复合型TiO_2纳米管阵列光生电荷行为及光催化性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用太阳能解决能源和环境问题已经成为当今世界研究的一项重要课题,该项研究的本质是光能到化学能的转变,而半导体光催化剂是实现这种转变的最佳途径。半导体材料参与光催化和光化学反应主要涉及三个环节,一是吸收光能实现光生载流子的激发,二是光生电子空穴对在半导体材料表面和体相中发生分离,三是迁移到半导体表面的光生电子或空穴参与氧化或还原反应。对于每一个环节的研究都能帮助我们加深对半导体光催化剂的认识,其中第二个环节由于光生电荷分离、迁移及复合过程的复杂性,往往成为制约光催化和光化学反应效率的重要因素。光生电荷的各种行为一般发生于半导体表面或复合型半导体材料的界面空间电荷区,研究半导体表面或界面光电性质可以为提高光催化/光化学反应效率提供更加明确的指导作用。表面光电压(SPV)技术作为一种非直接接触型测量手段,具有灵敏度高、检测无损、快速简便等优点,适合研究半导体材料表面和界面的光生电荷行为。该技术中测量得到的相位谱与表面光电压谱同等重要,但相位谱却并未引起广大研究者的同等重视。结合光电压矢量模型,光电压相位谱能为复杂的光生电荷行为分析提供明确的解析方向。
     TiO2纳米管阵列(TNAs)作为一种一维纳米结构材料,其规整的取向有利于电子的便捷传输,是光催化和光电转化应用的理想材料;另一方面与同样作为一维纳米材料的纳米棒相比,TNAs的管状结构具有内、外双重表面,能够提供更大的比表面积,适合参与跟表面积密切相关的物理或化学反应。
     基于以上原因,本文采用TNAs及其复合材料作为研究对象,利用SPV谱、SPV相位谱和瞬态光电压(TPV)技术对单一和复合TNAs材料的表面与界面光生电荷激发、迁移和复合等行为进行研究,并对部分材料进行光(电)催化降解有机染料类污染物或还原重金属离子实验,力求寻找光生电荷行为和光催化活性之间的内在联系。围绕以上内容,本论文开展了以下四部分工作:
     1.以金属Ti片为原料,在0.3wt.%NH4F+2vol.%H2O+98vol.%乙二醇混合溶液中电化学阳极氧化制备TNAs,利用SPV谱、SPV相位谱和TPV技术对TNAs的表面光生电荷行为进行详细分析;SPV相位谱测量结果表明TNAs表面态激发后光生电荷分离和迁移受外加偏压影响较小,带带跃迁产生的光生电荷在负偏压和自建电场作用下迁移方向一致,而正偏压作用下光生电子向表面迁移、空穴向阵列底部方向迁移的光电压过程在整个光电压响应中的比重较大。
     2.在合成TNAs的基础上利用FeCl3和NaOH溶液交替浸泡处理得到负载α-Fe2O3的TNAs复合物,利用SPV谱、SPV相位谱和TPV技术分别对复合阵列可见光和紫外光激发下的光生电荷分离和迁移行为进行了研究。SPV相位谱结果表明,复合阵列表面的α-Fe2O3在持续可见光(400nm <λ <580nm,t>0.1ms)照射时,光生电荷在浓度梯度作用下会发生电子向表面迁移的光电压过程,而TPV结果显示在瞬态激光(λ=532nm,t=5ns)激发下会发生光生电子在界面电场作用下向复合材料的界面迁移的光电压过程;同时SPV相位谱测量结果还显示紫外光激发时TiO2中的光生电子向阵列底部迁移引起的光电压过程和向α-Fe2O3导带转移产生光电压过程同时存在。
     3.以金属Ti片为原料,在0.5wt.%NH4F+20vol.%H2O+80vol.%丙三醇混合溶液中利用电化学阳极氧化法制备TNAs,并采用Zn2+/Fe3+混合溶液处理制备了ZnFe2O4负载的TNAs复合材料,以SPV谱、SPV相位谱和TPV技术对其光生电荷行为进行了分析,并对比研究了TNAs和ZnFe2O4-TNAs复合材料的光催化还原Cr(VI)和光催化降解甲基橙(MO)的效果。SPV相位谱分析结果显示,ZnFe2O4-TNAs复合材料中无论是可见光还是紫外光激发,始终存在光生电子向表面ZnFe2O4迁移的光电压过程,该过程的存在是复合材料光催化还原Cr(VI)效率比TNAs高的主要原因;由于光生电子向表面ZnFe2O4迁移,增大了与表面光生空穴复合的几率,造成复合材料光催化降解MO效率弱于TNAs。
     4.利用电化学循环伏安法在TNAs管外表面进行了聚苯胺(PANi)复合,结合复合材料的合成机理,正向的SPV和TPV测量信号表明PANi-TNAs中TiO2与PANi的能级匹配,光照激发后产生了光生电子向PANi聚积、空穴向TiO2聚积的光电压过程,该过程中在TiO2上聚积的空穴有利于茜素红(AR)的光催化氧化降解。
It is an important research work to solve the energy and environmental problemsby using solar energy. The essence of the related research is the conversion of solarenergy to chemical energy. Among multiple solutions, using the semiconductorcatalysts is one of the best ways to achieve this goal. There are three stages for asemiconductor to take part in the photocatalytic or photochemical reaction: firstlysemiconductor material absorbs photon energy and electrons in the valance bands areexcited to the conduction bands; secondly photogenerated electrons and holes areseparated on the surface or in the bulk of the semiconductor and the recombination ofthe electrons and holes may also take place in those places; thirdly electrons or holesthat transferred to the surface of the semiconductor take part in the reduction oroxidation reaction. The study of each stage can help us to understand more about thesemiconductor catalysts. Among them the second stage about the separation, transferand recombination of the photogenerated charge carriers are much more complicatedthan the other two. For this reason the second stage becomes an important part inaffecting the efficiency of the photocatalytic or photochemical reaction. It is knownthat the behaviors of the photogenerated charge carriers mostly take place in the spacecharge area of the surface or interface of the semiconductor(s), so the research of thephotoelectric properties of the surface or interface of the semiconductor(s) can bringus a clear way for improving the efficiency of the photocatalytic or photochemical reaction. As a fast and convenient measurement, surface photovoltage (SPV)technique is one of the best way to study the behaviors of the photogenerated chargecarriers as it possesses a lot of merit such as non-contact, high sensitivity,non-destruction. In this technique, the phase spectrum is as important as the SPVspectrum but ignored by researchers for a long time, while it does bring us a newdirection for studying the complicated SPV processes when combined with the SPVvector model.
     Titania nanotube arrays (TNAs) is a one-dimensional nano-structure material.The precisely oriented nature of the nanotube arrays makes them excellent electronpercolation pathways for vectorial charge transfer between interfaces. Also the doublewall surfaces of the TNAs offer bigger area for the surface related physical orchemical reaction than nanorods or nanowires.
     Based on the above reasons, TNAs and modified TNAs were adopted for ourstudy and the SPV and transient photovoltage (TPV) measurements were used tostudy the behaviors of the photogenerated charge carriers of the TNAs and modifiedTNAs. Also the photocatalytic degradation of organic pollutant and reduction ofheavy metal pollutant experiments were conducted. Seeking the inherent relationshipbetween the behavior of the photogenerated charge carriers and the photocatalyticreactions is the main purpose in our studies. Based on this, we conducted thefollowing experiments and acquired several new results:
     1. TNAs were synthesized in a0.3wt.%NH4F+2vol.%H2O+98vol.%ethylene glycol mixed solution via potentiostatic anodization of titanium foil. SPVspectrum, SPV phase spectrum and TPV techniques were used for investigating thebehaviors of photogenerated charge carriers. The results showed that the external biascan barely affect the separation and transfer behavior of the surface states relatedphotogenerated charge carriers; the transfer direction of the photogenerated chargesunder the effect of negative bias was the same as that under the effect of build-inelectric field; while the photogenerated electrons transferred toward the surface and holes toward the bottom of the tubes caused SPV process under the effect of positivebias occupied a high proportion in the overall SPV process.
     2. α-Fe2O3modified TNAs were obtained by sinking the TNAs film in the FeCl3and NaOH solution alternately. SPV spectrum, SPV phase spectrum and TPVmeasurements were also conducted to investigate the behavior of the photogeneratedcharge carriers in the α-Fe2O3-TNAs. The results showed that when irradiated withconsecutive visible light (400nm <λ <580nm, duration time>0.1ms),photogenerated electrons will transfer toward the surface under the effect ofconcentration gradient while with the irradiation of transient laser pulse (λ=532nm, t=5ns), photogenerated electrons will transfer toward the interface between theα-Fe2O3and TiO2under the effect of interface electric field. Under the irradiation ofUV light, two SPV processes caused by photogenerated electrons in TiO2that transferto α-Fe2O3and toward the bottom of the tubes existed simultaneously.
     3. TNAs with large open entrances were synthesized in a0.5wt.%NH4F+20vol.%H2O+80vol.%glycerol mixed solution via potentiostatic anodization oftitanium foil, followed by sinking in the Zn2+and Fe3+mixed solution for preparingthe ZnFe2O4modified TNAs. SPV and TPV measurements were used for analyzingthe behaviors of photogenerated electrons and holes. Also the photocatalytic reductionof Cr(VI) and degradation of MO experiments were conducted. The results showedthat the SPV process caused by photogenerated electrons transferring to the surface ofZnFe2O4exits when irradiated with either visible light or UV light, which resulted inthe high efficiency of photocatalytic reduction of Cr(VI). And the lowered efficiencyof photodegradation of MO was also caused by the same reason that photogeneratedelectrons recombined with holes in the ZnFe2O4.
     4. PANi modified TNAs were synthesized by an electrochemical depositionmethod. It was confirmed by the deposition mechanism and SPV and TPV test resultsthat the conduction bands of TiO2and the HOMO level of PANi were aligned andwhen irradiated with visible or UV light, photogenerated electrons will accumulate on PANi and holes on TiO2, which benefited the photodegradation of alizarin red.
引文
[1] LEWIS NATHAN S., NOCERA DANIEL G. Powering the planet: Chemicalchallenges in solar energy utilization [J]. Proceedings of the National Academyof Sciences,2006,103(43):15729-15735.
    [2] OSTERLOH FRANK E. Inorganic Materials as Catalysts for PhotochemicalSplitting of Water [J]. Chemistry of Materials,2007,20(1):35-54.
    [3] KUDO AKIHIKO, MISEKI YUGO. Heterogeneous photocatalyst materials forwater splitting [J]. Chemical Society Reviews,2009,38(1):253-278.
    [4] CHEN XIAOBO, SHEN SHAOHUA, GUO LIEJIN, et al. Semiconductor-basedPhotocatalytic Hydrogen Generation [J]. Chemical Reviews,2010,110(11):6503-6570.
    [5] MAEDA KAZUHIKO. Photocatalytic water splitting using semiconductorparticles: History and recent developments [J]. Journal of Photochemistry andPhotobiology C: Photochemistry Reviews,2011,12(4):237-268.
    [6] VARGHESE OOMMAN K., PAULOSE MAGGIE, LATEMPA THOMAS J., et al.High-Rate Solar Photocatalytic Conversion of CO2and Water Vapor toHydrocarbon Fuels [J]. Nano Letters,2009,9(2):731-737.
    [7] SUN HONGQI, WANG SHAOBIN. Research Advances in the Synthesis ofNanocarbon-Based Photocatalysts and Their Applications for PhotocatalyticConversion of Carbon Dioxide to Hydrocarbon Fuels [J]. Energy&Fuels,2013,28(1):22-36.
    [8] SINGH VIVEK, BELTRAN IGNACIO J. CASTELLANOS, RIBOT JOSEPCASAMADA, et al. Photocatalysis Deconstructed: Design of a New SelectiveCatalyst for Artificial Photosynthesis [J]. Nano Letters,2014,14(2):597-603.
    [9] HISAINDEE S., MEETANI M. A., RAUF M. A. Application of LC-MS to theanalysis of advanced oxidation process (AOP) degradation of dye products andreaction mechanisms [J]. Trac-Trends in Analytical Chemistry,2013,49:31-44.
    [10] DI PAOLA AGATINO, GARC A-L PEZ ELISA, MARC GIUSEPPE, et al. Asurvey of photocatalytic materials for environmental remediation [J]. Journal ofHazardous Materials,2012,211–212(0):3-29.
    [11] FU YONGSHENG, CHEN HAIQUN, SUN XIAOQIANG, et al. Combination ofcobalt ferrite and graphene: High-performance and recyclable visible-lightphotocatalysis [J]. Applied Catalysis B: Environmental,2012,111–112(0):280-287.
    [12] RANI S., ROY S. C., PAULOSE M., et al. Synthesis and applications ofelectrochemically self-assembled titania nanotube arrays [J]. Physical ChemistryChemical Physics,2010,12(12):2780-2800.
    [13] HABISREUTINGER SEVERIN N., SCHMIDT-MENDE LUKAS,STOLARCZYK JACEK K. Photocatalytic Reduction of CO2on TiO2and OtherSemiconductors [J]. Angewandte Chemie International Edition,2013,52(29):7372-7408.
    [14] WARDMAN PETER. Reduction Potentials of One-Electron Couples InvolvingFree Radicals in Aqueous Solution [J]. Journal of Physical and ChemicalReference Data,1989,18(4):1637-1755.
    [15] HOFFMANN MICHAEL R., MARTIN SCOT T., CHOI WONYONG, et al.Environmental Applications of Semiconductor Photocatalysis [J]. ChemicalReviews,1995,95(1):69-96.
    [16] ALONSO JOS M., D AZ-áLVAREZ ALBA E., CRIADO ALEJANDRO, et al.Inside Cover:[16]Cloverphene: a Clover-Shaped cata-Condensed Nanographenewith Sixteen Fused Benzene Rings (Angew. Chem. Int. Ed.1/2012)[J].Angewandte Chemie International Edition,2012,51(1):2-2.
    [17] ISMAIL ADEL A., AL-SAYARI SALEH A., BAHNEMANN D. W.Photodeposition of precious metals onto mesoporous TiO2nanocrystals withenhanced their photocatalytic activity for methanol oxidation [J]. Catalysis Today,2013,209(0):2-7.
    [18] MERKA OLIVER, BAHNEMANN DETLEF W., WARK MICHAEL. ImprovedPhotocatalytic Hydrogen Production by Structure Optimized NonstoichiometricY2Ti2O7[J]. ChemCatChem,2012,4(11):1819-1827.
    [19] ARTERO VINCENT, CHAVAROT-KERLIDOU MURIELLE, FONTECAVEMARC. Splitting Water with Cobalt [J]. Angewandte Chemie InternationalEdition,2011,50(32):7238-7266.
    [20] WANG MEI, CHEN LIN, SUN LICHENG. Recent progress in electrochemicalhydrogen production with earth-abundant metal complexes as catalysts [J].Energy&Environmental Science,2012,5(5):6763-6778.
    [21] HUANG XIAO, QI XIAOYING, BOEY FREDDY, et al. Graphene-basedcomposites [J]. Chemical Society Reviews,2012,41(2):666-686.
    [22] XIANG QUANJUN, YU JIAGUO. Graphene-Based Photocatalysts forHydrogen Generation [J]. The Journal of Physical Chemistry Letters,2013,4(5):753-759.
    [23] XIE GUANCAI, ZHANG KAI, GUO BEIDOU, et al. Graphene-Based Materialsfor Hydrogen Generation from Light-Driven Water Splitting [J]. AdvancedMaterials,2013,25(28):3820-3839.
    [24] LI XIAONA, HUANG RENKUN, HU YANHUA, et al. A Templated Method toBi2WO6Hollow Microspheres and Their Conversion to Double-ShellBi2O3/Bi2WO6Hollow Microspheres with Improved Photocatalytic Performance[J]. Inorganic Chemistry,2012,51(11):6245-6250.
    [25] LIU YING, YU YU-XIANG, ZHANG WEI-DE. MoS2/CdS Heterojunction withHigh Photoelectrochemical Activity for H2Evolution under Visible Light: TheRole of MoS2[J]. The Journal of Physical Chemistry C,2013,117(25):12949-12957.
    [26] KRONIK L., SHAPIRA Y. Surface photovoltage phenomena: theory, experiment,and applications [J]. Surface Science Reports,1999,37(1-5):1-206.
    [27] KRONIK L., SHAPIRA Y. Surface photovoltage spectroscopy of semiconductorstructures: at the crossroads of physics, chemistry and electrical engineering [J].Surface and Interface Analysis,2001,31(10):954-965.
    [28] CHEN P. L., MA X. Y., ZHANG Y. Y., et al. Electrophotoluminescence of sol-gelderived ZnO film: Effect of electric field on near-band-edge photoluminescence[J]. Optics Express,2009,17(14):11434-11439.
    [29] GHOSH MANORANJAN, RAYCHAUDHURI AK. Electric field inducedreversible control of visible photoluminescence from ZnO nanoparticles [J].Applied Physics Letters,2011,98(15):153109.
    [30] BRILLSON L. J. The structure and properties of metal-semiconductor interfaces[J]. Surface Science Reports,1982,2(2):123-326.
    [31] ZHANG ZHEN, YATES JOHN T. Effect of Adsorbed Donor and AcceptorMolecules on Electron Stimulated Desorption: O2/TiO2(110)[J]. The Journal ofPhysical Chemistry Letters,2010,1(14):2185-2188.
    [32] HANS L. Solid surfaces, interfaces and thin films [M]. Vol.8431: Springer.2010.
    [33] ZHANG F. X., ZHANG X., CHEN J. X., et al. Preparation and characterizationof Ag/TiO2nanoparticle catalyst and its photocatalytic activity [J]. ChineseJournal of Catalysis,2003,24(11):877-880.
    [34] YANG L., XUE T., MAO J., et al. Photocatalytic degradation of MB on Ag/ZnOcompound nanoparticle [J]. Rare Metal Materials and Engineering,2005,34:159-162.
    [35] XIN B. F., REN Z. Y., HU H. Y., et al. Photocatalytic activity and interfacialcarrier transfer of Ag-TiO2nanoparticle films [J]. Applied Surface Science,2005,252(5):2050-2055.
    [36] LUO S. L., XIAO Y., YANG L. X., et al. Simultaneous detoxification ofhexavalent chromium and acid orange7by a novel Au/TiO2heterojunctioncomposite nanotube arrays [J]. Separation and Purification Technology,2011,79(1):85-91.
    [37] SCHMUKI P., PARAMASIVALM I., MACAK J. M. Photocatalytic activity ofTiO2-nanotube layers loaded with Ag and Au nanoparticles [J]. ElectrochemistryCommunications,2008,10(1):71-75.
    [38] CHIEN S. H., LIOU Y. C., KUO M. C. Preparation and characterization ofnanosized Pt/Au particles on TiO2-nanotubes [J]. Synthetic Metals,2005,152(1-3):333-336.
    [39] CAO X. B., XUE X. D., GU L., et al. One-pot, high-yield synthesis of titanatenanotube bundles decorated by Pd (Au) clusters for stable electrooxidation ofmethanol [J]. Journal of Solid State Chemistry,2009,182(10):2912-2917.
    [40] ZHANG X. G., CHEN P. Fabrication of Pt/TiO2nanocomposites in alginate andtheir applications to the degradation of phenol and methylene blue in aqueoussolutions [J]. Clean-Soil Air Water,2008,36(5-6):507-511.
    [41] SREETHAWONG T., JUNBUA C., CHAVADEJA S. Photocatalytic H2production from water splitting under visible light irradiation using EosinY-sensitized mesoporous-assembled Pt/TiO2nanocrystal photocatalyst [J].Journal of Power Sources,2009,190(2):513-524.
    [42] TUNC ILKNUR, BRUNS MICHAEL, GLIEMANN HARTMUT, et al. Bandgapdetermination and charge separation in Ag@TiO2core shell nanoparticle films[J]. Surface and Interface Analysis,2010,42(6-7):835-841.
    [43] SU REN, BECHSTEIN RALF, S LASSE, et al. How the Anatase-to-RutileRatio Influences the Photoreactivity of TiO2[J]. The Journal of PhysicalChemistry C,2011,115(49):24287-24292.
    [44] JAFRY HUMA R., LIGA MICHAEL V., LI QILIN, et al. Simple Route toEnhanced Photocatalytic Activity of P25Titanium Dioxide Nanoparticles bySilica Addition [J]. Environmental Science&Technology,2010,45(4):1563-1568.
    [45] LEUNG DENNIS Y C, FU XIANLIANG, WANG CUIFANG, et al. HydrogenProduction over Titania-Based Photocatalysts [J]. ChemSusChem,2010,3(6):681-694.
    [46]于洪涛,全燮.纳米异质结光催化材料在环境污染控制领域的研究进展[J].化学进展,2009(Z1):406-419.
    [47] LIANG NA, ZAI JIANTAO, XU MIAO, et al. Novel Bi2S3/Bi2O2CO3heterojunction photocatalysts with enhanced visible light responsive activity andwastewater treatment [J]. Journal of Materials Chemistry A,2014,2(12):4208-4216.
    [48] ZHANG XIAORU, LIN YANHONG, HE DONGQING, et al. Interface junctionat anatase/rutile in mixed-phase TiO2: Formation and photo-generated chargecarriers properties [J]. Chemical Physics Letters,2011,504(13):71-75.
    [49] XIONG G., SHAO R., DROUBAY T. C, et al. Photoemission ElectronMicroscopy of TiO2Anatase Films Embedded with Rutile Nanocrystals [J].Advanced Functional Materials,2007,17(13):2133-2138.
    [50] YI ZENG, GUOFENG CHENG, MA WEN, et al. Effect of external bias voltageand coating thickness on the photocatalytic activity of thermal sprayed TiO2coating [J]. Progress in Organic Coatings,2008,61(2–4):321-325.
    [51] LEE EUNWOO, HONG JIN-YONG, KANG HAEYOUNG, et al. Synthesis ofTiO2nanorod-decorated graphene sheets and their highly efficient photocatalyticactivities under visible-light irradiation [J]. Journal of Hazardous Materials,2012,219–220(0):13-18.
    [52] LI RENGUI, ZHANG FUXIANG, WANG DONGE, et al. Spatial separation ofphotogenerated electrons and holes among {010} and {110} crystal facets ofBiVO4[J]. Nature communications,2013,4:1432.
    [53] BI YINGPU, OUYANG SHUXIN, UMEZAWA NAOTO, et al. Facet Effect ofSingle-Crystalline Ag3PO4Sub-microcrystals on Photocatalytic Properties [J].Journal of the American Chemical Society,2011,133(17):6490-6492.
    [54] WILSON J. N., IDRISS H. Effect of surface reconstruction of TiO2(001) singlecrystal on the photoreaction of acetic acid [J]. Journal of Catalysis,2003,214(1):46-52.
    [55] ONISHI HIROSHI, ARUGA TETSUYA, EGAWA CHIKASHI, et al. Adsorptionof CH3OH, HCOOH and SO2on TiO2(110) and stepped TiO2(441) surfaces [J].Surface Science,1988,193(1–2):33-46.
    [56] ZHAO JIN, YANG JINLONG, PETEK HRVOJE. Theoretical study of themolecular and electronic structure of methanol on a TiO2(110) surface [J].Physical Review B,2009,80(23):235416.
    [57] STEVANOVIC ANA, B TTNER MICHAEL, ZHANG ZHEN, et al.Photoluminescence of TiO2: Effect of UV Light and Adsorbed Molecules onSurface Band Structure [J]. Journal of the American Chemical Society,2011,134(1):324-332.
    [58] WENDT STEFAN, SPRUNGER PHILLIP T., LIRA ESTEPHANIA, et al. TheRole of Interstitial Sites in the Ti3d Defect State in the Band Gap of Titania [J].Science,2008,320(5884):1755-1759.
    [59] DIEBOLD ULRIKE. The surface science of titanium dioxide [J]. SurfaceScience Reports,2003,48(5–8):53-229.
    [60] BERGER THOMAS, STERRER MARTIN, DIWALD OLIVER, et al. ChargeTrapping and Photoadsorption of O2on Dehydroxylated TiO2Nanocrystals AnElectron Paramagnetic Resonance Study [J]. ChemPhysChem,2005,6(10):2104-2112.
    [61] FURUBE AKIHIRO, ASAHI TSUYOSHI, MASUHARA HIROSHI, et al.Charge Carrier Dynamics of Standard TiO2Catalysts Revealed by FemtosecondDiffuse Reflectance Spectroscopy [J]. The Journal of Physical Chemistry B,1999,103(16):3120-3127.
    [62] HIEHATA KUMIKO, SASAHARA AKIRA, ONISHI HIROSHI. Kelvin ProbeForce Microscope Observation of Chlorine-Adsorbed TiO2(110) Surfaces [J].Japanese Journal of Applied Physics,2008,47(7S2):6149.
    [63] HAGFELDT ANDERS, GRAETZEL MICHAEL. Light-Induced RedoxReactions in Nanocrystalline Systems [J]. Chemical Reviews,1995,95(1):49-68.
    [64] KANEKO M., OKURA I. Photocatalysis: Science and Technology [M]. Springer.2002.
    [65] WU QINGPING, VAN DE KROL ROEL. Selective photoreduction of nitricoxide to nitrogen by nanostructured TiO2photocatalysts: role of oxygenvacancies and iron dopant [J]. Journal of the American Chemical Society,2012,134(22):9369-9375.
    [66] ALBERY W. JOHN, BARTLETT PHILIP N. The Transport and Kinetics ofPhotogenerated Carriers in Colloidal Semiconductor Electrode Particles [J].Journal of The Electrochemical Society,1984,131(2):315-325.
    [67] YAGI E., HASIGUTI R. R., AONO M. Electronic conduction above4K ofslightly reduced oxygen-deficient rutile TiO2-x[J]. Phys Rev B Condens Matter,1996,54(11):7945-7956.
    [68] FRANKE MARION E, KOPLIN TOBIAS J, SIMON ULRICH. Metal and MetalOxide Nanoparticles in Chemiresistors: Does the Nanoscale Matter?[J]. Small,2006,2(1):36-50.
    [69] SCHIERBAUM K. D., WEIMAR U., G PEL W., et al. Conductance, workfunction and catalytic activity of SnO2-based gas sensors [J]. Sensors andActuators B: Chemical,1991,3(3):205-214.
    [70] OHNO TERUHISA, HAGA DAISUKE, FUJIHARA KAN, et al. Unique Effectsof Iron(III) Ions on Photocatalytic and Photoelectrochemical Properties ofTitanium Dioxide [J]. The Journal of Physical Chemistry B,1997,101(33):6415-6419.
    [71] FUJIHARA KAN, IZUMI SHINOBU, OHNO TERUHISA, et al. Time-resolvedphotoluminescence of particulate TiO2photocatalysts suspended in aqueoussolutions [J]. Journal of Photochemistry and Photobiology A: Chemistry,2000,132(1–2):99-104.
    [72] BRATTAIN WALTER H, BARDEEN JOHN. Surface properties of germanium[J]. Bell System Technical Journal,1953,32(1):1-41.
    [73] GATOS HARRY C., LAGOWSKI JACEK. Surface Photovoltage SpectroscopyA New Approach to the Study of High-Gap Semiconductor Surfaces [J]. Journalof Vacuum Science& Technology,1973,10(1):130-135.
    [74] BRILLSON L. J. Observation of extrinsic surface states on (1120) CdS [J].Surface Science,1975,51(1):45-60.
    [75] SHAPIRA Y., BRILLSON L. J., HELLER A. Origin of surface andmetal-induced interface states in InP [J]. Physical Review B,1984,29(12):6824-6832.
    [76] HEILAND G., M NCH W. Surface studies by modulation spectroscopy [J].Surface Science,1973,37(0):30-47.
    [77] ASSMANN J., M NCH W. Optical properties of dangling-bond states at cleavedsilicon surfaces [J]. Surface Science,1980,99(1):34-44.
    [78] B CHEL M., L TH H. Surface photovoltage spectroscopy of electronic surfacestates on cleaved germanium(111) surfaces [J]. Surface Science,1975,50(2):451-464.
    [79] LEIBOVITCH M., KRONIK L., FEFER E., et al. Surface photovoltagespectroscopy of thin films [J]. Journal of Applied Physics,1996,79(11):8549-8556.
    [80] LEIBOVITCH M., KRONIK L., MISHORI B., et al. Determining band offsetsusing surface photovoltage spectroscopy: The InP/In0.53Ga0.47As heterojunction[J]. Applied Physics Letters,1996,69(17):2587-2589.
    [81] BACHRACH‐ASHKENASY N., KRONIK L., SHAPIRA YORAM, et al.Surface photovoltage spectroscopy of quantum wells and superlattices [J].Applied Physics Letters,1996,68(7):879-881.
    [82] AIGOUY LIONEL, POLLAK FRED H., PETRUZZELLO JOHN, et al.Observation of excitonic features in ZnSe/ZnMgSSe multiple quantum wells bynormalized Kelvin probe spectroscopy at low temperatures [J]. Solid StateCommunications,1997,102(12):877-882.
    [83]王德军,刘旺,肖良质, et al.表面光电压谱在化学中的应用[J].化学通报,1989(10):32-37.
    [84]钱修琪,王德军,洪广言, et al. p/n结型α-Fe2O3光催化剂的光电压谱研究[J].高等学校化学学报,1986(04):369-371.
    [85]齐秀蓉,刘长春,王德军, et al.卟啉类的发光与光电压谱[J].发光学报,1986(01):113-116.
    [86]梁月霞,刘旺,王德军, et al.酞菁镍与表面吸附氧和吡啶之间的电荷转移研究[J].高等学校化学学报,1991(02):231-234.
    [87]江雷,王德军,刘旺, et al.7,7,8,8-四氰基对苯醌二甲烷的光伏气敏特性[J].高等学校化学学报,1990(12):1419-1422.
    [88]江雷,刘旺,王德军, et al.磺化酞菁铜分子膜/SiO2/Si界面电荷转移机制的研究[J].高等学校化学学报,1992(08):1098-1101.
    [89]王德军,江雷,李萍, et al.电场调制对表面光电压谱的影响[J].高等学校化学学报,1991(04):541-542.
    [90] YANHONG LIN, DEJUN WANG, QIDONG ZHAO, et al. A Study of QuantumConfinement Properties of Photogenerated Charges in ZnO Nanoparticles bySurface Photovoltage Spectroscopy [J]. The Journal of Physical Chemistry B,2004,108(10):3202-3206.
    [91] TENGFENG XIE, DEJUN WANG, LIANJIE ZHU, et al. Application of SurfacePhotovoltage Technique to the Determination of Conduction Types of AzoPigment Films [J]. The Journal of Physical Chemistry B,2000,104(34):8177-8181.
    [92] IVANOV T., DONCHEV V., GERMANOVA K., et al. A vector model foranalysing the surface photovoltage amplitude and phase spectra applied tocomplicated nanostructures [J]. Journal of Physics D-Applied Physics,2009,42(13):135302.
    [93] DONCHEV V., KIRILOV K., IVANOV T., et al. Surface photovoltage phasespectroscopy a handy tool for characterisation of bulk semiconductors andnanostructures [J]. Materials Science and Engineering B-Solid State Materialsfor Advanced Technology,2006,129(1-3):186-192.
    [94] DUZHKO V., TIMOSHENKO V. YU, KOCH F., et al. Photovoltage innanocrystalline porous TiO2[J]. Physical Review B,2001,64(7):075204.
    [95] GONG DAWEI, GRIMES CRAIG A., VARGHESE OOMMAN K., et al.Titanium oxide nanotube arrays prepared by anodic oxidation [J]. Journal ofMaterials Research,2001,16(12):3331-3334.
    [96] GRIMES CRAIGA, MOR GOPALK, Fabrication of TiO2Nanotube Arrays byElectrochemical Anodization: Four Synthesis Generations, in TiO2NanotubeArrays.2009, Springer US. p.1-66.
    [97] MOR G.K., VARGHESE OOMMAN K., PAULOSE MAGGIE, et al.Fabrication of tapered, conical-shaped titania nanotubes [J]. Journal of MaterialsResearch,2003,18(11):2588-2593.
    [98] BALAUR EUGENIU, MACAK JAN M., TSUCHIYA HIROAKI, et al. Wettingbehaviour of layers of TiO2nanotubes with different diameters [J]. Journal ofMaterials Chemistry,2005,15(42):4488-4491.
    [99] CAI QINGYUN, PAULOSE MAGGIE, VARGHESE OOMMAN K., et al. TheEffect of Electrolyte Composition on the Fabrication of Self-Organized TitaniumOxide Nanotube Arrays by Anodic Oxidation [J]. Journal of Materials Research,2005,20(01):230-236.
    [100] MACAK JAN M., SCHMUKI PATRIK. Anodic growth of self-organizedanodic TiO2nanotubes in viscous electrolytes [J]. Electrochimica Acta,2006,52(3):1258-1264.
    [101] TAVEIRA L. V., MAC K J. M., TSUCHIYA H., et al. Initiation and Growth ofSelf-Organized TiO2Nanotubes Anodically Formed in NH4F/(NH4)2SO4Electrolytes [J]. Journal of The Electrochemical Society,2005,152(10):B405-B410.
    [102] SHANKAR K., MOR G. K., PRAKASAM H. E., et al. Highly-ordered TiO2nanotube arrays up to220μm in length: use in water photoelectrolysis anddye-sensitized solar cells [J]. Nanotechnology,2007,18(6):065707.
    [103] PAULOSE M., SHANKAR K., YORIYA S., et al. Anodic growth of highlyordered TiO2nanotube arrays to134μm in length [J]. Journal of PhysicalChemistry B,2006,110(33):16179-16184.
    [104] YORIYA S., GRIMES C. A. Self-Assembled TiO2Nanotube Arrays byAnodization of Titanium in Diethylene Glycol: Approach to Extended PoreWidening [J]. Langmuir,2010,26(1):417-420.
    [105] ZHOU B. X., BAI J., LIU Y. B., et al. A novel thin-layer photoelectrocatalytic(PEC) reactor with double-faced titania nanotube arrays electrode for effectivedegradation of tetracycline [J]. Applied Catalysis B-Environmental,2010,98(3-4):154-160.
    [106] ZHAO X., LIU H. J., QU J. H. Photoelectrocatalytic degradation of organiccontaminants at Bi2O3/TiO2nanotube array electrode [J]. Applied SurfaceScience,2011,257(10):4621-4624.
    [107] DAI GAOPENG, YU JIAGUO, LIU GANG. Synthesis and EnhancedVisible-Light Photoelectrocatalytic Activity of p n Junction BiOI/TiO2NanotubeArrays [J]. The Journal of Physical Chemistry C,2011,115(15):7339-7346.
    [108] KIM JAE-YUP, LEE KYUNG JAE, KANG SOON HYUNG, et al. EnhancedPhotovoltaic Properties of a Cobalt Bipyridyl Redox Electrolyte inDye-Sensitized Solar Cells Employing Vertically Aligned TiO2NanotubeElectrodes [J]. The Journal of Physical Chemistry C,2011:19979-19985.
    [109] LIU Z. Y., MISRA M. Dye-Sensitized Photovoltaic Wires Using HighlyOrdered TiO2Nanotube Arrays [J]. Acs Nano,2010,4(4):2196-2200.
    [110] JEONG J. S., CHOE B. H., LEE J. H., et al. ZnO-Coated TiO2Nanotube Arraysfor a Photoelectrode in Dye-Sensitized Solar Cells [J]. Journal of ElectronicMaterials,2014,43(2):375-380.
    [111] GUAN D. S., LI J. Y., GAO X. F., et al. Controllable synthesis ofMoO3-deposited TiO2nanotubes with enhanced lithium-ion intercalationperformance [J]. Journal of Power Sources,2014,246:305-312.
    [112] YAO J. Y., XIAO P., ZHANG Y. H., et al. CoNiO nanowire arrays as ahigh-performance anode material for lithium-ion batteries [J]. Journal of Alloysand Compounds,2014,583:366-371.
    [113] WANG X. X., ZHAO J. L., KANG Y. R., et al. Photoelectrochemical propertiesof Fe-doped TiO2nanotube arrays fabricated by anodization [J]. Journal ofApplied Electrochemistry,2014,44(1):1-4.
    [114] XU ZHENGCHAO, YANG WEIYI, LI QI, et al. Passivated n–p co-doping ofniobium and nitrogen into self-organized TiO2nanotube arrays for enhancedvisible light photocatalytic performance [J]. Applied Catalysis B: Environmental,2014,144(0):343-352.
    [115] ALLAM NAGEH K., DEYAB NOURHAN M., ABDEL GHANY NABIL.Ternary Ti-Mo-Ni mixed oxide nanotube arrays as photoanode materials forefficient solar hydrogen production [J]. Physical Chemistry Chemical Physics,2013,15(29):12274-12282.
    [116] LI G. Z., TANG H. P., ZHANG W. Y., et al. Hydrogen Treated TiO2Nanotube/Ti Photoanode and Its Photospliting Water Property [J]. Rare MetalMaterials and Engineering,2013,42(11):2341-2345.
    [117] K L N NECMETTIN, ENNIK ERDEM, I K M GE, et al. Fabrication andgas sensing properties of C-doped and un-doped TiO2nanotubes [J]. CeramicsInternational,2014,40(1, Part A):109-115.
    [118] NEVILLE E. M., MACELROY J. M. D., THAMPI K. R., et al. Visible lightactive C-doped titanate nanotubes prepared via alkaline hydrothermal treatmentof C-doped nanoparticulate TiO2: Photo-electrochemical and photocatalyticproperties [J]. Journal of Photochemistry and Photobiology a-Chemistry,2013,267:17-24.
    [119] ALTOMARE MARCO, LEE KIYOUNG, KILLIAN MANUELA S., et al.Ta-Doped TiO2Nanotubes for Enhanced Solar-Light Photoelectrochemical WaterSplitting [J]. Chemistry A European Journal,2013,19(19):5841-5844.
    [120] HE X. L., CAI Y. Y., ZHANG H. M., et al. Photocatalytic degradation oforganic pollutants with Ag decorated free-standing TiO2nanotube arrays andinterface electrochemical response [J]. Journal of Materials Chemistry,2011,21(2):475-480.
    [121] CHEN C., XIE Y., ALI G., et al. Improved conversion efficiency of CdSquantum dots-sensitized TiO2nanotube array using ZnO energy barrier layer [J].Nanotechnology,2011,22(1):015202.
    [122] YU J. G., DAI GP DAI, G. P., LIU G. Synthesis and Enhanced Visible-LightPhotoelectrocatalytic Activity of p-n Junction BiOI/TiO2Nanotube Arrays [J].Journal of Physical Chemistry C,2011,115(15):7339-7346.
    [123] WANG J., HAN Y. H., FENG M. Z., et al. Preparation andphotoelectrochemical characterization of WO3/TiO2nanotube array electrode [J].Journal of Materials Science,2011,46(2):416-421.
    [124] WANG D. A., YE Q. A., YU B., et al. Towards chemically bonded p-nheterojunctions through surface initiated electrodeposition of p-type conductingpolymer inside TiO2nanotubes [J]. Journal of Materials Chemistry,2010,20(33):6910-6915.
    [125] MACAK J. M, GONG B. G, HUEPPE M., et al. Filling of TiO2Nanotubes bySelf-Doping and Electrodeposition [J]. Advanced Materials,2007,19(19):3027-3031.
    [126] SHRESTHA NABEEN K., YANG MIN, NAH YOON-CHAE, et al.Self-organized TiO2nanotubes: Visible light activation by Ni oxide nanoparticledecoration [J]. Electrochemistry Communications,2010,12(2):254-257.
    [127] SHRESTHA NABEEN K, MACAK JAN M, SCHMIDT-STEIN FELIX, et al.Magnetically Guided Titania Nanotubes for Site-Selective Photocatalysis andDrug Release [J]. Angewandte Chemie,2009,121(5):987-990.
    [128] ROY POULOMI, KIM DOOHUN, PARAMASIVAM INDHUMATI, et al.Improved efficiency of TiO2nanotubes in dye sensitized solar cells by decorationwith TiO2nanoparticles [J]. Electrochemistry Communications,2009,11(5):1001-1004.
    [129] HUO M. X., YU H. B., WANG X. H., et al. Photocatalytic degradation ofmalathion in aqueous solution using an Au-Pd-TiO2nanotube film [J]. Journal ofHazardous Materials,2010,184(1-3):753-758.
    [130] SUN L., LI J., WANG C. L., et al. Ultrasound aided photochemical synthesis ofAg loaded TiO2nanotube arrays to enhance photocatalytic activity [J]. Journal ofHazardous Materials,2009,171(1-3):1045-1050.
    [131] WU FENG, HU XIAOYUN, FAN JUN, et al. Photocatalytic Activity ofAg/TiO2Nanotube Arrays Enhanced by Surface Plasmon Resonance andApplication in Hydrogen Evolution by Water Splitting [J]. Plasmonics,2013,8(2):501-508.
    [132] MOHAPATRA S. K., KONDAMUDI N., BANERJEE S., et al.Functionalization of self-organized TiO2nanotubes with Pd nanoparticles forphotocatalytic decomposition of dyes under solar light illumination [J].Langmuir,2008,24(19):11276-11281.
    [133] VITIELLO R. P., MACAK J. M., GHICOV A., et al. N-Doping of anodic TiO2nanotubes using heat treatment in ammonia [J]. ElectrochemistryCommunications,2006,8(4):544-548.
    [134] LIU Z. Y., MISRA M. Bifacial dye-sensitized solar cells based on verticallyoriented TiO2nanotube arrays [J]. Nanotechnology,2010,21(12):125703.
    [135] KIM JAE-YUP, LEE KYUNG JAE, KANG SOON HYUNG, et al. EnhancedPhotovoltaic Properties of a Cobalt Bipyridyl Redox Electrolyte inDye-Sensitized Solar Cells Employing Vertically Aligned TiO2NanotubeElectrodes [J]. The Journal of Physical Chemistry C,2011,115(40):19979-19985.
    [136] JOHN S. E., MOHAPATRA S. K., MISRA M. Double-Wall Anodic TitaniaNanotube Arrays for Water Photooxidation [J]. Langmuir,2009,25(14):8240-8247.
    [137] LAI Y. K., HUANG J. Y., ZHANG H. F., et al. Nitrogen-doped TiO2nanotubearray films with enhanced photocatalytic activity under various light sources [J].Journal of Hazardous Materials,2010,184(1-3):855-863.
    [138] HOU Y., LI X. Y., ZHAO Q. D., et al. Electrochemical Method for Synthesis ofa ZnFe2O4/TiO2Composite Nanotube Array Modified Electrode with EnhancedPhotoelectrochemical Activity [J]. Advanced Functional Materials,2010,20(13):2165-2174.
    [139] MENG X., LEE T. Y., CHEN H., et al. Fabrication of Free Standing AnodicTitanium Oxide Membranes with Clean Surface Using Recycling Process [J].Journal of Nanoscience and Nanotechnology,2010,10(7):4259-4265.
    [140] WANG D. A., YU B., WANG C. W., et al. A Novel Protocol Toward PerfectAlignment of Anodized TiO2Nanotubes [J]. Advanced Materials,2009,21(19):1964-1967.
    [141] DAI G. P., YU J. G., LIU G. Synthesis and Enhanced Visible-LightPhotoelectrocatalytic Activity of p-n Junction BiOI/TiO2Nanotube Arrays [J].Journal of Physical Chemistry C,2011,115(15):7339-7346.
    [142] TAUC J., GRIGOROVICI R., VANCU A. Optical Properties and ElectronicStructure of Amorphous Germanium [J]. physica status solidi (B),1966,15(2):627-637.
    [143] BUTLER M. A. Photoelectrolysis and physical properties of thesemiconducting electrode WO2[J]. J.Appl. Phys.,1977,48(5):1914.
    [144] REYES-CORONADO D., RODR GUEZ-GATTORNO G.,ESPINOSA-PESQUEIRA M. E., et al. Phase-pure TiO2nanoparticles: anatase,brookite and rutile [J]. Nanotechnology,2008,19(14):145605.
    [145] KOFFYBERG F. P., DWIGHT K., WOLD A. Interband transitions ofsemiconducting oxides determined from photoelectrolysis spectra [J]. Solid StateCommunications,1979,30(7):433-437.
    [146] CHEN ZHEBO, JARAMILLO THOMAS F., DEUTSCH TODD G., et al.Accelerating materials development for photoelectrochemical hydrogenproduction: Standards for methods, definitions, and reporting protocols [J].Journal of Materials Research,2010,25(1):3-16.
    [147] SIVULA KEVIN, ZBORIL RADEK, LE FORMAL FLORIAN, et al.Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by aSolution-Based Colloidal Approach [J]. Journal of the American ChemicalSociety,2010,132(21):7436-7444.
    [148] TU YU-CHIEH, LIN JHIN-FONG, LIN WEI-CHUN, et al. Improving theelectron mobility of TiO2nanorods for enhanced efficiency of apolymer-nanoparticle solar cell [J]. CrystEngComm,2012,14(14):4772-4776.
    [149] MICHAEL A HENDERSON. A surface science perspective on photocatalysis[J]. Surface Science Reports,2011,66(6-7):185-297.
    [150] CARP O., HUISMAN C. L., RELLER A. Photoinduced reactivity of titaniumdioxide [J]. Progress in Solid State Chemistry,2004,32(1–2):33-177.
    [151] ZHANG RUBING, GAO LIAN, ZHANG QINGHONG. Photodegradation ofsurfactants on the nanosized TiO2prepared by hydrolysis of the alkoxidetitanium [J]. Chemosphere,2004,54(3):405-411.
    [152] DOZZI MARIA VITTORIA, SELLI ELENA. Doping TiO2with p-blockelements: Effects on photocatalytic activity [J]. Journal of Photochemistry andPhotobiology C: Photochemistry Reviews,2013,14(0):13-28.
    [153] ALLAM N. K., HAMEDANI H. A., GARMESTANI H., et al. ElectrochemicalFabrication of Strontium-Doped TiO2Nanotube Array Electrodes andInvestigation of Their Photoelectrochemical Properties [J]. Journal of PhysicalChemistry C,2011,115(27):13480-13486.
    [154] CHEN YU-CHIH, PU YING-CHIH, HSU YUNG-JUNG. Interfacial ChargeCarrier Dynamics of the Three-Component In2O3–TiO2–Pt HeterojunctionSystem [J]. The Journal of Physical Chemistry C,2012,116(4):2967-2975.
    [155] MARSCHALL ROLAND. Semiconductor Composites: Strategies forEnhancing Charge Carrier Separation to Improve Photocatalytic Activity [J].Advanced Functional Materials,2013, DOI:10.1002/adfm.201303214.
    [156] ZHANG S. S., PENG F., WANG H. J., et al. Electrodeposition preparation ofAg loaded N-doped TiO2nanotube arrays with enhanced visible lightphotocatalytic performance [J]. Catalysis Communications,2011,12(8):689-693.
    [157] ZHANG J. L., YUAN Z. F., XU B. S., et al. Photocatalytic activity of TiO2nanotube layers coated with Ag and Pt [J]. Advances in Applied Ceramics,2010,109(6):362-366.
    [158] LIANG Y. C., WANG C. C., KEI C. C., et al. Photocatalysis of Ag-Loaded TiO2Nanotube Arrays Formed by Atomic Layer Deposition [J]. Journal of PhysicalChemistry C,2011,115(19):9498-9502.
    [159] AURORA P., RHEE P., THOMPSON L. Titania Nanotube Supported GoldPhotoanodes for Photoelectrochemical Cells [J]. Journal of the ElectrochemicalSociety,2010,157(7):K152-K155.
    [160] QUAN X., CHEN H., CHEN S., et al. Fabrication of TiO2-Pt coaxial nanotubearray schottky structures for enhanced photocatalytic degradation of phenol inaqueous solution [J]. Journal of Physical Chemistry C,2008,112(25):9285-9290.
    [161] ZHAO G. H., LI P. Q., CUI X., et al. Constructing Stake StructuredTiO2-NTs/Sb-Doped SnO2Electrode Simultaneously with High Electrocatalyticand Photocatalytic Performance for Complete Mineralization of RefractoryAromatic Acid [J]. Journal of Physical Chemistry C,2009,113(6):2375-2383.
    [162] MOHAPATRA S. K., BANERJEE S., MISRA M. Synthesis of Fe2O3/TiO2nanorod-nanotube arrays by filling TiO2nanotubes with Fe [J]. Nanotechnology,2008,19(31):315601.
    [163] ZHANG Z. H., YUAN Y., LIANG L. H., et al. Preparation andphotoelectrochemical properties of a hybrid electrode composed of polypyrroleencapsulated in highly ordered titanium dioxide nanotube array [J]. Thin SolidFilms,2008,516(23):8663-8667.
    [164] CONG YANQING, LI ZHE, ZHANG YI, et al. Synthesis of α-Fe2O3/TiO2nanotube arrays for photoelectro-Fenton degradation of phenol [J]. ChemicalEngineering Journal,2012,191(0):356-363.
    [165] JEON TAE HWA, CHOI WONYONG, PARK HYUNWOONG.Photoelectrochemical and Photocatalytic Behaviors of Hematite-DecoratedTitania Nanotube Arrays: Energy Level Mismatch versus Surface SpecificReactivity [J]. The Journal of Physical Chemistry C,2011,115(14):7134-7142.
    [166] KUANG S. Y., YANG L. X., LUO S. L., et al. Fabrication, characterization andphotoelectrochemical properties of Fe2O3modified TiO2nanotube arrays [J].Applied Surface Science,2009,255(16):7385-7388.
    [167] SIVULA KEVIN, LE FORMAL FLORIAN, GR TZEL MICHAEL. SolarWater Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes [J].Chemsuschem,2011,4(4):432-449.
    [168] BAHNEMANN DETLEF W, KOKORIN ALEKSANDR IL ICH. ChemicalPhysics of Nanostructured Semiconductors [M]. VSP.2003.
    [169] HOROWITZ GILLES. Capacitance-voltage measurements and flat-bandpotential determination on Zr-doped α-Fe2O3single-crystal electrodes [J].Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1983,159(2):421-436.
    [170] SANCHEZ C., SIEBER K. D., SOMORJAI G. A. The photoelectrochemistry ofniobium doped α-Fe2O3[J]. Journal of Electroanalytical Chemistry andInterfacial Electrochemistry,1988,252(2):269-290.
    [171] KENNEDY JOHN H, FRESE KARL W. Photooxidation of Water at α-Fe2O3Electrodes [J]. Journal of the Electrochemical Society,1978,125(5):709-714.
    [172] PENG LINLIN, ET AL. Synthesis, photoelectric properties and photocatalyticactivity of the Fe2O3/TiO2heterogeneous photocatalysts [J]. Physical ChemistryChemical Physics,2010,12(28):8033.
    [173] YAO CHANGWA, ZENG QIAOSHI, GOYA G. F., et al. ZnFe2O4Nanocrystals: Synthesis and Magnetic Properties [J]. The Journal of PhysicalChemistry C,2007,111(33):12274-12278.
    [174] MATHEW DALIYA S., JUANG RUEY-SHIN. An overview of the structureand magnetism of spinel ferrite nanoparticles and their synthesis inmicroemulsions [J]. Chemical Engineering Journal,2007,129(13):51-65.
    [175] CHEN Y F, SPODDIG D, ZIESE M. Epitaxial thin film ZnFe2O4: asemi-transparent magnetic semiconductor with high Curie temperature [J].Journal of Physics D: Applied Physics,2008,41(20):205004.
    [176] CASBEER ERIK, SHARMA VIRENDER K., LI XIANG-ZHONG. Synthesisand photocatalytic activity of ferrites under visible light: A review [J]. Separationand Purification Technology,2012,87(0):1-14.
    [177] HOU YANG, LI XINYONG, ZHAO QIDONG, et al. ElectrochemicallyAssisted Photocatalytic Degradation of4-Chlorophenol by ZnFe2O4-ModifiedTiO2Nanotube Array Electrode under Visible Light Irradiation [J].Environmental Science&Technology,2010,44(13):5098-5103.
    [178] TEH PEI FEN, PRAMANA STEVIN SNELLIUS, SHARMA YOGESH, et al.Electrospun Zn1–xMnxFe2O4Nanofibers As Anodes for Lithium-Ion Batteries andthe Impact of Mixed Transition Metallic Oxides on Battery Performance [J].ACS Applied Materials&Interfaces,2013,5(12):5461-5467.
    [179] BORSE P. H., JANG J. S., HONG S. J., et al. Photocatalytic HydrogenGeneration from Water-methanol Mixtures Using Nanocrystalline ZnFe2O4under Visible Light Irradiation [J]. Journal of the Korean Physical Society,2009,55(4):1472-1477.
    [180] BOUMAZA S., BOUDJEMAA A., BOUGUELIA A., et al. Visible lightinduced hydrogen evolution on new hetero-system ZnFe2O4/SrTiO3[J]. AppliedEnergy,2010,87(7):2230-2236.
    [181] LV HONGJIN, MA LIANG, ZENG PENG, et al. Synthesis of floriatedZnFe2O4with porous nanorod structures and its photocatalytic hydrogenproduction under visible light [J]. Journal of Materials Chemistry,2010,20(18):3665-3672.
    [182] ZHANG SHOUWEI, LI JIAXING, ZENG MEIYI, et al. In Situ Synthesis ofWater-Soluble Magnetic Graphitic Carbon Nitride Photocatalyst and ItsSynergistic Catalytic Performance [J]. ACS Applied Materials&Interfaces,2013,5(23):12735-12743.
    [183] LU DABAN, ZHANG YAN, LIN SHAOXIONG, et al. Synthesis of magneticZnFe2O4/graphene composite and its application in photocatalytic degradation ofdyes [J]. Journal of Alloys and Compounds,2013,579(0):336-342.
    [184] YU H., LI J. B., LOOMIS R. A., et al. Two-versus three-dimensional quantumconfinement in indium phosphide wires and dots [J]. Nature Materials,2003,2(8):517-520.
    [185] SANO TAIZO. Photochemical effect on reduction of ultrafine (Ni, Zn) ferriteby CO at300°C [J]. Journal of the Chemical Society, Faraday Transactions,1998,94(9):1243-1248.
    [186] YU JIAGUO, DAI GAOPENG, CHENG BEI. Effect of CrystallizationMethods on Morphology and Photocatalytic Activity of Anodized TiO2NanotubeArray Films [J]. The Journal of Physical Chemistry C,2010,114(45):19378-19385.
    [187] RAJESHWAR KRISHNAN, DE TACCONI NORMA R.,CHENTHAMARAKSHAN C. R. Semiconductor-Based Composite Materials:Preparation, Properties, and Performance [J]. Chemistry of Materials,2001,13(9):2765-2782.
    [188] NOZIK A. J. Quantum dot solar cells [J]. Physica E: Low-dimensional Systemsand Nanostructures,2002,14(1–2):115-120.
    [189] GOMEZ-ROMERO P. Hybrid Organic–Inorganic Materials—In Search ofSynergic Activity [J]. Advanced Materials,2001,13(3):163-174.
    [190] GANGOPADHYAY RUPALI, DE AMITABHA. Conducting PolymerNanocomposites: A Brief Overview [J]. Chemistry of Materials,2000,12(3):608-622.
    [191] LU S. L., SUN S. S., JIANG X. X., et al. In situ3-hexylthiophenepolymerization onto surface of TiO2based hybrid solar cells [J]. Journal ofMaterials Science-Materials in Electronics,2010,21(7):682-686.
    [192] ZHU R., JIANG C. Y., LIU B., et al. Highly Efficient NanoporousTiO2-Polythiophene Hybrid Solar Cells Based on Interfacial Modification Usinga Metal-Free Organic Dye [J]. Advanced Materials,2009,21(9):994-1000.
    [193] YANG YUCHENG, WEN JUNWEI, WEI JIANHONG, et al.Polypyrrole-Decorated Ag-TiO2Nanofibers Exhibiting Enhanced PhotocatalyticActivity under Visible-Light Illumination [J]. ACS Applied Materials&Interfaces,2013,5(13):6201-6207.
    [194] TAI Q. D., ZHAO X. Z., YAN F. Hybrid solar cells based onpoly(3-hexylthiophene) and electrospun TiO2nanofibers with effective interfacemodification [J]. Journal of Materials Chemistry,2010,20(35):7366-7371.
    [195] LI XIANGCUN, JIANG GUANGLAN, HE GAOHONG, et al. Preparation ofporous Ppy-TiO2composites: Improved visible light photoactivity and themechanism [J]. Chemical Engineering Journal,2014,236(0):480-489.
    [196] PENG YONG-GANG, JI JUN-LING, ZHANG YUN-LONG, et al. Preparationof poly(m-phenylenediamine)/ZnO composites and their photocatalytic activitiesfor degradation of C.I. acid red249under UV and visible light irradiations [J].Environmental Progress&Sustainable Energy,2014,33(1):123-130.
    [197] MOHAMED A. E., ROHANI S. Modified TiO2nanotube arrays (TNTAs):progressive strategies towards visible light responsive photoanode, a review [J].Energy&Environmental Science,2011,4(4):1065-1086.
    [198] JAN KY CSABA, DE TACCONI NORMA R., CHANMANEE WILAIWAN, etal. Bringing Conjugated Polymers and Oxide Nanoarchitectures into IntimateContact: Light-Induced Electrodeposition of Polypyrrole and Polyaniline onNanoporous WO3or TiO2Nanotube Array [J]. The Journal of PhysicalChemistry C,2012,116(36):19145-19155.
    [199] CAI GUOFA, TU JIANGPING, ZHOU DING, et al. Multicolor ElectrochromicFilm Based on TiO2@Polyaniline Core/Shell Nanorod Array [J]. The Journal ofPhysical Chemistry C,2013,117(31):15967-15975.
    [200] SHI LING, LIANG RU-PING, QIU JIAN-DING. Controllable deposition ofplatinum nanoparticles on polyaniline-functionalized carbon nanotubes [J].Journal of Materials Chemistry,2012,22(33):17196-17203.
    [201] ZHANG JING, KONG LING-BIN, WANG BIN, et al. In-situ electrochemicalpolymerization of multi-walled carbon nanotube/polyaniline composite films forelectrochemical supercapacitors [J]. Synthetic Metals,2009,159(3–4):260-266.
    [202] KIM BYOUNG-JIN, OH SEONG-GEUN, HAN MOON-GYU, et al.Preparation of Polyaniline Nanoparticles in Micellar Solutions as PolymerizationMedium [J]. Langmuir,2000,16(14):5841-5845.
    [203] KOWALSKI DAMIAN, TIGHINEANU ALEXEI, SCHMUKI PATRIK.Polymer nanowires or nanopores? Site selective filling of titania nanotubes withpolypyrrole [J]. Journal of Materials Chemistry,2011,21(44):17909-17915.
    [204] ROY POULOMI, DEY TULI, SCHMUKI PATRIK. Scanning ElectronMicroscopy Observation of Nanoscopic Wetting of TiO2Nanotubes and ODSModified Nanotubes Using Ionic Liquids [J]. Electrochemical and Solid StateLetters,2010,13(7):E11-E13.
    [205] YU JIA-GUO, YU HUO-GEN, CHENG BEI, et al. The Effect of CalcinationTemperature on the Surface Microstructure and Photocatalytic Activity of TiO2Thin Films Prepared by Liquid Phase Deposition [J]. The Journal of PhysicalChemistry B,2003,107(50):13871-13879.
    [206]徐惠,李俊玲,彭振军, et al.聚苯胺的电化学制备及电容特性[J].高分子材料科学与工程,2013(02):9-12.
    [207] STILWELL DAVID E, PARK SU‐MOON. Electrochemistry of conductivepolymers II. Electrochemical studies on growth properties of polyaniline [J].Journal of the Electrochemical Society,1988,135(9):2254-2262.
    [208] ZHAO QIDONG, XIE TENGFENG, PENG LINLIN, et al. Size-andOrientation-Dependent Photovoltaic Properties of ZnO Nanorods [J]. TheJournal of Physical Chemistry C,2007,111(45):17136-17145.
    [209] SCHOENHALZ ALINE L., ARANTES JEVERSON T., FAZZIOADALBERTO, et al. Surface and Quantum Confinement Effects in ZnONanocrystals [J]. The Journal of Physical Chemistry C,2010,114(43):18293-18297.
    [210] MORA-SER I., BISQUERT J., DITTRICH TH, et al. Photosensitization ofTiO2Layers with CdSe Quantum Dots: Correlation between Light Absorptionand Photoinjection [J]. The Journal of Physical Chemistry C,2007,111(40):14889-14892.
    [211] DUZHKO V. Photovoltage Phenomena in Nanoscale Materials [M].2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700