都超过30%。铸态挤压Mg-2Gd-0.6Zr、Mg-4Gd-0.6Zr和Mg-6Gd-0.6Zr合金的抗拉强度与屈服强度依次为206、207、237MPa与150、145、168MPa,延伸率依次为36.8%、43.4%、33.4%。Mg-6Gd-0.6Zr合金时效10h后,塑性变化较小,强度略有提高,抗拉强度和屈服强度分别为243、175MPa,延伸率为31.7%。所有合金的断裂方式都为韧性断裂。
     该Mg-xGd-0.6Zr系合金强度的强化方式包括细晶强化、固溶强化、第二相强化以及形变强化四种强化方式。屈服强度与各个强化方式的贡献值可线性表示。Mg-xGd-0.6Zr合金的塑性机理主要由降低c/a比值和细化晶粒共同贡献。该合金系出现具有明显高低屈服点和屈服平台的屈服现象,主要原因是位错的增殖以及位错与固溶原子的相互作用。
Compared with other metals, magnesium and magnesium alloys have attracted increasing interest for potential application due to their low density, and excellent damping capacity, electromagnetic shielding, and thermal conductivity. Magnesium and magnesium alloys are one of ideal metals exhibited simultaneously with structure and function, but magnesium with close-packed hexagonal structure has less slip systems, which lead to be weak workable, and pure magnesium has low strength, ultimate tensile strength(UTS) only 100MPa,elastic modulus only 45GPa. So low strength and weak workability are two bottlenecks that effect the application of magnesium and magnesium alloys in industrialization. Rare-earth magnesium alloys have been the focus of intense investigation for the past few decades due to those outstanding mechanical properties at room and elevated temperature, especially Mg-Gd series alloys, meeting the need of new metal materials with low density, excellent cast performance, mechanical properties and resistance corrupt in the automotive, architectural and aerospace industry.
     The elements xGd(x=2,4,6%) and 0.6%Zr were added to pure magnesium in this paper. The effect of Gd contents on the microstructure and properties of Mg-xGd-0.6Zr alloys in different heat treatment and extruded processes were studied by optical microscopic, scanning electron microscopic equipped with energy dispersive spectroscopy, transmission electron microscopy and micro-hardness and tensile testers.
     The results show that the as-cast Mg-xGd-0.6Zr (x=2, 4, 6%) alloys display grain structure and no Gd element segregation appears in the microstructure. With the increasing of Gd content, the grain size of as-quenched Mg-xGd-0.6Zr (x=2,4,6%) decrease and the second phases Mg5.05Gd contents increase. The morphology characters of the second phases Mg5.05Gd in as-annealed alloys included two kinds, one of them is regular shape, about 5μm×5μm×1μm, one of them is irregular shape. The weight percent of the second phases Mg5.05Gd in as-annealed GK4 and GK6 alloys are 2.787wt.%,5.340wt.%, respectively.
     For as-cast and as-annealed Mg-xGd-0.6Zr alloys, the seconde phases could make the hardness of unit Gd content obviously increase. There is a line increasing relationship between Gd atom percent and micro-hardness of as-quenched alloys and compared with the Mg-Gd seris alloys, the addition of Zr weakens the solid solution strengthen effects. The grain size of alloys after different temperature treated increase with solution temperature increase. The second phase Mg2Gd, Mg3Gd brought in due to non-equilibrium solidification during the casting process could be transformed into equilibrium phase Mg5.05Gd which could be dissolved intoα-Mg solid solution phase at 460°C solution temperature. The optimization of solid solution treatment process is 300°C×6h + 460°C×10h. Micro-hardness value of alloy treated under 420°C is highest due to interaction of solid solution strengthening and second strengthening.
     After alloys in different states extruded, the strength of Mg-2Gd-0.6Zr and Mg-4Gd-0.6Zr alloys are almost the same and the strength of Mg-6Gd-0.6Zr is highest. However, the elongation of all extruded alloys is over 30%. The ultimate and yield tensile strength and the elongation of Mg-xGd-0.6Zr(x=2, 4, 6%)-Ext alloys are 206、207、237MPa, 150、145、168MPa and36.8%、43.4%、33.4% respectively. After aged 10h, the ultimate and yield tensile strength of extruded Mg-6Gd-0.6Zr alloys increases slightly, to be 243、175MPa respectively, at the same time, the elongation of alloys rarely decreases, to be 31.7%. The fracture mechanism of all studied alloys is ductile fracture feature.
     Refinement strengthen, solid solution strengthen, precipitation strengthen and resident compression stress are contributive to the strength of Mg-xGd-0.6Zr (x=2,4,6%) alloys and yield tensile strength relates with the line relationship of four kinds of strengthen ways. The decreased c/a value and the grain refinement are helpful to high plasticity for Mg-xGd-0.6Zr alloys. The dislocation proliferation and reaction between solute atoms and dislocation can be used to explain the yield phenomenon with obvious low and upper yield points and yield flat of Mg-xGd-0.6Zr alloys.
引文
[1]丁文江.镁合金科学与技术[M].北京:科学出版社,2007.
    [2]郑昌琼.简明材料词典[M].北京:科学出版社,2002.
    [3]黄瑞芬,武仲河,李进军,王玉良.镁合金材料的应用及其发展[J].内蒙古科技与经济.2008.(14):158-160.
    [4] Morfike B L,Ebert T.Magnesium:properties-applications-potential[J].Materials science and engineering A.2001.302(1):37-41.
    [5]孙全喜,战中学,李进军.汽车用镁合金的现状和发展前景[J].内蒙古科技与经济.2008.(9):73-76.
    [6]刘广,张振忠,张少明等.高阻尼镁锆合金的研究进展及展望[J].材料导报.2006.20:425-428.
    [7] Ma qian. Heterogeneous nuclei size in magnesium zirconium alloys[J]. Scripta Materialia. 2004.50(8):1115-1119.
    [8]孔志刚,刘泓波,张虎.Zr含量对Mg-Zr合金组织和性能的影响[J].北京航空航天大学学报.2004,30(10):973-975.
    [9] Ming Sun,Guohua Wu,Wei Wang,et al.Effect of Zr on the microstructure,mechanical properties and corrosion resistance of Mg-10Gd-3Y magnesium alloy[J].Materials science and engineering A.2009.523(1-2):145-151.
    [10] Watanabe.H,Mukai.T,Ishikawa.K,et al.Superplastic characteristics in an extruded AZ31 magnesium alloy[J].Japan Institute of Light Metals(Japan).1999.49(8):401-403.
    [11]勒广永,吴玉峰,李建辉等.Gd对Mg-2Al-Zn合金微观组织及力学性能的影响[J].特种铸造及有色合金.2007.27(8):642-644.
    [12]勒广永,杜文博,李建辉等.钆对Mg-2Al-1Zn合金高温力学性能的影响.中国稀土学报.2007.25(5):610-614.
    [13] X.Y.Fang,D.Q.Yi,J.F.Niu.Influence of solution treatments on the age-hardening response of Mg-Gd(-Mn-Sc)alloys[J].Journal of alloys and compounds.2009.486(1-2):900-904.
    [14]张家振,马志新,李德富.预变形对Mg-Gd-Y-Zr合金力学性能的影响[J].稀有金属.2008.32(4):522-525.
    [15] Zhang Kai-yun,Dong Jie,Zeng Xiao-qin,Ding Wenjiang.Effect of pre-deformation on aging characteristics and mechanical properties of Mg-Gd-Nd-Zr alloy[J].Transactions of nonferrous metals society of China.2007.17(6):1164-1168.
    [16]向群.屈伟平.镁合金的发展趋势[J].冶金丛刊.2004.(5):35-38.
    [17]曲家惠,岳明凯,刘烨.镁合金塑性变形机制的研究进展[J].兵器材料科学与工程.2009.32(2):116-119.
    [18]曲家惠,李四军,张正贵,王福,左良.挤压退火工艺对AZ31镁合金组织和织构的影响[J].中国有色金属学报.2007.17(3):435-440.
    [19]杨平,任学平,赵祖德.AZ31镁合金形成及退火过程的组织和织构[J].材料热处理学报.2003.12(4):12-16.
    [20] Hiroyuki W,Toshiji M,Koichi I,et al.Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion[J].Scripta Materialia.2002. 46(12):851–856.
    [21] Lin H K, Huang J C, Langdon T G.Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP[J].Materials Science and Engineering A.2005.402(1-2):250-257.
    [22] L.Matsubara, K. Miyahara,Y.Horita Z,et al.Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP[J].Acta Materialia.2003.51(11):3073-3084.
    [23] Tan J C,Tan M J.Dynamic continiuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet[J].Materials science and engineering A.2003.339(1-2):124-132.
    [24]陈振化,杨春花,黄长清等.镁合金塑性变形中孪生的研究[J].2006.20(6):107-113.
    [25] Keshabarz Z,Barnett M R.EBSD analysis of deformation modes in Mg-3Al-1Zn[J].Scripta materialia,2006,55(10):915-921.
    [26]蒋佳,刘伟,Godfrey A等.AZ31镁合金孪生行为的EBSD研究[J].中国体视学与图像分析.2005.10(4):237-240.
    [27] Jiang J,Godfrey A,Liu Q.Influence of grain orientation on twinning during warm compression of wrought Mg-3Al-1Zn[J].Materials science and technology,2005,21(1-2):1417-1423.
    [28]胡轶嵩,杨平,赵祖德等.利用取向成像研究镁合金的孪生过程[J].中国有色金属学报.2004.14(1):105-111.
    [29] Agnew S R,Yoo M H,Tome C N.Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y[J].Acta Materialia.2001. 49(20):4277-4289.
    [30] Chung-Wei Yang,Yruan-Sheng Liu,Li-Hui Chen,Hau-En Hung.Tensile mechanical properties and failure behaviors with the ductile to brittle transition of theα+β-type Mg-Li-Al-Zn alloy[J].Scipta materialia.2009.61(12):1141-1144.
    [31]冯小明,艾桃桃,张会.等通道角挤压AZ31镁合金的微观组织与力学性能[J].特种铸造及有色合金.2008.28(7):499-501.
    [32] Koike J,Kobayashi T,Mukai T,et al.The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magneium alloys[J].Acta materialia, 2003, 51(7):2055-2059.
    [33]刘英,李元元,张卫文等.镁合金的研究进展和应用前景[J].轻金属.2002.(8):56-61.
    [34]肖阳,张新明.Mg-9Gd-4Y-0.6Zr合金在-196°C~400°C的断裂机制分析[J].材料工程.2007.1:19-24.
    [35] Drits M E,Sviderskaya Z A,Rokhlin L L,et al.Effect of alloying on the properties of Mg-Gd alloys[J].Metallovedenie I Termicheskaya Obrabotla Metallov,1979,21(11):62-66.
    [36] Drite M E,Rokhlin L L,Oreshkina A A,et al.Principles of alloying heat-resistant alloys based on magnesium[J].Metally,1982(5):98-103.
    [37] Rokhlin L L,Nikitina N I.Electron-microscopic investigation of the structure of a precipitated supersaturated Mg-22wt%Gd solid solution[J].Fizika Metalov I Metallovedemie, 1986, 62(4):781-787.
    [38] Shigeharu K,Shigeru I,Kiyoaki O,et al.Age hardening characteristics and high temperature strength of Mg-Gd and Mg-Tb alloys[J].Journal of Japan Institute of Light Metals, 1992,42(12):727-733.
    [39] Shigero I, N Yuji,Shigeharu K,et al.Age hardening characterisitics and high temperature temsile properties of Mg-Gd and Mg-Dy alloys[J].Journal of Janpan Institute of Light Metals,1994,144(1):1-8.
    [40] Anyanwu I A,Kamado S,Kojima Y.Aging characteristics and high temperature tensile propeties of Mg-Gd-Y-Zr alloys[J].Materials Transactions.2001.42(7):1206-1211.
    [41] Kawabata T,Matsuda K, Kamado S,et al.HRTEM observation of the precipitates in Mg-Gd-Y-Zr alloy[J].Materials Science Forum,2003,419-422:303-306.
    [42]张新明,唐昌平,邓运来等.铸造Mg-Gd-Y-Zr合金氧化夹杂研究[J].特种铸造及有色合金.2009.5(29):409-412.
    [43]黄玉光,吴国华,王玮等.净化及浇注工艺因素对Mg-Gd-Y-Zr合金流动性的影响[J].材料导报.2009.1(23):95-101.
    [44]黄玉光,吴国华,王玮等.熔剂净化对Mg-Gd-Y-Zr合金流动性的影响[J].铸造.2009.2(58):104-107.
    [45]肖阳,张新明,蒋浩等.Gd和Y偏析对Mg-9Gd-4Y-0.6Zr和Mg-7Gd-4Y-0.6Zr合金组织性能的影响[J].中南大学学报(自然科学版).2007.38(1):24-29.
    [46]汪彬,杨院生,周吉学等.脉冲磁场对Mg-Gd-Y-Zr合金凝固及力学性能的影响[J].稀有金属材料与工程.2009.38(3):519-522.
    [47]黄玉光,吴国华,侯正全等.Mg-Gd-Y-Zr合金的热烈性能[J].特种铸造及有色合金.2009.29(2):181-184.
    [48] Xiong Chuangxiao,Zhang Xinming, Deng Yunlai, et al. Effect of cryogenic treatment onmechanical properties of Extruded Mg-Gd-Y-Zr(Mn)alloy.Journal of central south university(science and technology).2007.14(3):305-309.
    [49] Peng Q.M.,Wu Y.M.,Fang D.Q,et al.Microstructures and properties of Mg-7Gd alloy containing Y[J].Jounral of alloys and compounds.2007.430(1/2):252-256.
    [50] Liu Ke, Zhang Jing-huai, Rokhlin L.L.,et al.Microstructures and mechanical properties of extruded Mg-8Gd-0.4Zr alloys containing Zn[J].Materials Science and Engineering A.2009.505(1/2):13-19.
    [51] Balasubramani N,Pillai U.T.S,Pai B.C..Effect of Zn concentration on the microstructure and phase formation of Mg-5Gd alloy[J].Journal of Alloys and Compounds.2008.460(1/2):6-10.
    [52] LIU Ke, ZHANG Jing-huai, SU Gui-hua,et al.Influence of Zn content on the microstructure and mechanical properties of Extruded Mg-5Y-4Gd-0.4Zr alloy[J].Journal of alloys and compounds.2009.481(1/2):811-818.
    [53] Gao L., Chen R.S., Han E.H..Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys[J].Journal of Alloys and Compounds.2009.481(1/2):379-384.
    [54]彭卓凯,张新明,陈健美等.Mn,Zr对Mg-Gd-Y合金组织与力学性能的影响[J].中国有色金属学报.2005.15(6):917-922.
    [55]彭卓凯,张新明,陈健美等.Zr在Mg-9Gd-4Y合金中的晶粒细化机制[J].北京科技大学学报.2006.28(2):148-152.
    [56]张新明,陈健美,邓运来等.Mg-Gd-Y-(Mn,Zr)合金的显微组织和力学性能[J].中国有色金属学报.2006.16(2):219-227.
    [57] Xiao Yang,Zhang Xin-ming,Chen Buxiang,et al.Mechanical properties of Mg-9Gd-4Y-0.36Zr alloy[J].Transactions of Nonferrous Metals Society of China.2006.(16):1669-1672.
    [58]肖阳,张新明,陈健美等.Mg-9Gd-4Y-0.6Zr合金挤压T5态的高温组织与力学性能[J].中国有色金属学报.2006.16(4):709-714.
    [59]张家振,马志新,李德福.预变性对Mg-Gd-Y-Zr合金力学性能的影响[J].稀有金属.2008.32(4):522-525.
    [60] Peng Qiuming, Hou Xiuli, Wang Lidong,et al.Microstructure and mechanical properties of high performance Mg-Gd based alloys[J].Materials and Design.2009.30(2):292-296.
    [61] Peng Qiuming, Dong Hanwu, Wang Lidong,et al.Microstructure and mechanical property of Mg-8.31Gd-1.12Dy-0.38Zr alloy[J]. Materials Science and Engineering A.2008. 477(1/2): 193-197.
    [62] Yang Z., Li J.P., Gao Y.C.,et al.Precipitation process and effect on mechanical properties of Mg-9Gd-3Y-0.6Zn-0.5Zr alloy[J].Materials Science and Engineering A.2007.454:274-280
    [63]肖阳,张新明,陈健美等.Mg-9Gd-4Y-0.6Mn合金的微观组织与力学性能[J].材料热处理学报.2007.28(2):44-48.
    [64] Wang Rong.Dong Jie,Fan Likun,et al.Microstrure and mechanical properties of rolled Mg-12Gd-3Y-0.4Zr alloy sheets[J].Transactions of Nonferrous Metals Society of China.2008.(18):189-193.
    [65]肖阳,张新明,陈健美等.Mg-15Gd-0.6Zr合金的组织与力学性能[J].中国有色金属学报.2006.16(11):1888-1894.
    [66] Gao Yan, Wang Qudong, Gu Jinhai,et al.Behavior of Mg-15Gd-5Y-0.5Zr alloy during solution heat treatment from 500°C to 540°C[J].Materials Science and Engineering A.2007.459(1/2): 117-123.
    [67]赵政,王渠东,丁文江.Mg-Gd-Ag-Zr合金的组织与力学性能[J].特种铸造及有色合金.2009. 29(5):477-479.
    [68] Zheng K.Y., Dong J., Zeng X.Q.,et al.Effect of precipitation aging on the fracture behavior of Mg-11Gd-2Nd-0.4Zr cast alloy[J].Materials characterization.2008.59(7):857-862.
    [69]童炎,王渠东,高岩等.Mg-13Gd-3Y-0.4Zr合金的热处理工艺优化以及性能[J].轻金属.2007. (3):45-49.
    [70]张小娟,易丹青,方西亚等.Mg-Gd-Sc-Mn耐热镁合金的热变形行为[J].中国稀土学报.2008.26(2):182-187.
    [71]熊创贤,张新明,陈健美等.Mg-Gd-Y-Mn耐热镁合金的压缩变形行为研究.材料热处理学报.2007.28(3):47-53.
    [72] Li D.J., Wang Q.D., Blandin J.J.,et al.High temperature compressive deformation behavior of an Extruded Mg-8Gd-3Y-0.5Zr(wt.%) alloy. Materials Science and Engineering A.2009. 526(1/2):150-155.
    [73]常建卫,郭兴伍,彭立明等.250°C时效处理对Mg-10Gd-3Y-0.4Zr稀土镁合金腐蚀行为的影响[J].腐蚀科学与防护技术.2009.21(2):88-90.
    [74]陈明安,杨汐,张新明等.Mg-Gd-Y-Zr合金表面含硫硅烷薄膜的结构与耐蚀性能[J].中国有色金属学报.2008.18(1):24-29.
    [75] Yang Xiao,Xinming Zhang,Hao Jiang, Buxiang Chen.Influence of Gd and Y elements segregation on microstructure and mechanical properties of Mg-9Gd-4Y-0.6Zr and Mg-7Gd-4Y-0.6Zr alloys[J].Journal of Centry South University.2007.38(1):.24-29.
    [76] Ming Sun,Guohua Wu,Wei Wang,Wenjiang Ding.Effecet of Zr on the microstructure, mechanical properties and corrosion resistance of Mg-10Gd-3Y magnesium alloy[J],materials science and engineering A.2009.(523):145-151.
    [77]郑卜祥,宋永伦,席峰等.对焊接铝合金板材残余应力的X射线测试[J].机械工程学报.2009.45(3):275-282.
    [78]孔德军,孙波,朱伟,祝海林.曲轴圆角残余应力的XRD试验研究[J].内燃机学报.2008.26(6):565-569.
    [79] Marsha J. Lambregts, Steve Frank. Application of Vegard’s law to mixed cation sodalites:a simple method for determining the stochiometry[J].Talanta.2004.62:627-630.
    [80] L.De Caro, C.Giannini, L.Tapfer,H.-P.Schonherr,L.Dawerota, K.H.Ploog.Validity of vegard’s rule for the lattice parameter and the stiffness elastic constant ratios of the AlGaAs Ternary compound[J].Solid State Communications.1998.2(108):77-81.
    [81] L. Gao, R.S. Chen and E.H. Han. Effect of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys[J].Journal of Alloy and Compounds.2009.481(1-2):379-384.
    [82]孙茂才.金属力学性能[M].哈尔滨:哈尔滨工业大学出版社.2005.
    [83] E.Nes, B.Holmedal, E. Evangelista,K. Marthinsen. Modelling grain boundary strengthening in ultra-fine grain edaluminumalloys[J]. Materials Science and Engneering: A.2005.410–411: 178–182.
    [84] H.J.Frost, M.F. Ashbv.Deformation-Mechanism Maps[M]. Oiford:Pergamon Press.1982.
    [85] R.W.Hertzberg. Deformation and Fracture Mechanics of Engineering Materials[M]. Thirded, Wiley Published.1989.
    [86] L.L.Rokhlin. Magnesium Alloys Containing Rare Earth Metals[J]. Taylorand Francis. 2003.(1):83-88.
    [87] C.Deshmane, Q.Yuan, R.D.K.Misra. High strength-toughness combination of melt intercalated nanoclay-reinforced thermoplastic olefins[J].Materials Science and Engineering:A.2007. 454–455 :277-287
    [88] M. Mabuchi, K. Higashi. Strengthening mechanisms of Mg-Si alloys[J]. Acta Materialia. 1996.44 (11):4611–4618.
    [89] J.F. Nie, The influence of triaxial stress on the ideal tensile strength of iron[J].Scripta Materiala. 2003.49(10):1009–1101.
    [90] K.W.Liu, F.Mucklich.Synthesis and thermal stability of nano-RuAl by mechanical alloying[J]. Materials Science and Engneering:A.2002.324:113–117.
    [91] Agnew S R,Yoo M H,Tome C N.Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y[J].Acta Materialia. 2001. 49(20):4277-4289.
    [92] Agnew S R,Yoo M H,Tome C N.Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y[J].Acta Materialia.2001. 49(20):4277-4289.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700