多环片零件轴孔装配控制与检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在多环片零件的轴孔装配中,环片类零件特征尺寸小、装配精度要求高,故依赖于手工作业,对操作者的经验和技巧要求很高,工作强度大,且人为因素较多,严重影响了装配的质量和效率。而自动化的精密装配系统以其柔性化装配的特点,在提高装配精度、保证产品一致性以及提高生产效率等方面,均显示出极大的优越性。本文针对多环片零件的轴孔装配及检测作业的特点,研制了自动化的精密装配与检测系统,并围绕面向多环片零件的装配控制及检测关键技术展开研究。
     在分析了系统所需实现功能以及技术要求的基础上,确定了系统装配及检测原理,搭建了精密装配与检测系统,其主要由装配及取出作业、检测作业、作业平台、计算机控制四个功能模块组成,对系统各组成模块进行分析介绍,并简要描述了系统的控制结构体系及控制软件架构。
     对环片类零件的轴孔装配模型及相关问题进行了分析,围绕柔顺夹持、跳动及偏摆补偿及不合格零件取出等多环片零件轴孔装配的关键技术展开了研究。基于前述研究,在系统的装配及取出作业模块集成了柔顺夹持机构、跳动偏摆检测机构和不合格零件取出机构等功能部件。装配作业基于被动柔顺夹持机构以及自动装配控制方法实现,针对本文环片装配过程中阻力较大的特点,提出了一种新的装配力/刚度综合补偿控制方法,通过对装配过程中的装配力及导轨变形量进行检测,计算得到系统刚度,并据此实时预测装配位置偏差量,对装配目标位置进行修正和补偿。对装配作业过程进行合理规划和控制,减小分度转动等装配中间环节所引起的装配误差,提高系统装配精度。
     对位于狭小封闭装配孔内的多环片零件的位姿检测采用视觉检测方法实现,采用硬杆内窥镜实现了狭小无照明空间内的图像采集。针对内窥镜图像畸变,提出了一种基于硬杆内窥镜的精确测量方法,通过结合内窥镜的测量位置信息及采集到的图像信息来获得被测零件的位置和姿态信息。在LabVIEW平台上基于IMAQ Vision视觉模块进行图像处理程序的开发,包括图像增强、滤波、锐化,测量区域拾取,边缘检测、提取及拟合等步骤,最终实现对零件中心位置的精确检测。
     实验表明,所研制的精密装配与检测系统能够成功地完成多个环片零件在装配模具中的精密装配及检测,装配与检测的最大绝对误差均能控制在9μm之内。
Most peg-hole assembly of multiple ring parts with small size and high assembly precision requirement, are assembled manually by experienced and skilled workers, with high intensity and many factitious factors, thus the quality and efficiency of assembly is influenced greatly. With the characteristic of flexible assembly, automatic and precise system shows the advantage in improving assembly precision and coincidence, and increasing production efficiency. A precise assembly and measurement system is developed according to the characteristics of peg-hole assembly and measurement of multiple ring parts, and the key technology of peg-hole assembly and measurement for multiple ring parts is deeply studied.
     Based on the analysis of the system function and technological requirements, the assembly and measurement principle is determined, and the precise assembly and measurement system is established. The main function modules of this system, which including assembly and remove module, measurement module, operation platform module and computer control module, are introduced, then the architecture of control system and software are described briefly.
     After analyzing the assembly model and related problems of ring parts assembly, the study on key technologies of assembly including compliant gripping, axial runout compensation and unqualified parts removing is done. Based on the above study, a compliant gripping mechanism, an axial runout measurement mechanism and a removing mechanism are integrated into the assembly and remove module. The assembly of multiple ring parts is achieved based on the compliant gripping mechanism and automatic assembly control method. A new assembly force and stiffness synthesis compensation method is proposed to improve the assembly precision under a large system deformation caused by large assembly force. The system stiffness cvan be calculated out according to the assembly force and deformation measured during the assembly procedure, and then real-time prediction of system deformation can be achieved, thus the assembly destination position could be modified to ensure the assembly precision. The assembly error caused by the intermediate link, such as indexing rotation, can be decreased through reasonable assembly process plan, therefore the assembly precision can be improved.
     Vision-based measurement method is adopted to measure multiple ring parts assembled in the narrow assembly hole, and a rigid borescope is taken as the image transmission device to achieve image transmission in narrow space without illumination. To eliminate the influence on measurement caused by the borescope image distortion, a precise measurement method based on rigid borescope is proposed. In this method, the position and attitude information of the ring part to be measured can be obtained by combing the measuring position information and image information of the borescope. The image processing in the measurement operation, comprising enhancement, filtering, sharpening, picking measurement area, edge detection, extraction and fitting, is achieved by using IMAQ Vision toolkit built in Lab VIEW, and the center of the ring part can be measured precisely at last.
     The experimental results show the developed system can successfully achieve precise assembly and measurement for multiple ring parts in the assembly mold, and both of the assembly and measurement precision can be controlled below 9μm.
引文
[1]张锟等.一种基于力/位混合控制进行插孔作业的策略.机器人,2002,24(1):44-48.
    [2]殷跃红,朱剑英.智能机器人力觉与力控制研究综述[J].航空学报,1999,20(1)
    [3]Namik Ciblak, Harvey Lipkin. Design and Analysis of Remote Center of Compliance Structures [J]. Journal of Robotic Systems 2003,20(8):415-427.
    [4]Namik Ciblak, Harvey Lipkin. Remote Center of Compliance Reconsidered [C]. Proceedings of The 1996 ASME Design Engineering TechnicaL Conference and Computers in Engineering Conference,1996,8:18-22.
    [5]W. Haskiya, K. Maycock and J. Knight. Robotic assembly:chamferless peg-hole assembly Robotic assembly 1999,17:621-634
    [6]黄心汉,王敏,胡建元.孔装配过程的儿何与力学分析[J].机器人,1996,2(18),65-70.
    [7]夏妍春等.动态卡阻及主动柔顺装配策略研究[Ⅱ].高技术通讯,2004,7:63-68.
    [8]D.E.Whitney, Historical perspective and state of the art in Robot Force Control [J]. Journal of Robotics Researeh,1987,1 (6):262-268.
    [9]N. Hogan, Impendence Control:An approach to Manipulation:PartlⅠ, Ⅱ, Ⅲ [J].ASME Transactions Journal of Dynamic Systems and Measurement Control,1987,3:1-24.
    [10]M. R. Cutkosky and Imin Kao, Computing and controlling the compliance of a robotic hand [J]. IEEE transaction of robotics and automation,1989,2(5),151-165
    [11]彭商贤,金佐中.机器人柔顺装配的儿何及力学分析研究[J].机械工程学报,1995,10(31):54-60.
    [12]Whitney D E, Nevins J L. Robot Sensors [J]. Tactile and non-Vision IFS Publication Ltd,1986,2.
    [13]Whitney D E. Quasi-static Assembly of Compliantly Supported Rigid Parts [J].ASME Journal of DSMC,1982:65-77.
    [14]Sturges R, Laowattana S. Design Fan Orthogonal Compliance for Polygonal Peg Insertion [J].ASME Journal of Mechanical Design,1996:106-114.
    [15]Joo S, Miyazaki F. Development of a New Variable Remote Center Compliance for Assembly Robots [J]. Advanced Robotics,2000,14(1):241-255
    [16]Cheng C C. Chen G-SA. Multiple RCC Device for Polygonal Peg Insertion[J]. JSME
    [17]Lee S. Won S and Choi S. Development of a new Varioable Remote Center Compliance for Assembly Robots [J]. Advanced Robotics.2000,14(1):241-255.
    [18]D UbrShon. A Programmable RCC Hand [J]. Journal of Mechanical Design.1994,9:884-889.
    [19]H Asada, A B By. Kinematics Analysis of Work Part Fixturing For Flexible Assembly With Automatically Reconfigurable Fixtures [J]. IEEE Journal of Robotics and Automation,1985:86-93
    [20]Shimoga K. Robot Grasp Synthesis Algorithms:A Survey [J].IJRR,1997:230-266
    [21]袁水,张慧慧.容差柔顺手的设计与研究[J].北京工业大学学报,1998,1(24):33-38.
    [22]陈晓南,袁丛清,杨培林等.微柔顺装置及其力学分析[J].应用力学学报,2004,4(21):122-128.
    [23]宋美江.机器人动柔顺手腕实用研究[D].天津:天津大学,2004
    [24]赵福良,郭小勤,刘秋生.新型可变的柔顺手腕[J].高技术通讯,1995,12:14-16.
    [25]Goertz R C. Manipulators used for handling radioactive materials [J]. Human Factors in Technology.1963.
    [26]Rothchild R A. Mann R W. An EM G-controlled force sensing proportional rate elw blow pro-sthesis [J].Procon Bioimedical Engineering.1966.
    [27]殷跃红,朱剑英,蔚忠信.机器人力控制研究综述[J].南京航空航天大学学报,1997,29(2):220-221.
    [28]Hogan N. Impedance Control:An Approach to Manipulation. Part Ⅰ-Ⅲ [J].ASME Journal of DSMC,1985,107:1-24.
    [29]Chan S P, Liaw H C. Generalized Impedance Control of Robot for Assembly Tasks Requiring Compliant Manipulation [J]. IEEE Trans on Industrial and Electronics, 1996,43(4):453-461.
    [30]Babaci S, Amirat Y, Pontnau J, et al. Fuzzy Adaptation Impedance of A 6-DOF Parallel Robot:Application to Peg in Hole Insertion [C]. Proceedings of The Fifth IEEE Int. Conference on Fuzzy Systems,1996:1770-1776.
    [31]Kaiji I, Kazuaki H, Tatsuyas, et al. Realization of The Human Skill in The Peg-in-Hole Task Using Hybrid Architecture [C]. IEEE Int. Conference on Intelligent Robots and Systems,1998:995-1000.
    [32]Arimoto Setal. Learning Control for Robot Tasks Under Geometric Endpoint Constraints [C]. ICRA,1992:1914-1919.
    [33]Jeon Detal. Learning Hybrid Force and Position Control of Robot Manipulators [C].ICRA,1992:1455-1460.
    [34]Jean J, Fu L. Adaptive Hybrid Control Strategies for Constrained Robots [J]. IEEE Trans on Automatic Control,1993:598-603.
    [35]Tao, etal. Application of Neural Network with Real-Time Training to Robust Position Force Control of Multiple Robots [C].ICRA,1993:142-148.
    [36]Chung J C H, Leininger G G. Task-level adaptive hybrid manipulator control [J]. International Journal of Robotics Research,1990,9(3):63-73
    [37]Kuc Tae-Youg, Lee J S, Park B Y. Adaptive hybrid force and position learning control of robot manipulators [C]. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics,1994,3:2057-2062。
    [38]Nicoletti GM. On the stability of hybrid adaptive controllers for robotic manipulators [C]. Proceedings of the IEEE International Conference on Systems, 1995(2):967-971
    [39]吴成东,王鹏,张凤.机器人轴孔装配控制技术研究进展[J].科技广场,2007(3):6-8.
    [40]Chan S. A Neural Network Compensator for Uncertainties in Robot Assembly [J]. Journal of Intel Robotic and System,1995:127-141.
    [41]Venkataraman Setal. A Neural Network Based Identification of Environment Models for Compliant Control of Space Robots [J]. ITRA,1993:685-697.
    [42]Jarrah O M A, Zheng O F. Intelligent Compliant Motion Control. IEEE Trans on Systems Man and Cybernetics-Part B:Cybernetics[J].1998,28(1):116-122.
    [43]Jung S, Hsia T C. On Neural Network Application to Robust Impedance Control of Robot Manipulators[C]. ICRA,1995:869-874.
    [44]Katic D, Vukobratovic M. A Neural Networkbased Classification of Environment Dynamics Models for Compliant Control of Manipulation Robots [J]. IEEE Trans on SMC-Part B:Cybernetics,1998,28(1):58-69.
    [45]Tarokh M, Bailey S. Force Tracking with Unknown Environment Parameters Using Adaptive Fuzzy Controllers [J].ICRA,1996:270-275.
    [46]Lin Setal. Hierarchical Fuzzy Force Control for Industrial Robots [J]. IEEE Trans on Indus Electro,1998:646-653.
    [47]芦俊,颜景平,陈俊杰.基于自适应阻抗控制的轴孔装配方法[J].控制理论与应用,2003(2):85-92.
    [48]魏立新,田学静,王洪瑞,赵静波.X-Y数控平台的智能力/位置混合控制[J].微特电机,2009(8):53-55.
    [49]高道祥,薛定宇,陈大力.机器人位置/力混合鲁棒自适应控制[J].系统仿真学报,2007(19):348-350.
    [50]周芳,朱齐丹,姜迈,汪瞳.受限机械臂的自适应小波滑模位置/力混合控制[J].华中科技大学学报(自然科学版),2009(37):9-11.
    [51]Young-bang Bang, Kyungmln Lee, Juho kook, et al. Micro Parts Assembly System With Micro Gripper and RCC Unit [J]. IEEE TRANSACTIONS ON ROBOTICS,2005,21(3):465-470.
    [52]颜波,张铁,谢存禧.机器人柔顺装配夹具的双小脑模型神经网络控制系统[J].高技术通讯.2002(12):53-56.
    [53]魏维军.用于孔轴柔顺装配的自动精密装配系统[D].大连:大连理工大学,2009
    [54]易霞.无损检测技术在姿控发动机总装中的应用探析[J].火箭推进.2009,(35):50-55.
    [55]李雪辰,徐滨士等.管道内壁缺陷无损检测技术[J].NDT无损检测.2007(29):603-606.
    [56]于辉.孔探技术及其在航空发动机维修中的应用[J].航空制造技术.2005(6):94-99.
    [57]顾海涛.工业视频内窥镜在民航维修中的应用[J].航空维修与工程.2003(6):56-57.
    [58]孟娇茹等.孔探成像在发动机损伤检测中的应用研究[J].节能技术.2009,27(1):69-73.
    [59]陈果,汤洋.基于孔探图像纹理特征的航空发动机损伤识别方法[J].仪器仪表学报.2008,29(8):1710-1713.
    [60]李响.管道视觉检测技术的研究[D].沈阳:沈阳工业大学,2009.
    [61]许友林,姚智刚,熊玲,柴卓野.内窥镜检测技术在舰船发动机状态检测中的应用[J].现代船机维修技术.2005:376-379.
    [62]张振远,孔维彪,管陵生,陆小健.内窥镜及其应用(2)[J].玻璃纤维.2002(5):18-22.
    [63]陈江明,孟铁军,张斌.内窥镜测量技术在发动机维护中的应用[J].航空维修与工程.2004(1):56-58.
    [64]黄晓.基于LabVIEW和IMAQVision的几何尺寸非接触测量系统的研究[D].武汉:武汉理工大学,2007.
    [65]贾永红.数字图像处理[M].武汉:武汉大学出版社,2003.
    [66]朱铮涛.基于计算机视觉图像精密测量的关键技术研究[D].广州:华南理工大学,2004.
    [67]贺秋伟.基于计算机视觉的微小尺寸精密检测理论与技术研究[D].长春:吉林大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700