钛合金棒材三辊热连轧过程变形机理与技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛及钛合金是20世纪90年代发展起来的一种新型金属材料,具有熔点高、比强度高、耐高温、抗腐蚀、无磁性、无毒等特点,广泛应用于航空航天、海洋船舶、生物工程、民生用品等领域。近年来,市场对小直径钛合金棒材产品需求量越来越大。然而,棒材生产工序复杂、产品尺寸精度低、成材率低、能源浪费严重。欲使其成为普及型金属,必须降低成本。因此,整合钛加工设备、开发可连续工业化生产的冶炼技术、开发低成本的钛合金品种是钛工业发展面临的重大课题。
     本课题来源于山西省青年科技研究项目,旨在开发钛合金棒材短流程、近终成型技术。采用三辊Y型轧机连轧生产小直径钛合金棒材省略了横列式轧制过程中重复加热(均热)、重复退火、重复修磨等工序;避免了二辊高速轧机连轧钛棒设备利用率低的弊端;同时,满足了钛合金棒材小批量、多品种的产品要求。
     但是由于钛合金塑性变形特性与钢、铝、铜等显著不同,尤其对于有强度要求和特殊后续加工特性要求的钛合金棒材,其孔型设计合理与否,直接影响产品的质量和成材率等。所以,本文采用有限元分析软件模拟了钛合金棒材八道次连轧过程;建立了适用于三辊轧制小直径钛合金棒材的孔型设计模型;并在自行研制的Y型轧机上进行试验。
     本文主要研究内容如下:
     (1)本文以TC4钛合金为研究对象,在GLEEBLE-1500热模拟机上进行压缩实验,深入研究了TC4钛合金的热塑性变形行为规律和流变应力。采用回归方法确定了钛合金高温塑性变形时峰值应力和稳态应力的本构关系,并考虑应变的影响,用指数型硬化函数和软化方程建立了TC4钛合金新型的流动应力方程。这些分析结果对研发塑性成型产品、优化生产工艺以及提高产品质量都具有非常重要的理论意义和实用价值。
     (2)考虑到平三角轧件在圆孔型中轧制稳定,且圆孔型可以生产不同直径的圆棒,选择“平三角-圆”孔型系统。运用ANSYS商用有限元模拟软件,结合本文建立的TC4钛合金本构关系,虚拟仿真了8机架Y型轧机连轧TC4钛合金棒材的全过程;分析了棒材在三辊孔型中纵向变形和横向宽展,横截面上不同区域金属的温度、等效应力、等效应变分布规律,以及各道次轧制力的变化趋势。在整个连轧过程中,轧件轧制平稳、变形均匀、没有出现“开裂”、“耳子”、“皱褶”等现象。
     (3)通过有限元模拟可知,钛合金棒材在三辊热连轧过程中,轧件在孔型中受到正反交替六个方向的压缩变形,轧件表面及内部温度、变形抗力、宽展、连轧常数等不断发生变化。由于钛合金棒材采用的是多机架(20架以上)、紧凑式(机架间距在1m以内)连轧,故上述参数的轻微波动会立刻影响连轧的稳定性甚至导致连轧过程中断。为了保证连轧的顺利进行以及控制产品尺寸精度,开展孔型设计方面的研究是至关重要的。本文提议了一种新型的、适合于钛合金棒材轧制的三辊孔型设计模型,与传统孔型设计的根本区别在于避免了孔型填充系数的选取。
     (4)应用正交试验和有限元相结合的方法,分析了影响钛合金棒材宽展的主要因素,建立了小直径TC4钛合金棒材宽展模型,并在实验样机上进行验证,为平三角和圆孔型设计提供了理论基础。通过分析轧件与轧辊接触区的几何形状,应用获得的本构关系,建立了三辊孔型轧制小直径TC4钛合金棒材的轧制力模型,并在实验样机上进行测试。结果表明:轧制力计算值与测量值偏差在工程计算允许范围内。
     (5)借助MATLAB计算、逻辑推导功能,开发了钛合金棒材计算机辅助孔型设计软件。本CARD软件适用于三辊Y型轧机所有孔型(平三角、圆三角、弧三角),能够实现孔型参数、轧件参数、力能参数等的计算,计算结果用EXCEL输出,孔型图用AUTOCAD输出。以Φ12mmTC4钛合金棒材孔型设计为例,验证了CARD系统的准确性。该软件界面友好,操作简单,能有效缩短孔型设计周期,提高工作效率与设计精度。
Titanium and Titanium alloy is a kind of new metal material developed in1990’s. It is not only characterized by high melting point, high specific strength,high temperature resistance as well as corrosion resistance, but alsonon-magnetic and toxic-free. It is widely used in the area of aerospace, marine,bioengineering, livelihood and others. The market for small-sized titanium alloyrod is becoming more and more demanding in recent years. However, there existsome disadvantages of titanium alloy, such as complicated technology,lowaccuracy, low rolling yield and high energy consumption in the manufacturingprocess. In order to make titanium alloy become a popular metal, it is veryimportant to decrease its cost. Therefore, an important subject which aims atintegrating equipment, developing sustainable smelting technology and loweringcost variety is facing in titanium industry.
     This subject originated from province young research program of Shanxi isto develop a short and near-shape machining technique for titanium alloy rod.Compared with open-train mill, the continuous rolling process of Y-type cancelsrepeated heating (soaking), annealing and repair grinding. Compared withtwo-roll mill, it increases efficiency of roll. Meanwhile, the requirement ofsmall-batch and multi-variety of titanium alloy rod production is met.
     However, the deformation characteristics are significantly differentbetween titanium and steel, aluminum as well as copper. Especially for titaniumrod of strength and subsequent machining requirement, the pass design has animportant influence on quality and rolling yield. Therefore, in this paper thedeformation behavior of TC4alloy has been researched systematically, thecontinuous rolling process has been simulated by FEM software, pass designmodel for small-sized titanium alloy has been established, and experiment hasalso been done on self-development Y-type mill.
     Main contents are as follows.
     (1) Take TC4alloy as the study subject, this study conducts compressiontests on TC4alloy by Gleeble-1500thermal simulator and examines TC4alloy’s deformation behavior and flow stresses. The constitutive equationscorresponding to the peak and stable stresses have been determined respectivelyusing regression method. Furthermore, taking into the strain account, the flowstress equation has also been established by combining exponentially hardeningand softening function. The simulated results are believed to be important todevelop production, optimize process and improve quality of TC4alloy rod.
     (2) Pass system of “flat triangle–round” is applied not only because theflat triangle workpiece is relatively stable in round groove, but also the differentdiameter round rod could be produced from round groove. Based on theestablished flow stress equations, continuous rolling process of TC4alloy oneight Y-type mills has been virtually simulated using ANSYS software.Extension and spread deformation have been analyzed. Temperature, equivalentstress as well as equivalent strain of different deformation zone and rolling forceof per mill have been illustrated. The whole rolling process is smooth withoutcrack, edges and folds, which shows that the proposed rolling process isfeasible.
     (3) It could be concluded from FEM simulation above, the TC4alloy rod iscompressed from six directions and its surface and interior temperature,resistance deformation, spread and continuous rolling constant changeconstantly in hot rolling process. Furthermore, considering the compact distanceof the adjacent stands (no more than1m) and multi-stand (more than20stands)during rod rolling, the stability of continuous rolling is very easy to beinfluenced and even interrupted due to the slight fluctuation of the mentionedparameters. Therefore, there is a significant need to engage in research ongroove design so as to ensure the stability of the continuous rolling andproduction accuracy of titanium alloy. In this paper, a new groove design modelfor Y-type process of TC4rod has been established, whose difference from thetraditional pass design lies in avoiding fill ratio of groove.
     (4) By combining FEM with orthogonal test, spread model for TC4alloyrod has been established, and experiments have also been done on modelmachine. It provides theoretical foundation for flat triangle and round groove design. By analyzing contact zone shape of workpiece and roller, three-rollrolling force model for TC4alloy rod has been modified based on constitutiveequations. And experiments have also been done on model machine. The resultshave shown that the difference between calculated value and measured value isin the allowable range.
     (5) Computer aided pass design software for continuous rolling titaniumalloy is developed using MATLAB function of calculation and logic deduction,which is suit to all of pass types of Y-type mill including flat triangle, round andarc triangle. It can calculate many parameters for pass, workpiece andmechanics, etc. Numerical results are outputted by EXCEL and multi-passgrooves are drawn by AUTOCAD. Pass design for Φ12mm TC4alloy rod hasproven the validity of CARD. With friendly interface and simple operation, theCARD software could be used to shorten period, improve efficiency andaccuracy of pass design.
引文
[1]黄永光.中国钛标准40年[J].中国有色金属学报,2010,20:890-896.
    [2] Williams J C, Starke E A Jr. Process in structural materials for aerospace [J]. ActaMaterialia,2003,51(19):5775-5799.
    [3] Bania P J. An advanced alloy for elevated temperature [J]. Journal of Metals,1988,(3):20-22.
    [4]许国栋,王桂生.金属和钛产业的发展[J].稀有金属,2009,33(6):903-911.
    [5]邹建新.国内外钛及钛合金材料技术现状、展望与建议[J].宇航材料工艺,2004(1):23.
    [6]周廉.美国、日本和中国钛工业发展评述[J].稀有金属材料与工程,2003,32(8):577-584.
    [7] Ouchi C. Development and application of new titanium alloy SP-700[J]. The Minerals,Metals&Materials Society,1994:37-44.
    [8] Manfred P, Jorg K, Charles H V, et al. Titanium alloys for aerospace applications[J],Advanced Engineering Materials,2003,5(6):419-427.
    [9]舒滢,柳家成,王云飞.钛型材的研制与开发[J].钛工业进展,2002(6):15-17.
    [10] Ranganath S. Review on particulate-reinforced titanium matrix composites[J]. Mater Sci,1997,32(1):1-16.
    [11] CAO Chun-xiao. Application of titanium alloy on large transporter[J]. RareMetals Letters,2006,25(1):17.
    [12]张文毓.钛制板式换热器在海水淡化中的应用[J].钛工业进展,2009(1):31-34.
    [13] Zaffe D, Bertoldi C, Consolo U. Element release from titanium devices and inoral and maxillofacial surgery[J].Biomaterials,2003,24(6):1093-1099.
    [14]周宇,杨贤金,崔振铎.新型医用β钛合金的研究现状及发展趋势[J].金属热处理,2005,30(1):47-50.
    [15]张喜燕,赵永庆,白晨光.钛合金及其应用[M].北京:化学工业出版社,2005.
    [16] Tetsui T, Shindo K, KobayashiI S, et al. Strengthening a high-strength Ti-Al alloy byhot-forging[J].Intermatallics,2003(11):299-306.
    [17]王田,陶海林,胡宗式等. Ti-6A l-4V合金棒材纵向连轧的温度变化[J].中国有色金属学报,2010,20:789-791.
    [18] Goetz R L, Jain V K, Lombard C M. Effect of core insulation on the quality ofthe extrusion in canned extrusion of gamma-titanium aluminize [J]. Journal of MaterialsProcessing Technology,1992,35(1):37-40.
    [19] Salem A A, Glavicic M G, SemiatinS L. The effect of preheat temperature andinter-pass reheating on microstructure and texture evolution during hot rolling ofTi-6Al-4V [J]. Mater Sci Eng A,2008,496:169176.
    [20] Song J H, Hong K J, Ha T K, et al.The effect of hot rolling condition on theanisotropy of mechanical properties in Ti-6Al-4V alloy [J]. Mater Sci Eng A,2007,449451:144148.
    [21] QI Yun-lian, XI Zheng-ping, ZHAO Yong-qing. Hot deformation behavior andmicrostructure evolution of titanium alloy Ti-Al-Zr-Sn-Mo-Si-Y[J]. Trans NonferrousMet Soc China,2007,17(3):537-540.
    [22]陈慧琴,曹春晓,郭灵,等.TC11钛合金片层组织热变形球化动力学过程[J].航空材料学报,2009,29(1):37-42.
    [23]徐锋,黄爱军,李阁平,等.热工艺对TC6钛合金显微组织的影响[J].金属学报,2002,38(9):174-177.
    [24]费跃,常辉,唐斌,等.热变形对TB-13合金组织和织构的影响[J].中国有色金属学报,2010,20:6-10.
    [25]陈慧琴,林好转,郭灵,等.钛合金热变形机制及微观组织演变规律的研究进展[J].材料工程,2007(1):60-64.
    [26]罗皎,李淼泉,李宏,等.TC4钛合金高温变形行为及其流动应力模型[J].中国有色金属学报,2008,18(8):1395-1400.
    [27]王斌,郭鸿镇,姚泽坤,等.热压参数对TA15合金流动应力及显微组织的影响[J].锻压技术,2006(06):106-109.
    [28]葛鹏,周伟,赵永庆.热处理制度对Ti-1300合金组织和力学性能的影响[J]中国有色金属学报,2010,20(专辑1):1068-1072.
    [29]李辉,赵永庆.Ti-6-22-22S合金步进轧制工艺加工棒材研究[J].钛工业进展,2004,21(6):19-21.
    [30]张新旺,王勇,吴晓炜.钛合金棒材三辊螺旋轧制成形数值模拟[J].锻压技术,2011,36(1):61-64.
    [31]王国宏.利用径向一切向轧制工艺生产汽车用钛合金零件[J].钛工业进展,1999(3):19-21.
    [32]王国宏,宁兴龙.钛合金六方棒的轧制技术[J].钛工业进展,2001(3):28-30.
    [33]杨英丽,赵彬,苏航标,等.钛棒线材短流程制备新技术[J].钛工业进展,2009(6):35-39.
    [34] Properzi G, Trainier J.Producing steel wire the microrolling process[J]. Wire J.Int,1983,16(7):64-68.
    [35] Kaiser W, Brauer H. A new mill for specialty steel precision bar products [J]. Iron IteelEng,1984,61(6):72-79.
    [36] Brauer H, Ammerling W J, Stauss K H. State of the three-roll technology[J]. Kalibreue,1990(53):36-48.
    [37]郭顺兴,惠保卫.改进三辊连轧技术提高钨钼线杆质量[J].中国钼业,2003,72(2):42-46.
    [38]惠保卫.Y250轧机圆钼杆料生产工艺研究[J].中国钼业,2009,6(33):48-50.
    [39]李志强,刘雅政,叶文君.提高Y型三辊冷连轧机轧制稳定性的研究[J].金属制品,2002(28):30-32.
    [40]刘志亮,高艾华.Y型轧机孔型设计[J].设计与计算,2005(9):99-101.
    [41]钟桂松,刘家荣,石力开.钨钼条开坯用三辊Y型轧机的轧制孔型设计[J].锻压技术,1994(5):35-42.
    [42]吕延军,刘德海,边红.Y型轧机孔型的设计与调整[J].轻合金加工技术,2000,28(5):35-37.
    [43]康瑾.国产十五道次三辊铝杆连轧机新孔型设计[J].轻合金加工技术,2007,35(3):29-35.
    [44] Wertheimer T B. Thermal Mechanically Coupled Analysis in Metal Forming Process[C].Numerical Methods in Industrial Forming Processes, Swansea, Wales,1982:425-434.
    [45] Lee C H, Kobayashi S. New solutions to rigid-plastic deformation problems using amatrix method[J]. Translations of the ASME,1973,95:865-873.
    [46] Liu C P.HartleyAnalysis of Stress and Strain Distributionsin Slab Rolling Using anElastic-Plastic Finite-Element Method[J]. International Journal for Numerical MethodsEngineering,1988,25(1-2):55-56.
    [47] Hibbitt H D, Marcal P V,Rice J R. A Finite Element formulation for problems of largestrain and large displacement[J]. Int.J.Solids Struct,1970,6(5):1069-1070.
    [48] McMeeking R M, Rice J R. Finite Element Formulations for Problems of LargeElastic-Plastic Deformation[J]. Int.J.Solids Struct,1975,11(5):601-616.
    [49] Liu C. Elastic-plastic finite element modelling of cold rolling of strip[J]. Int.J.Mech.Sci,1985,27(8):531-541.
    [50] Liu C. Simulation of the cold rolling of strip using an elastic-plastic finite elementtechnique[J]. Int.J.Mech.Sci,1985,27(11):829-839.
    [51]洪慧平,康永林,冯长桃,等.连轧大规格合金芯棒钢三维热力耦合模拟仿真[J].钢铁,2002,37(10):23-26.
    [52]孙建林,许宝才,康永林,等.棒材切分轧制过程中三维弹塑有限元模拟[J].青海大学学报(自然科学版),2004,22(1):25-27.
    [53]王艳文,康永林,任学平,等.棒材四道次连轧过程中轧件变形的三维有限元模拟[J].材料科学与工艺,1999,7(增刊):228-230.
    [54] Kobayashi S, Oh S I, Altan T. Metal forming and finite element method[J].NewYork:Oxford University Press,1989:131-137.
    [55] LEE D W, YANG D Y. Consideration of geometric nonlinearity in rigid-plastic finiteelement formulation of continuum elements for large deformation[J]. Int.J.Mech.Sci,1997,39(12):1423-1440.
    [56] Kim N, Kobayashi S, Altan T. Three-Dimensional Analysis and Computer Simulation ofShape Rolling by the Finite and Slab Element Method[J]. Int.J.Mach.Tools Manufact,1991,31(4):553-563.
    [57] Kim N, Lee S M. Simulation of Square-to-Oval Single Pass Rolling Using aComputationally Effective Finite and Slab Element Method[J]. Journal of Engineeringfor Industry,1992,114(4):29-335.
    [58] Yanagimoto J, Kiuchi M, Inoue Y. Characterization of Wire and Rod Rolling with Frontand Back Tensions by Three-Dimensional Rigid-Plastic Finite Element Method [J].Proceeding of4th ICTP,1993:754-757.
    [59] Yanagimoto J, Kiuchi M. Three-Dimensional Rigid-Plastic FE Simulation System forShape Rolling with Inter-Stand Remeshing[J]. Proceedings of International Conferencefor Metal Forming Process Simulation in Industry,1994:219-237.
    [60]Mori K, Yoshimura H. Three-dimensional rigid-plastic finite element method usingdiagonal matrix for large-scale simulation of metal forming processes[J]. InternationalJournal of Mechanical Sciences,2000,42:1821-1834.
    [61]徐建忠,熊尚武,刘相华,等.异型扁坯轧制过程的刚塑性有限元分析[J].东北大学学报(自然科学版),2000,21(2):199-202.
    [62] Shangwu X, Rodrigues J M C, Martins P A F. Simulation of plan strain rolling through acombined element free Galerkin-boundary element approach[J]. Journal of MaterialsProcessing Technology,2005,159(2):214-223.
    [63] Forouzan M R, Salimi M, Gadala M S, et a1. Guide roll simulation in FE analysis of ringrolling[J]. Journal of Materials Processing Technology,2003,142(1):213-223.
    [64] Park J J, Oh S I. Application of three-dimensional finite element analysis to shaperolling processes[J]. Journal of Engineering for Industry-Transactions of the ASME,1990,112(2):36-46.
    [65] Kobayashi S. Thermoviscoplastic Analysis of Metal Forming Problems by the FiniteElement Method[J]. NUMIFORM’82Conference, Swansea,1982,17-25.
    [66] Park J J, Oh S I. Application of Three-Dimensional Finite Element Analysis to ShapeRolling Processes [J].Transaction of the ASME,1990,112(2):36-46.
    [67] Tirosh J, Iddan D, Pawelski O. The mechanics of high speed rolling of viscoplasticmaterials[J]. J.Appl.Mech,1985,52:309-318.
    [68] Jiang Z Y, Tieu A K.3-D finite element modeling of fibbed strip rolling[J]. InternationalJournal of Machine Toll&Manufacture,2000,40:2139-2159.
    [69] Jiang Z Y, Liu X L, Liu X H, et al.Analysis of ribbed-strip rolling by rigid-viscoplasticFEM[J]. Mechanical Science,2000,42:693-703.
    [70]洪慧平,康永林.棒、线、型材轧制过程的计算机模拟仿真[J].轧钢,2004,21(3):38-41.
    [71]洪慧平,康永林,冯长桃,等.椭-圆孔型连轧大圆钢三维热力耦合弹塑性有限元分析[J].特殊钢,2002,23(5):5-81.
    [72]尚进.60kg/m钢轨热轧过程有限元模拟及工艺分析[D].北京:北京科技大学,2001.
    [73]鹿守理,赵俊平,沈维祥.计算机在轧钢中的应用[J].宝钢技术,1992(2):61.
    [74]王广春,管婧,马新武,等.金属塑性成形过程的微观组织模拟与优化技术研究现状[J].塑性工程学报,2002,9(1):1-5.
    [75] Lee Y, Choi S, Hodgson P D. Integrated model for thermo-mechanical controlled processin rod(or bar) rollin[J]. Journal of Naterials Processing Technology,2002,125:678-588.
    [76] Morales R D, Lopdz G A, Olivares I M. Mathematical simulation of Stelmor process[J].Ironmaking and Steelmaking,1991,18(2):128-138.
    [77] Bontcheva N, Petzov G. Total simulation model of the thermo-mechanical process inshape rolling of steel rods[J]. Computational materials science,2005,34(4):377-388.
    [78]王艳文,康永林,任学平等.棒材四道次连轧过程中轧件变形的三维有限元模拟[J].材料科学与工艺,1999,7(增):228-230.
    [79]江国栋.304不锈钢棒线材热连轧过程的数值模拟研究[D].大连:大连理工大学,2004.
    [80]原思宇,张立文,齐民等.推动模型在棒线材轧制过程模拟中的应用[J].钢铁,2005,40(12):50-54.
    [81]廖舒纶,于永泗,张立文等.304不锈钢棒线材熟连轧温度场的数值模拟[J].特殊钢,2005,26(3):22-24.
    [82]洪慧平,韩文,程满等.20MnSi棒材轧后分级水冷过程温度场有限元模拟[J].轧钢,2006,23(2):9-11.
    [83]李晓红.有限元在三辊钢丝冷连轧机孔型变形过程研究中的应用[D].北京:北京科技大学,1986:85-88.
    [84]柳本润等.数值压延机应用技术研究[J].塑性加工,1993,34(1):75-80.
    [85] Min J H, Kwon H C, Lee Y, et al. Analytical model for prediction of deformationshape in three-roll rolling process[J]. Journal of Materials ProcessingTechnology,2003(140):471-477.
    [86]余辉,杜凤山等.14机架张力减径过程壁厚分布的有限元研究[C].钢管学术委员会第五届一次年会论文集,2005:177-179.
    [87] Kazutake K. Simulation of deformation and temperature in multi-pass three-rollrolling[J]. Journal of Materials Processing Technology[J].1999,(92-93):450-457.
    [88]胡国林.Y型三辊连轧过程的有限元模拟与实验研究[D].北京:北京科技大学,2000.
    [89]袁海伦.异型截面环件毛坯结构优化设计及轧制过程计算机仿真[D].武汉:华中科技大学,2006.
    [90] Semiatin S L, Seetharaman V, Weiss I.Flow behavior and globularization kineticsdurong hot working of TI-6Al-4V with a colony alpha microstructure[J]. Mater Sci EngA,1999,26(2):257-271.
    [91] Bao R Q, Huang X, Cao C X. Deformation behavior and mechanism of Ti-102alloy [J].Trans nonferrous met soc china,2006,16:274-280.
    [92] BRUSCHI S, POGGIO S, QUADRINI F. TATA M E Workability of Ti-6Al-4V alloy athigh temperatures and strain rates[J]. Mater Len,2004,58(27-28):3622-3629.
    [93]曲银化,孙建科,孟祥军.钛合金高温压缩变形行为的研究[J].材料开发与应用.2006,(4):24-29.
    [94]王清,李中华,孙东立,等.TC4钛合金的热变形行为及其影响因素[J].材料热处理学报,2005,26(4):56-59.
    [95] Sellars C M, McTegart W J. On the mechanism of hot deformation[J]. Actal Metallurgica,1966,14(9): l136-l138.
    [96] Jonas J J, Sellars C M, McTegart W J. Strength and structure under hot workingconditions[J]. International Metallurgical Reviews,1969,14(130):24.
    [97] Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling[J]. MetalScience,1979(13):187-194.
    [98] Zener C, Hollomon J H. Effect of strain rate upon the plastic flow of steel[J]. JournalApplication of Physics,1944,15(1):22-27.
    [99] Warchomicka F, Stockinger M. Quantitative analysis of the microstructure of near βtitanium alloy during compression tests[J]. Journal of meterials processing technology,2006,177:473-477.
    [100] Li Miao-quan, XIONG Ai-ming, HUANG Wei-chao,et al. Microstructural evolutionand modeling of the hot compression of a TC6titanium alloy[J]. Materialscharacterization,2003,49:203-209.
    [101]于顺斌,李德富,陈海珊.钛合金TB2热轧棒材组织与性能的试验研究[J].稀有金属,2005,29(1):275-278.
    [102]岳强,王鼎春,王希哲.不同轧制工艺制备的Ti-63合金棒材显微组织和力学性能[J].稀有金属材料与工程,2008,37(s3):283-286.
    [103]李志强,刘雅政,叶文君.提高Y型三辊冷连轧机轧制稳定性的研究[J].金属制品,2002,28(1),30-32.
    [104]刘慧芳.钛及钛合金轧制棒材孔型设计探讨[J].金属学报(s),2002,38(9):405-406.
    [105] A И采利科夫等著,王克智等译.轧制原理手册[M].北京:冶金工业出版社,1989:240-247.
    [106]龚永平.简单断面型钢轧制宽展模型[J].钢铁研究学报,1996,8(3):13.
    [107] Shinokura T, Takai K. Spread charateristics and its mathematical models in rod rolling[J]. Tetsu-to-Hagane,1981,67:2447.
    [108]懿德,高崇.特殊钢压力加工[M].北京:冶金工业出版社,2000:86-92.
    [109]温殿英,李国刚.Y型轧机轧制时轧件宽展模型[J].轧钢,1997(6):10-14.
    [110]张丝雨.最新金属材料牌号性能用途及中外牌号对照速用速查手册[S].北京科技文化出版社,2005:1149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700