运动控制系统约束条件下控制算法设计和性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代机械系统领域,尤其是IC领域,高速高精运动控制由于它极高的生产能力和良好的性能成为这个领域的一个核心技术。由于IC生产特点是需要极端的尺度和速度,这就给我们一个极大挑战:如何在很短的时间、精确的定位条件下实现可重复的高加速运动。本论文系统的研究了三种不同的控制算法,并提出一种合适的控制算法来满足高速高精IC封装运动控制系统的要求。
     使用“计算机+运动控制器+伺服电机”的硬件结构来实现进行系统控制。同时使用该结构进行系统参数辨识。
     控制方法通过大量的试验来证实其有效性。通过研究比较使用陷波器进行抑制震动。针对传统的扰动观测器和零相误差跟踪器提出修正并应用。加速度速度前馈控制器被使用。实现三种不同的控制算法。
     在不同轨迹跟踪,扰动抑制,参数变动的条件下做大量实验并得出了一定的结论有助于深入研究。针对本控制系统,比较了控制算法的性能并给出最合适的控制算法在此系统中所达到的性能指标,实现了系统控制性能估计的指标。
High-speed and high-accuracy motion control is one of the key techniques in modern mechanical systems, especially in the IC field. Since it achieves higher productivity and better quality. As IC manufacturing needs extreme dimension and speed, challenge arises as how to realize repeated high-acceleration motion within very short period and precise micro displacement. This thesis presents a systematic research on different control algorithms, and shows a proper controller of a high-speed and high-accuracy motion platform for the IC packaging purpose:
     According to the flexible requirements of research,“PC + motion controller + servo motor”hardware structure is utilized to take advantage of high integration of conventional open controller.
     Controllers with high performance are studied through multiple experiments; Notch filter is adopted in resonant compensation; disturbance observer and ZPETC are modified. Acceleration and velocity feed-forward controller are realized. Three kinds of control algorithms have been realized in this paper.
     Large amount of experiments under different trajectory tracking algorithms, disturbance resistance and parameter effects, are made and some significant conclusions have been drawn. Compare control performance with our system using different control algorithms, and give the performance of the most proper control algorithm in high-speed and high-accuracy motion control.
引文
1.陶永华.新型PID控制及应用.机械工业出版社. 1998, pp: 58~60.
    2.刘金琨.先进PID控制MATLAB仿真.电子工业出版社. 2004, pp: 23~26.
    3. Y. Zhang, Z.Q. Chen, P. Yang and Z.Z. Yuan. Neural Network Based PID Predictive Control for Nonlinear Time-Delay Systems. Third International Conference on Machine Learning and Cybernetics,2004,2:1014~1018.
    4.李友善,李军.模糊控制理论及其在过程控制中的应用.国防工业出版社. 1993, pp: 121~146.
    5. H.S. Lee and M. Tomizuka. Robust Motion Controller Design for High Accuracy Positioning System. Industrial Electronic. 1996, 43: 48~55.
    6.胡佑德,马东升,张莉松.伺服系统原理与设计(修订版).北京理工大学出版社. 1999,pp: 75~99.
    7.叶佩青,杨开明,尹文生.基于振动模型的精密工作台运动控制.清华大学学报(自然科学版). 2006,46: 206~209.
    8. I. Kaya, N. Tan and D.P. Atherton. A Simple Procedure for Improving Performance of PID Controllers. IEEE Conference on Control Applications. 2003, 2: 882~885.
    9. Q.G. Gun, D.F. Wang, P. Han, and P. Yu. Virtual Cascade PID Controller with Strong Robustness. IEEE International Conference on Systems. Man and Cybernetics,2003, 1: 654~659.
    10. Z.Z. Liu, F.L. Luo and M.H. Rashid. Robust High Speed and High Precision Linear Motor Direct-Drive XY-Table Motion System. In the Proceedings of Control Theory and Application. 2004, 151(2): 166~173.
    11. T.M. Miyazaki,D. Koide,K. Inomata,H.K. Tokumaru and K.S. Ohishi. Robust Feedforward Tracking Control Based on Sudden Disturbance Observer and Zpetc Control for Optical Disk Recording System. The 8th IEEE International Workshop on Advanced Motion Control. 2004, pp: 353~358.
    12. H.S. Park, P. H. Chang, and D.Y. Lee. Continuous Zero Phase Error Tracking Controller with Gain Error Compensation. American Control Conference. 1999,5: 3554~3558.
    13. Z.W. Zheng. Research on Servo Control of High Precision Machine, Ph.D. Thesis. National University of Defense Technology. 2001.
    14. M. Ibrahim and S. A. Azim. Nonlinear PID Controller Design Using Fuzzy Logic. Proceedings of the Mediterranean Electrotechnical Conference. 2002, pp: 595~599.
    15. L. Feng. MIMO Nonlinear PID Predictive Controller. In the Proceedings of IEEE Control Theory and Applications. 2002, 149(3): 203~208.
    16. H. Luo. Nonlinear PID Controller Based on Genetic Tuning Algorithm. Control and Decision. 2005, 20(4): 448~450.
    17.段漢民. PC-Based架构下工具机轨迹追踪控制性能之提升.逢甲大学自动控制工程研究所,2003.
    18.刘镇,姜学智,李东海. PID控制器参数整定方法综述.电力系统自动化. 1999,21(8): 79~83.
    19. C.C. Hang, J.K, Astrom and W.K. Ho. Refinements of the Ziegler-Nichols Turning Formula, In the Proceedings of IEEE Control Theory and Applications. 1991, 138(2): 111~118.
    20. W.K. Ho, C.C. Hang and L.S. Cao. Turning of PID Controller Based on Gain and Phase Margin Specifications. Automatica. 1995, 31(3): 497~502.
    21. C.C. Hang, Q.G. Wang and X.P. Yang. Single-Loop Controller Design via IMC Principles. Automatica. 2001, 37(12): 2041~2048.
    22. C.S. Shi and G.S. Zhang. A New Method of PID Control Based on Improved BP Neural Network. The 25th Chinese Control Conference. 2006, pp: 1167~1171.
    23. C.H. Lee, Y.S. Lee and C.C. Teng. A Novel Robust Pid Controllers Design by Fuzzy Neural Network. The American Control Conference. 2002, 2: 1561~1566.
    24. X. Huang and L. Shi. Simulation on a Fuzzy-PID Position Controller of The CNC Servo System. The Sixth International Conference on Intelligent Systems Design and Applications. 2006, 1: 305~309.
    25. H.T. Choi, B.K. Kim, I.H. Suh and W.K. Chung. Design of Robust High Speed Motion Controller for A Plant with Actuator Saturation. Journal of Dynamic Systems, Measurement. and Control. 2002, 122(3): 535~541.
    26.龚华军. Fuzzy-PID控制在高精度数字伺服系统中的应用.南京航空航天大学学报. 1995,27: 5~7.
    27. J.G. Vlachogiannis and R.K. Roy. Robust PID Controllers by Taguchi Method. The TQM Magazine. 2005, 17(5): 456~466.
    28. H.S. Lee. Robust Digital Tracking Controllers for High speed High Accuracy Positioning systems, Ph.D. Thesis. U.C. Berkeley. 1994.
    29.江琼,陈怀民,吴佳楠. H∞鲁棒控制与PID控制相结合的无人机飞行控制研究.宇航学报. 2006,27(2): 10~11.
    30.富强,吴云洁.基于QFT和ZPETC的高精度鲁棒跟踪控制器设计.自动化技术与应用. 2004,23(8): 13~15.
    31. D. H. Kim and J. H. Cho. Design of Robust PID Controller with Disturbance Rejection for Motor Using Immune Algorithm. The Fourth International Conference on Hybrid Intelligent Systems. 2004,pp: 444~449.
    32. dSPACE基于Matlab/Simulink平台实时快速原型及硬件在回路仿真的一体化解决途径.恒润科技有限公司. 2005.
    33.魏立新. X-Y数控平台运动摩擦补偿及边缘跟踪力控制研究.燕山大学. 2005.
    34.田延岭,张大卫,闫兵.纳米XY微定位平台的设计与研究.组合机床与自动化加工技术. 2005, 12: 3~6.
    35. W.Z. Su, L. Qiu and J. Chen. On Performance Limitation in Tracking a Sinusoid. Automatic Control. 2006, 51(8): 213~221.
    36. C.J. Kempf and S. Kobayyashi. Disturbance Observer and Feedforward Design for a High-Speed Direct-Drive Positioning Table. IEEE Transactions on Control Systems Technology. 1999, 7(5): 513~526.
    37. H. Hanselmann. Implementation of Digital Controllers-a Survey. Automatica. 1987, 23(1): 7-23.
    38. H.V. Brussel, C.H. Chen and J. Swevers. Accurate Motion Controller Design Based on an Extended Pole Placement Method and a Disturbance Observer. Annals of the CIRP. 1994, 43(1): 367-772.
    39. A Tesfaye, M. Tomizuka and H. S. Lee. Robust digital control design for high performance motion control systems. Proceedings of the ASME Winter Annual Meeting. 1994, DSC-55-2: 903-908.
    40. C.M. Liaw, R.Y. Shue, H.C. Chen and S.C. Chen. Development of a Linear Brushless DC Motor Drive with Robust Position Control. Proceedings of IEEE Electric Power Applications. 2001, 148(2): 111~118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700