错层位沿空巷道卸压机理及空间适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
厚煤层沿空留巷充填体及沿空掘巷煤柱直接支撑顶板的特性易导致区段巷道底鼓、维护困难及成本高昂,易诱发矿震,加之留巷充填时工艺复杂,影响了煤矿科学开采。鉴于错层位沿空巷道特殊位置关系,改变了沿空巷道的受力状态,巷道与围岩形成一种新的力学系统。该技术的应用关键是:(1)错层位沿空巷道位置的围岩力学环境;(2)错层位沿空巷道在低应力空间中位置合理变化的适应性。据此,本研究基于三剪能量屈服准则,对巷道围岩进行弹塑性分析;运用能量理论,从巷道完全沿空和不完全沿空两个角度入手,在推导得出巷道围岩耗散理论方程的基础上,揭示了错层位沿空巷道的卸压机理,即巷道围岩是一个吸收与耗散能量的系统,从而完善了回采巷道矿压理论;根据采空区实体煤侧应力分布特征,应用塑性力学的应力滑移线场理论,在分析煤层底板极限平衡区力学特性并进行应力分区的基础上,推导得出了底板最大破坏深度公式;通过理论计算并对比各分区的应力值大小,确定了沿空巷道在水平及竖直方向变化的理论依据,提出了多种仍满足卸压条件的错层位巷道布置系统。研究过程中,同时辅以相似及数值模拟实验、现场观测,并证实了相关结论。本研究工作对揭示错层位沿空巷道围岩应力、位移分布规律及卸压机理有重要意义,可为我国储量巨大的厚煤层实现错层位无煤柱开采提供重要的理论指导及技术支持。
Characteristics of backfill for gob-side entry retaining and coal pillar supporting roof directly for gob-side entry driving, which are easy to cause floor heave, mine earthquake, difficult support, and high cost of section roadway. Filling technology is complicated when retaining roadway. Therefore, science mining had been affected. For stagger arrangement gob-side entry, its position relation changes forced state. A new mechanical system was formed in roadway and surrounding rock. Application key of stagger arrangement mining are as follows:(1) mechanical environment of roadway and surrounding rock for stagger arrangement gob-side entry;(2) adaptability of reasonable change in low stress space for stagger arrangement gob-side entry. Hereby, based on triple shear energy yield criterion, elasto-plastic was analyzed for roadway and surrounding rock; Using energy theory, from the point of view of complete and incomplete gob-side entry, this paper derived energy dissipation equation of roadway and surrounding rock, revealed the pressure relief mechanism of stagger arrangement gob-side entry, that is to say, roadway surrounding rock is a system of energy absorption and dissipation, thus improved the ground pressure theory of mining roadway. According to stress distribution characteristics of entity coal side in goaf, making use of stress slip line field theory in plasticity, on the basis of mechanical properties of limit equilibrium zone from coal seam floor, determined stress zones, and deduced the formula of bottom maximum failure depth. Through theoretical calculation and comparison of zoning stress values, the author gives theoretical basis of position change of gob-side entry in the level and vertical direction, proposed various stagger arrangement mining system satisfying pressure relief condition. In the course of studying, some conclusions were proved by similarity simulation experiment, numerical modeling and field observation. The research is of great importance to reveal surrounding rock stress, displacement distributions and destressing mechanism from stagger arrangement gob-side entry, also provides theory and technique to stagger arrangement mining in china's huge thick coal seam.
引文
[1]唐建新,胡海,涂兴东,等.普通混凝土巷旁充填沿空留巷试验[J].煤炭学报,2010,35(9):1425-1429
    [2]中国煤炭工业协会.煤炭科技“十二五”规划[M].2010.12
    [3]钱鸣高.煤炭的科学开采[J].煤炭学报,2010,35(4):529-534
    [4]王家臣.厚煤层开采理论与技术[M].北京:冶金工业出版社,2009.9
    [5]赵景礼.厚煤层错层位巷道布置采全厚采煤法[P].中国专利,ZL98100544.6,2002-01-23.
    [6]Wilson AH. Research into the determination of pillar size, Part 1. The Mining Engineer, vol.131. The Institution of Mining Engineers; 1972. P.409-417.
    [7]Fadeev AB, Abdyldayev EK. Elastoplastic analysis of stresses in coal pillars by finite element method. Rock Mech 1979; 11:243-251.
    [8]Hsiung SM, Peng SS. Chain pillar design for US longwall panels. J Min Sci Technol (China) 1985;2:279-305.
    [9]Thin IGT, Pine RJ, Trueman R. Numerical modeling as an aid to the determination of the stress distribution in the goaf due to longwall coal mining. Int J Rock Mech Min Sci Geomech Abstr 1993;30(7):1403-1409.
    [10]Mukherjee C, Sheorey PR, Sharma KG. Numerical simulation of caved goaf behaviour in longwall workings. Int J Rock Mech Min Sci Geomech Abstr 1994;31(1):35-45.
    [11]Murali Mohan G, Sheorey PR, Kushwaha A. Numerical estimation of pillar strength in coal mines. Int J Rock Mech Min Sci 2001;38(8):1185-1192.
    [12]Jaiswal A, Sharma SK, Shrivastva BK. Numerical modeling study of asymmetry in the induced stresses over coal mine pillars with advancement of the goaf line. Int J Rock Mech Min Sci 2004;41:859-864.
    [13]Y.M. Cheng, J.A. Wang, G.X. Xie. Etc. Three-dimensional analysis of coal barrier pillars in tailgate area adjacent to the fully mechanized top caving mining face. International Journal of Rock Mechanics & Mining Sciences.2010:8:1-12
    [14]马念杰,侯朝炯.采准巷道矿压理论及应用[M].煤炭工业出版社,1995
    [15]侯朝炯,李学华.综放沿空掘巷围岩大、小结构的稳定性原理[J].煤炭学报,2001,26(1):1-6
    [16]王卫军,冯涛,侯朝炯,等.沿空掘巷实体煤帮应力分布与围岩损伤关系分析[J].岩石力学与工程学报,2002,21(11):1590-1593
    [17]王卫军,侯朝炯,柏建彪综放沿空巷道顶煤受力变形分析[J].岩土工程学报,2001,23(2):209-211
    [18]王卫军,黄成光,侯朝炯,等.综放沿空掘巷底鼓的受力变形分析[J].煤炭学报,2002,27(1):26-30
    [19]王卫军,侯朝炯,柏建彪,等.综放沿空巷道底板受力变形分析及底鼓力学原理[J].岩土力学,2001,22(3):319-322
    [20]谢广祥,杨科,常聚才.煤柱宽度对综放面围岩应力分布规律影响[J].北京科技大学学报,2006,28(11):1005-1008
    [21]谢广祥,杨科,刘全明.综放面倾向煤柱支承压力分布规律研究[J].岩石力学与工程学报,2006,25(3):545-549
    [22]G.X. Xie, J.C. Chang, K. Yang. Investigations into stress shell characteristics of surrounding rock in fully mechanized top-coal caving face[J]. International Journal of Rock Mechanics & Mining Sciences 46 (2009) 172-181
    [23]杨科,谢广祥.窄煤柱综放巷道围岩应力场特征[J].采矿与安全工程学报,2007,24(3)311-315
    [24]谢广祥,杨,科,常聚才.综放回采巷道围岩力学特征实测研究[J].中国矿业大学学报,2006,35(1):94-98
    [25]谢广祥,王磊.综放工作面煤层及围岩破坏特征的采厚效应[J].煤炭学报,2010,35(2):177-181
    [26]张开智,韩承强,李大勇,等.大小护巷煤柱巷道采动变形与小煤柱破坏演化规律[J].山东科技大学学报,2006,25(4):6-9
    [27]王金安,韦文兵,冯锦艳.综放沿空异形煤柱留巷系统力学场演化规律[J].北京科技大学学报,2006,28(4):317-323
    [28]贾光胜,康立军.综放开采采准巷道护巷煤柱稳定性研究[J].煤炭学报,2002,27(1):6-10
    [29]宋选民,王安.浅埋煤层回采巷道合理煤柱宽度的实测研究[J].太原理工大学学报,2003,34(6):674-677
    [30]柏建彪,王卫军,侯朝炯,等.综放沿空掘巷围岩控制机理及支护技术研究[J].煤炭学报,2000,25(5):478-481
    [31]石平五,许少东,陈治中,等.综放沿空掘巷矿压显现规律研究[J].矿山压力与顶板管理,2004,1:32-34
    [32]高明仕,张农,成隆.综放沿空掘巷窄煤柱合理宽度的确定[J].矿山压力与顶板管理,2004,3,4-7
    [33]史国跃.大采高综放工作面小煤柱护巷煤体加固技术[J].煤,2008,17(5):20-21
    [34]马其华,王宜泰.深井沿空巷道小煤柱护巷机理及支护技术[J].采矿与安全工程学报,2009,26(4):520-523
    [35]柏建彪,侯朝炯.深部巷道围岩控制原理与应用研究[J].中国矿业大学学报,2006,35(2):145-148
    [36]黄玉诚,孙恒虎.沿空留巷护巷带参数的设计方法[J].煤炭学报,1997,22(2):127-131
    [37]谢文兵,殷少举,史振凡,等.综放沿空留巷几个关键问题的研究[J].煤炭学报,2004,29(2):146-149
    [38]谢文兵.综放沿空留巷围岩稳定性影响分析[J].岩石力学与工程学报,2004,23(18):3059-3065
    [39]张东升,马立强,缪协兴,等.综放沿空留巷围岩变形影响因素的分析[J].中国矿业大学学报,2006,35(1):1-6
    [40]马立强,张东升,陈涛,等.综放巷内充填原位沿空留巷充填体支护阻力研究[J].岩石力学与工程学报,2007,26(3):544-550
    [41]张东升,王红胜,马立强.预筑人造帮置换窄煤柱的二步骤沿空掘巷新技术[J].煤炭学报,2010,35(10):1589-1593
    [42]马立强,张东升,王红胜,等.厚煤层巷内预置充填带无煤柱开采技术[J].岩石力学与工程学报,2010,29(4):674-680
    [43]缪协兴,茅献彪.朱川曲,等.综放沿空巷道顶部锚杆剪切变形分析[J].煤炭学报,2005,30(6):681-684
    [44]缪协兴.采动岩体的力学行为研究与相关工程技术创新进展综述[J].岩石力学与工程学报,2010,29(10):1988-1998
    [45]袁亮.低透气性高瓦斯煤层群无煤柱快速留巷Y型通风煤与瓦斯共采关键技术[J].中国煤炭,2008,34(6):9-13
    [46]徐金海,付宝杰,周保精.沿空留巷充填体的流变特性分析[J].中国矿业大学学报,2008,37(5):585-589
    [47]唐建新,胡海,涂兴东,等.普通混凝土巷旁充填沿空留巷试验[J].煤炭学报,2010,35(9):1425-1429
    [48]宋振骐,崔增娣,夏洪春,等.无煤柱矸石充填绿色安全高效开采模式及其工程理论基础研究[J].煤炭学报,2010,35(5):705-710
    [49]康红普,牛多龙,张镇,等.深部沿空留巷围岩变形特征与支护技术[J].岩石力学与工程学报,2010,29(10):1977-1987
    [50]陈强威.沿空巷道卸压槽试用效果初探[J].采矿技术,2010.1:50-51
    [51]鲁岩,邹喜正,刘长友.巷旁开掘卸压巷技术研究与应用[J].采矿与安全工程学报,2006,23(3):329-336
    [52]茅献彪,缪协兴,钱鸣高.“吕”字形巷道布置的卸压机理分析[J].力学与实践,2000,22(6):39-41
    [53]张小涛,窦林名.冲击矿压工作面卸压巷卸压法探讨[J].煤炭科学技术,2005,33(10):72-74
    [54]刘红岗,贺水年,徐金海,等.深井煤巷钻孔卸压技术的数值模拟与工业试验[J].煤炭学报,2007,32(1):33-37
    [55]张周权,吴兴荣,陈立高,等.综放沿空巷道变形特点及卸压爆破[J].矿山压力与顶板管理,2005,4:53-55
    [56]王殿录,周金城,周微,等.深孔卸压爆破技术改善煤巷支护的试验研究[J].煤炭工程,2006,4:50-52
    [57]何富连,陈建余,邹喜正,等.综放沿空巷道围岩卸压控制研究[J].煤炭学报,2000,25(6):589-592
    [58]陈建余,杨超,朱岳明,等.无煤柱综放开采大变形软岩巷道卸压维护分析及其应用[J].岩石力学与工程学报,2002,21(8):1183-1187
    [59]刘正和,赵阳升,弓培林,等.回采巷道顶板大深度切缝后煤柱应力分布特征[J].煤炭学报,2011,36(1):18-23
    [60]姜福兴,XUN Luo,杨淑华.采场覆岩空间破裂与采动应力场的微震探测研究[J].岩土工程学报,2003,25(1):23-25
    [61]孔令海,姜福兴,刘杰,等.特厚煤层综放工作面区段煤柱合理宽度的微地震监测[J].煤炭学报,2009,34(7):871-874
    [62]王存文,姜福兴,王平,等.煤柱诱发冲击地压的微震事件分布特征与力学机理[J].煤炭学报,2009,34(9):1169-1173
    [63]魏东,贺虎,秦原峰,等.相邻采空区关键层失稳诱发矿震机理研究[J].煤炭学报,2010,35(12):1957-1962
    [64]王志强.厚煤层错层位相互搭接工作面矿压显现规律研究[D].中国矿业大学(北京),2009
    [65]杨双锁.回采巷道围岩控制理论及锚固结构支护原理[M].煤炭工业出版社,2004
    [66]蒋斌松,张强,贺永年,等.深部圆形巷道破裂围岩的弹塑性分析[J].岩石力学与工程学报,2007,26(5):982-986
    [67]郑颍人,孔亮.岩土塑性力学[M].北京:中国建筑工业出版社,2010
    [68]于学馥,郑颖人,刘怀恒,等.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983
    [69]俞茂宏.双剪理论及其应用[M].北京:科学出版社,1998
    [70]周华强.巷道支护限制与稳定作用理论及其应用[M].徐州:中国矿业大学出版社,2006
    [71]谢和平,彭瑞东,鞠杨.岩石变形破坏过程中的能量耗散分析[J].岩石力学与工程学报,2004,23(21):3565-3570
    [72]赵忠虎,谢和平.岩石变形破坏过程中的能量传递和耗散研究[J].四川大学学报.2008,40(2):26-31
    [73]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003
    [74]严济慈.热力学第一和第二定律[M].北京:人民教育出版社,1966
    [75]杨东华.不可逆过程热力学原理及工程应用[M].北京:科学出版社,1989
    [76]徐芝纶.弹性力学(第3版)[M].北京:高等教育出版社,2002
    [77]谢和平,鞠杨,黎立云,等.岩体变形破坏过程的能量机制[J].岩石力学与工程学报,2008,27(9):1729-1739
    [78]朱维申,程峰.能量耗散本构模型及其在三峡船闸高边坡稳定性分析中的应用[J].岩石力学与工程学报,2000,19(3):261-264
    [79]郑颖人,邓楚键,王敬林.基于非关联流动法则的滑移线场及上限法研究[J].中国工程科学,2010,12(8):56-69
    [80]谭云亮.矿山压力与岩层控制[M].北京:煤炭工业出版社,2008
    [81]黎立云,谢和平,鞠杨,等.岩石可释放应变能及耗散能的实验研究[J].工程力学,2011,28(3):35-39
    [82]谢和平,赵旭清.综放开采顶煤体的连续损伤破坏分析[J].中国矿业大学学报,2001,30(4):323-327
    [83]谢和平,鞠杨,黎立云,等.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报2005,24(17):3003-3010.
    [84]凌建明,孙钧.脆性岩石的细观裂纹损伤及其时效特征[J].岩石力学与工程学报,1993,12(4):327-337
    [85]赵明阶.土力学与地基基础[M].北京:人民交通出版社,2010
    [86]谢和平,彭瑞东,鞠杨,等.岩石破坏的能量分析初探[J].岩石力学与工程学报,2005,24(15):2603-2608
    [87]郑怀昌,肖刚,李明,等.缓冲层在采空区冒落灾害中消减作用机理探讨[J].化工矿物与加工,2011(2):25-30
    [88]陈震.散体极限平衡理论基础[M].北京:水利电力出版社,1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700