H型钢端部变形有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
H型钢以其优良的断面特性而广泛应用于国民经济建设的各个领域。随着H型钢在我国的应用和生产的发展,用户对产品规格的需求越来越多,对产品形状和尺寸精度要求日益严格。为了满足社会需求和适应市场竞争,这就要求热轧H型钢生产企业降低产品开发与生产成本,提高企业的竞争力。
     在热轧H型钢的生产过程中,传统的翼缘与腹板的压下分配比虽然能够生产出合格的热轧H型钢产品,但是这种生产方式常常由于腹板和翼缘的延伸比在各个道次之间的分配不合理,造成翼缘端部舌形很长造成严重的金属切损,并且产品内部存在着很大的残余应力,这对产品的力学性能造成负面影响。
     以热轧H型钢的轧制过程为研究对象,采用弹塑性有限元法的显示动力分析方法,以大型商用有限元软件ANSYS/LS-DYNA为平台,对H型钢的轧制过程的端部变形进行模拟研究,研究热轧H型钢的端部在不同的压下规程下端部的延伸情况以及残余应力情况,得出使H型钢的端部舌形最小并且残余应力在允许的范围内的腹板与翼缘的延伸系数比。
     通过对热轧H型钢的端部变形的模拟与实验,突破了传统的腹板和翼缘的延伸系数分配方法,找到了既能够缩短端部舌形又能够不增大产品内部残余应力的延伸系数分配方法。
     采用端部舌形控制方案后,在实验坯料尺寸的情况下,得到腹板和翼缘的舌形长度与传统的压下规程相比均缩短,并且腹板和翼缘在轧制过程中能够保持完好的外观。
     在实验和模拟的过程中发现水平辊对翼缘内侧的压下量应该小于等于2.5mm为宜,有利于翼缘内侧的表面质量以及翼缘的金属流动。
     通过采用控制端部舌形长度的方案后,得到的轧制完成后的理论残余应力场,比采用传统轧制规程轧制的轧件应力要均匀,且没有大面积的应力集中区域。
H-beam is widely used in the construction of national economy in virtue of its excellent section properties. With the development of production and application of H-beam in our country, increasing requirements is raised on product specification variety, close tolerance of shape and dimensions. It is to require we to decrease the cost of production and increase enterprise’s competitive strength.
     During the course of producing H-beam,we can manufacture the qualified production with the traditional way to distribute the depression of web and flange, but this way always leads to the head too long and waste much metal due to poor distribution of coefficient of extension, and the production is poor strengh with high residual stress.
     Studied the hot-rolling H-beam, using the dynamic analysis methods of elastic-plastic finite element method, with large commericial finite element software ANSYS/LS-DYNA, simulate the head deformation, reseach the head extention and distribution of residual stress, get the rational extention ratio distribution to make the length least and limited the residual stress to what they will allow.
     By the end of hot-rolled H-beam deformation in the simulation and experiment, breaking the traditional web and the flange extension of the coefficient of distribution method, and found both to shorten the tongue-shaped make the the residual stress not grow.
     Use of the tongue-shaped control program, the blank size in the experimental circumstances, the length of web and flange is shorter than the traditional procedures and the web and flange in the rolling process can be maintain a good appearance.
     In the course of the experiment and simulation was found inside flange of the level of roller pairs of the amount of reduction should be 2.5mm or less is appropriate, beneficial to the inside flange surface quality as well as the flange of the metal flow.
     Through the use of tongue-shaped length of the program, get the theory of residual stress field, evever than the traditional rolling schedule, no large areas of stress concentration area.
引文
[1]高海建,奚铁,孙飞飞.热轧H型钢的轧制及其工程应用[J].建筑结构进展,2002,4(1):33-44.
    [2]程黎英.浅谈热轧H型钢的工程应用[J].山西建筑,2006,12(24):162-163.
    [3]李锋,侯崎.我国热轧H型钢的应用现状及发展趋势[J].建筑结构进展,2002,(9):54-56.
    [4]中岛浩卫.型钢轧制技术[M].李浩民译.北京:冶金工业出版社,2004.
    [5] Turner M R, Clough R W. Stiffness and deflection analysis of complex structure [J]. J. Aero. Sci. 1996, (96): 805-823.
    [6] Clough R W. The finite element metod in plane stress analysis[C]. Proceeding of 2nd Conference on Electronic Computation, Pittsburgh,ASCE. 1999, (84): 345-377.
    [7] Melosh R J. Basis for divertion for the direct stiffness method[J].AIAA J,1963, (1): 1631-1637.
    [8] Courant R. Variational methods for the solution of problems of equilibrium and vibration[J].Bull.Am.Math. Soc. 1999, (49): 1-23.
    [9]胡海昌.论弹性力学与受范性力的一般变分原理[J].物理学报,1994,(3):259-290.
    [10]冯康.基于变分原理的差分格式[J].应用数学与计算数学,1995,(2):238-262.
    [11]王焕定,王伟.有限单元法教程.[M].哈尔滨:哈尔滨工业出版社,2003.
    [12]白金泽. LS-DYNA理论基础与实例分析[M].北京:科学出版社,2005.
    [13]时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA8.1进行显示动力分析[M].北京:清华大学出版社,2005.
    [14]尚晓江,苏建宇,王化峰. ANSYS/LS-DYNA动力分析方法与工程实例[M].北京:水利水电出版社,2006.
    [15]李裕春,时党勇,赵远. ANSYS11.0/LS-DYNA理论分析与工程实践[M].北京:中国水利水电出版社,2008.
    [16]程向前. X-H轧制孔型设计技术[J].山西冶金,2006,(3):26-27.
    [17]张文满,吴恩结. X—H轧制法在马钢H型钢厂的应用[J].轧钢,2004,(2):69-71.
    [18]张文满,吴恩结. X-H轧制法在H型钢厂的运用[J].马钢技术,2003,(3):44-47.
    [19]张文满,吴恩结,周光理.马钢H型钢万能轧机辊型设计和配置,安徽冶金[J]. 2003,(3):48-50.
    [20]程鼎.热轧H型钢的孔型设计[J].轧钢,2002,19(4):15-16.
    [21]李天恩.薄板坯连轧过程的有限元模拟[D].西安:西北工业大学,2005.
    [22]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,1999.
    [23] Tie A K, Jing Z.Y., Lu C. A 3D finite element analysi of the hot rolling of strip with lubrication [J]. Journal of Materials Processing Technology,2002, (125): 638-644.
    [24] Zhou S X. An integrated model for hot rolling of steel strips[J]. Journal of Materials Processing Technology.2003 (134): 338-351.
    [25] Jing Z Y, Tie A K, Lu C. A FEM modeling of the elastic deformation zones in flat rolling.[J] Jounal of Materials Processing Techno;ogy. 2004, (146): 167-174.
    [26]冯宪章,刘才,江光彪.立辊锥角对H型钢翼缘宽展的影响[J].钢铁,2004,l39(10):23-25.
    [27]冯宪章,李新法,刘才. H型钢成型过程中头部位移场的数值模拟[J].锻压技术,2007,32(6):157-160.
    [28]崔振山,刘才,于炳强,等. H型钢热轧轧制力的数值模拟[J].钢铁研究学报,2001,13(3):27-30.
    [29]牛海山,赵宪明,吴迪.超大H型钢轧制方法研究[J].轧钢,2007,24(5):4-6.
    [30] Choi J W, Choi J W. Convective heat transfer coefficient for high pressure water jet[J]. ISIJ International, 2002, 42(3): 283-289.
    [31] Kiuchi M, Yanagimoto J. Computer aided simulation of universal rolling processes[J]. ISIJ International, 1990, 30(2): 142-149.
    [32]周继华,管克智.金属塑性变形阻力[M].北京:机械工业出版社,1989.
    [33] Dong Y G, Zhang W Z, Song J F. The theoretical and experimental research on the forward slip coefficient in rail universal rolling[J]. ISIJ International, 2009, 49(3): 385-394.
    [34] Zhang W Z . Calculation of temperature and determination of deformation resistance in H-beam rolling(1) temperature variation in a stand[J]. Materials processing technology, 1999, (94): 123-127.
    [35] Zhang W Z . Calculation of temperature and determination of deformation resistance in H-beam rolling(2) temperature variation in a stand[J]. Materials processing technology, 1999, (94): 128-132.
    [36]张娜.基于遗传算法的棒材孔型多目标优化[D].秦皇岛:燕山大学,2006.
    [37]张利亚. Y型轧机轧辊的多目标优化设计[D].秦皇岛:燕山大学,2008.
    [38] Liuc H P. Simulation of the rolling of strip using an elastic-plastic finite element technique[J].Int.J.Mesh.1985, 27(11): 829-839.
    [39] Hartley P. Friction in finite element analysy of metal forming processes[J]. Int.J.Mesh. sci. 1979, (21): 301-311.
    [40]卜力勇,刘才,赵文才. H型钢轧制过程三维弹塑性大变形有限元模拟[J].钢铁研究学报,1999,11(4):12-14.
    [41]何涛,杨竞,金鑫. ANSYS11.0/LS-DYNA非线性有限元分析实例指导[M].北京:机械工业出版社,2007.
    [42] Wertheimer T B. Thermal mechanically coupled analysis forming process[C]. Numerical methods in industrial forming process.Swanwea: Pineridge Press Ltd, 1982, (12): 425.
    [43]曹杰,奚铁,章静. H型钢万能轧机轧制变形分析[J].重型机械,2005,(25):123-25.
    [44] Livermore Software Technology Corporation. 960 Keyword user’s manual[G]. Galifornia: 2001.
    [45]段南明,臧勇. H型钢轧制有限元模拟研究及应用[J].钢铁,2006,41(11):42-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700