用户名: 密码: 验证码:
禽传染性支气管炎病毒Sczy3株全基因组序列测定分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸡传染性支气管炎(IB)是由鸡传染性支气管炎病毒(IBV)引起的一种鸡的急性、高度接触性传染病。现在已经在全球流行蔓延,给世界家禽养殖业带来极大的经济损失。由于禽传染性支气管炎病毒(IBV)频繁的基因点突变和重组,目前已经出现了许多不同的血清型和基因型毒株,并且它们之间缺乏交叉保护性或交叉保护性低,所以分析某地区流行的IBV的基因组结构特点,有助于IB的防控。先前研究证实,近年来四川IBV分离株基因型主要是LX4即QX-like型。从S1基因进化树分析推出Sczy3分离株属于QX型,但是Sczy3基因组的其他基因片段还未被测序。
     本研究应用RT-PCR方法对Sczy3分离株基因组全序列进行测定,结果表明Sczy3分离株具有典型的禽状病毒基因序列特征5'Cap-1a-1b-S-3a-3b-(E)-M-5a-5b-N-3'Poly A。Sczy3分离株基因组长27695bp,含有10个开放阅读框(ORF)。Gene 1 (复制转录酶)含有两个开放阅读框ORF1a和ORF1b,分别由11856和7959个核苷酸组成,编码3951个和2652个氨基酸;Gene2(纤突蛋白基因,S)含有一个开放阅读框由3498个核苷酸组成,编码1165个氨基酸,其中S1基因编码540个氨基酸。Gene3(辅助蛋白基因)包括三个开放阅读框ORF 3a、ORF 3b和ORF3c(E),分别编码57、62和108个氨基酸;Gene 4(膜蛋白基因,M)一个开放阅读框,由678个核苷酸组成,编码225个氨基酸;Gene 5(辅助蛋白基因)含三个开放阅读框ORF 5a和ORF 5b,分别编码65和82个氨基酸;Gene 6(核衣壳蛋白基因,N)由1230个核苷酸组成,编码409个氨基酸。部分相邻基因间有重叠现象。Gene 1和Gene 2重叠110 nt, Gene 2和Gene 3重叠32 nt, Gene 3和Gene 4重叠114 nt, Gene 5和Gene 6重叠159 nt。
     核酸序列同源性比较表明Sczy3与参考毒株基因组序列同源性在86.1%-94.1%之间,与QX-like IBV有核苷酸同源性最高,与Mass型IBV核苷酸同源性最低。S蛋白裂解位点分析表明H-R-R-R-R不是中国分离毒株特有的裂解位点。
     系统进化树分析显示,与LX4型IBV亲缘关系较近,与Mass型Conn型IBV毒株亲缘关系很远。重组分析推测,Sczy3是一株嵌合IBV毒株,假定亲本毒株是LX4和H120。
     综上所述,本实验课题为深入研究IBV在中国的演变特征,以及IBV的反向遗传学提供参考依据,同时也丰富了冠状病毒IBV的生物信息数据库。
Infectious bronchitis (IB) is a highly contagious and acute disease of chickens. Now it has been spreaded to the whole world, and has posed a substantial economic losses to the world poultry industry. Because the genome of IBV strains are continuously evolving by the frequent point mutations and genomes recombination, currently, dozens of serotypes and genotypes of IBV have been detected, and the cross-protection between different strains is nonexistent and weak. Therefore, features of the genome structure of IBV that is popular in an area is analysed, which will help to prevent and control IB. Our previous study revealed that isolates in Sichuan province recently were mainly LX4 genotype or QX-like strains. The Sczy3 is a QX-like IBV strain on the basis of the sequence comparison of S1 gene. However, other parts of the genomes of the Sczy3 strain has never been sequenced.
     The complete genome of Sczy3 was found to consist of 27,695 nucleotides with a genomic structure similar to other the IBV strains,5'Cap-1a-1b-S-3a-3b-3c(E)-M-5 a-5b-N-3'Poly A.
     It comprises ten open reading frames (ORFs). The gene 1 (polymerase protein) consists of two open reading frames (ORFs), ORF 1a and 1b, which are 11,856 and 7,959 nt long respectively. Encoding 3,952 and 2,652 aa respectively. Gene 2 (Spike Protein gene, S) contains a single ORF,3498 nt long, encoding 1165 aa, among which, S1 encodes 540 aa. Gene 3(Accessory Proteins gene), which contains three ORFs:3a,3b, and 3c (Envelope Protein gene, E). The ORFs encodes 57,62, and 108 aa, respectively. Gene 4 (Membrane Protein gene, M) encodes 225 aa with a single ORF of 678 nt. Gene 5(Accessory Proteins gene) contains two ORFs:5a and 5b encoding 65 and 82 aa respectively. Gene 6 (Nuclecapsid Protein gene, N) encodes 409 aa, with a single ORF of 1230 nt. In addition, adjacent genes of the Sczy3 genome overlap. Gene 1 and Gene 2, Gene 2 and Gene 3, Gene 3 and Gene 4, Gene 5 and Gene 6 overlap 110,32,114 and 159 nt respectively.
     Nucleotide sequence identity revealed that Sczy3 had homologies of 86.1%-94.1%of the whole genome nucleotide sequence, and the highest nucleotide sequence identity to QX-like IBVs, while had a lowest nucleotide sequence identity to massachusettes type IBVs. S protein cleavage site analysis showed that HRRRR is not unique to the cleavage site of the strains from China.
     Phylogenetic tree analysis showed that, strains Sczy3 has closer genetic relationship with IBV LX4-type IBV strains and father genetic relationship with the Mass-type and Conn-type IBV strains. The recombinant analysis found that Sczy3 was a chimera strain, which of putative Parental sequence are LX4 and H120 strains.
     In summary, this study may help to decipher the evolution character of IBV in China and provide a reference for reverse genetics of IBV. Futhermore, enriched the database of IBV biological information.
引文
[1]Calnek B W, John H, Charles W, et al. Diseases of Poultry[M].10th edition. Iowa State University Press, Ames,1997,511-526.
    [2]Cavanagh D, Naqi S. Infectious bronchitis. In:Sai Y M, Bnares H J, GlissonJR, Fadyl A M. McDougald LR, Swyane D E (Eds), Disease of Poulrtry[C], Ilth ed. Iowa state University Perss, Ames, IA,2003,101-119.
    [3]Gelb J J, Jackwood M W. Infectious bornchitis. In:Swayne, D.E., Glisson, J.R., Jackwood M.W, Pearson J E, Reed W M (Eds), A Laboratory Manual for the Isolation and Identification of Avian pathogens[C]. fourth ed. American Association of Avian Phatologists, Kennett Suqare, PA,1998, 169-174.
    [4]Boltz D A, Nakai M, Bahra J M. Avian infectious bronchitis virus:a possible cause of reduced fertility in the rooster[J]. Avian Dis,2004,48(48):909-915.
    [5]Smith H W, Cook J K, parsell Z E. The experimental infection of chickens with mixtures of Infectious bronchitis virus and Escherichia coli[J]. General Virology,1985,66:777-786.
    [6]Matthjis M G van Eck J H, Landman W J. Ability of Massachusetts-type infectious bronchitis Virus to increase colibacillosis suscePtibility incommercial broilers:a comparison bewteen vaccine and viurlent field virus[J]. Avian phatol,2003,32(5):473-481.
    [7]Cavanagh D, Ellis M M, Cook J K A.Relationship between sequence variation in the S1 spike protein of infectious bronchitis virus and the extent of cross-protection in vivo[J]. Avian Pathol, 1997,26:63-74.
    [8]Cavanagh D. Coronaviruses in poultry and other birds. Avian Pathol[J].2005,34(6):439-448.
    [9]Masters P S. The molecular biology of coronaviruses[J]. Adv.Virus Res.,2006,66:193-292.
    [10]殷震,刘景华.动物病毒学[M].第二版.北京:科学出版社,1997,671-704.
    [11]Boursnell M E, Borwn T D, Foulds I J, et al. Completion of sequence of the genome of the Coronavirous avian infectious virus [J]. General Virology,1987,68:51-77.
    [12]Lai M M C, Cavanagh D. The molecular biology of coronavirusea[J]. Adv Virus Res,1997,48: 1-100.
    [13]Ignjatovie J,Gould G, Sapats S, Isolation of a variant infectious bronchitis virus in Australia that further illustrates diversity among emergings trains[J]. Arch Virol,2006,151(8):1567-1585.
    [14]Ambali A G, Jones R C. Early Pathogenesis in chieks with an enterotropic strain of infectious bronchitis virus[J], Avian Disease.1990,34:809-817.
    [15]Brown T D K, Boursnell M E G, Binns M M. A leader sequence is present on mRNA A of avian infectious bronchitis virus[J]. J Gen Virol,1984,65(8):1437-1442.
    [16]Sterm D F, Kennedy S T. Coronavirus multiplication strategy I. Identification and characterization of virus intracellular RNA species to the genome[J]. Journal of virology,1980,34(3):665-674.
    [17]Corse E, Machamer C E. The cytoPlasmic tails of infectious bronchitis virus E and M Proteins mediate their interaction[J].Virology.2003,312(1):25-34.
    [18]Brown T D K, Boursnell M E G, Binns M M, et al. Cloing and sequenceing of 5'terminal sequence from avian infectious bronchitis virus genomic RNA[J]. J Gen Virol,1986,67:221-228.
    [19]Cavanagh D, Davis P J, Cook J K A, et al. Location of the amino acid difference in the S1 spike glycol protein subunit of closely related serotypes of infectious bronchitis virus[J]. Avian Pathol, 1992,21:33-43.
    [20]Cavanagh D, Davis P J. Coronavirus IBV:removal of spike glycopolyptide S1 by urea abolishes infectivity and haemgglutination but not attachment to cells[J]. J Gen.Virol,1986,67:1443-1448.
    [21]Mark W, Jackwood W, Deborah A H, Scott A C, et al. Spike glyeoproteion cleavage recognition site analysis of infectious bronchitis virus[J]. Avian Dis,2001,45:366-372.
    [22]Linlin Li, Chunyi Xue, Feng Chen, et al. Isloation and genetic analysis revealed no predominant new strains of avian infectious bronchitis virus circulating in South China during 2004-2008. Verterinary Microbiology[J].2010,143:145-154.
    [23]Victor C Chu, Lisa J McElroy, Vicky Chu, et al. The Avian Coronavirus Infectious Bronchitis Virus Undergoes Direct Low-pH-Dependent Fusion Activation during Entry into Host Cells[J]. General Virol,2006, (5):128-135.
    [24]Johnson M A, Pooley C, Ignjatovic J, et al. A recombinant fowl adenovirus expressing the Sl gene of infectious bronchitis virus protects against challenge with infectious bronchitis virus[J]. Vaccine, 2003,21:2730-2736.
    [25]Mockett A P, Cavanagh D, Brown T D, et al. Monoclonal antibodies to the S1 spike and membrane proteins of avian infectious bronchitis coronavirus strain M41[J]. Genvirol,1984,65(12): 2281-2286.
    [26]Krueger D K, Kelly S M, Lewicki D N, et al. Variations in disparate regions of the murine coronavirus spike protein impact the initiation of membrane fusion[J]. J Virol,2001,75(6): 2792-2802.
    [27]Kusters J G, Niesters H G M, Lenstra J A. Phylogeny of antigenic variants of avian coronavirus IBV [J]. Virolgy,1989,169:217-221.
    [28]Casais R, Dove B, Cavanagh D, et al. Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism[J] J. Virol,2003,77(16):9084-9089.
    [29]Jia W, WangX Z, Parrish C R, et al. Analysis of the Serotype-Specific Epitopes of Avian Infectious Bronchitis Virus Strains Ark99 and Mass41[J]. Journal of Virology,1996,70(10):7255-7259.
    [30]Kusters J G, Jager E J, Lenstra J A, et al. Analysis of an immunodominant region of infectious bronehitis virus[J]. J Immunol,1989,143(8):2692-2698.
    [31]李广兴,马德星.鸡传染性支气管炎病毒SC株N基因序列测定与同源性分析[J].吉林畜牧兽医.2004,7:19-21.
    [34]Nie L, Zhang Q X, Han Z X, et al. Genetic variations of membrane gene of infectious bronehitis virus strains isolated in China between 1995 and 2004[J]. Bing Du Xue Bao,2007,23(4):298-304.
    [35]Wang J, Fang S, Xiao H, et al. Interaction of the coronavirus infectious bronchitis virus membrane protein With beta-actin and its implication in virion assembly and budding[J]. PloS One,2009,4(3): e4908.
    [36]David F, Bartholomew M. Coronavirus Proteins:Structure and Function of the Oligosaccharides of the Avian Infectious Bronchitis Virus Glycoproteins[J]. Virology,1982, p:804-812.
    [37]Martin D, and Rybicki E. RDP:detection of recombination amongst aligned sequences[J]. Bioinformatics,2000,16:562-563.
    [38]Weiss S R, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus [J]. Microbiol Mol Biol Rev,2005,69(4):635-664.
    [39]Lai M M. Coronavirus:organization, replication and expression of genome[J].Annu Rev Microbiol. 1990,44:303-333.
    [40]Mills D R, Dobkin C, Kramer F R. Template-determined, variable rate of RNA chain elongation[J]. Cell,1978,15(2):541-550.
    [41]步志高,赵晓岩,刘长军,等.DNA免疫防制鸡传染性支气管炎的探索研究.中国预防兽医学报[J].2000,22(4):252-255.
    [42]Chen H, Gill A, Brian K, et al. Mass Spectroscopic Characterization of the Coronavirus Infectious Bronchitis Virus Nucleoprotein and Elucidation of the Role of Phosphorylation in RNA Binding by Using Surface Plasmon Resonance [J]. Virology,2005,79:1164-1179.
    [43]Zhou M, Williams A K, Chung S I, et al. The infectious bronchitis virus nucleocapsid protein binds RNA sequences in the 3'terminus of the genome [J]. Viroloy.1996,217(1):191-199.
    [44]Yu D, Han Z, Xu J, et al. A novel B-cell epitope of avian infectious bronchitis virus N protein[J]. Viral Immunol,2010,23(2):189-199.
    [45]Koch G, Hartog L, Kant A, et al. Aniigenic domains on the peplomer protein of avian infectious bronchitis virus:correlation with biological funetions[J]. J Gen Virol,1990,71:1929-1935.
    [46]Boots A M, Van Lierop M J, Kusters J G, et al. MHC classⅡ-restricted T-cell hybridomas recognizing the nucleocapsid protein of avian coronavirus IBV[J]. Immunology,1991,72(1): 10-14.
    [47]Jayaram J, Youn S, Collisson E W. The virion N protein of infectious bronchitis virus is more phosphorylated than the N protein from infected cell lysates[J]. Virology,2005,339(1):127-135.
    [48]Ignjatovic J, McWaters P G. Monoclonal antibodies to three structural proteins of avian infectious bronchitis virus:characterization of epitopes and antigenic differentiation of Australian strains [J]. General Virology,1991,72(12):2915-2922.
    [49]Liu D X, Cavanagh D, Green P, et al. A polycistronic mRNA specifid by the coronavirus infectious bronchitis virus[J]. Virology,1991,184(2):531-544.
    [50]Lontok E, Corse E, Machamer C E. Intracellular targeting signals contribute to localization of coronavirus spike proteins near the virus assembly site[J]. J Virol,2004,78(11):5913-5922.
    [51]Boursnell M E G, Brown T D K, Foulds I J, et al. Completion of the sequence of the coronavirus avian infectious bronchitis virus[J]. J Gen Virol,1987,68:57-77.
    [52]Jia W, Karaca K, Parrish C R, Naqi S A. A novel variant of avian infectious bronchitis virus resulting from recombination among three different strains[J]. Avian Pathol,1995,140(2): 259-271.
    [53]Liu D X, Cavanagh D. A polycistronic mRNA specified by the coronavrus IBV[J]. Virol,1991, 184(2):531-544.
    [54]Jia W, Syed A, Naqi S A. Sequnce analysis of gene 3, gene 4 and gene 5 of avian infectious bronchitis virus strain[J]. Gene,1997,189:189-193.
    [55]Corse E, Machamer C E. Infectious bronehitis virus E protein is targeted to the Golgi complex and directs release of virus-like Particles[J]. J Virol,2000,74(9):4319-4326.
    [56]Fang S, Chen B, Tay F P, et al. An arginine-to-proline mutation in a domain with undefined functions within the helicase protein (Nsp13) is lethal to the coronavirus infectious bronchitis virus in cultured ceIls[J]. Virology,2007,358(1):136-147.
    [57]awicki S G, Sawicki, D L, Siddell S G, et al. A contemporary view of coronavirus transcription[J]. Journal of virology,2007,81:20-29.
    [58]Ziebuhr J,Thiel V, Gorbalenya, et al. The autocatalytic release of a putative RNA virus transcription factor from its polyprotein precursor involves two paralogous papain-like proteases that cleave the same peptide bond[J]. The Journal of biological chemistry,276:33220-33232.
    [59]Padidam M, Sawyer S, Fauquet C M. Possible emergence of new geminiviruses by frequent recombination[J]. Virology,1999,265:218-225.
    [60]Graham R L, Sims A C, Brockway S M, et al.The nsp2 relicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication[J]. Virlogy, 2005,79:13399-13411.
    [61]Oostra M, Lintelo E G, Deijs M, et al. Localization and membrane topology of coronavirus nonstructural protein 4; involvement of the early secretory pathway in replication[J]. Journal of virology,2007,81:12323-12336.
    [62]Sparks J S, Lu X, Denison M P. Genetic analysis of Murine hepatitis virus nsp4 in virus replication[J]. Journal of virology,2007,81:12554-12563.
    [63]Anand K, Ziebuhr J, Wadhwani p, et al. Coronavirus main proteinase (3CLpro) structure:basis for design of anti-SARS drugs[J]. Sience,2003,300:1763-1767.
    [64]Ziebuhr J, Schelle B, Karl N, et al. Human coronavirus 229E papain-like proteases have overlapping specificities but distinct functions in viral replication[J]. Journal of virology,2007,81: 2922-3932.
    [65]Egloff M P, Ferron F, Campanacci V, et al. The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world[J]. Proceedings of the National Academy of Sciences of the Unite States of America,2004, 101:3792-3796.
    [66]Donaldson E F, Sims A C, Graham R L, et al. Murine hepatitis virus replicase protein nsplO is a critical regulator of viral RNA synthesis[J]. Journal of virology,2007,81:6356-6368.
    [67]Imbert I, Guillemot J C, Bourhis J M, et al. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus[J]. The EMBO journal,2006,25:4933-4942.
    [68]Ivanov K A, Hertzig T, Rozanov M, et al. Major genetic marker of nidoviruses encodes a replicative endoribonuclease[J]. Proceedings of the National Academy of Sciences of the Unite States of America,2004,101:12694-12699.
    [69]Eckerle L D, Lu X, Sperry S M, et al. High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants[J]. Journal of virology,2007,81:12135-12144.
    [70]Sperry S M, Kazi L, Graham R L, et al. Single-amino-acid substitutions in open reading frame (ORF) Ib-nsp14 and ORF 2a proteins of the coronavirus mouse hepatitis virus are attenuating in mice[J]. Journal of virology,2005,79:3391-3400.
    [71]Chen H W, Huang Y P, Wang C H. Identification of Taiwan and China-like recombinant avian infectious bronchitis viruses in Taiwan[J]. Virus research,2009,20:121-129.
    [72]Ricagno S, Egloff M P, Ulferts R, et al. Crystal structure and mechanistic determinants of SARS coronavirus nonstructural protein 15 define an endoribonuclease family[J]. Proceedings of the National Academy of Sciences of the Unite States of America,2006,103:11892-11897.
    [73]Holmes K V, Doller E W, Sturman L S. Tunicamycin resistant glycosylation of coronavirus glycoprotein:Demonstration of anovel type of viral glycoprotein[J]. Virol,1981,115(2):334-344.
    [74]Teri hodgson, paul Britton, Dave Cavanagh, et al. Neither the RNA nor the Proteins of Open Readin Frames 3a and 3b of the Coronavirus Infectious Bronchitis Virus Are Essential For Replication[J]. Virology,2006,80:296-305.
    [75]Shen S, Wen Z L, Liu D X. Emergence of coronavirus infectious bronchitis virus mutant with a truncated 3b gene:functional characterization of the 3b protein in patheogenesis and replication[J]. Virology,2003,311:16-27.
    [76]Rosa Casais, Marc Davies, David Cavanagh, et al.Gene 5 of the Avian Coronavirus Infectious Bronchitis Virus Is Not Essential forReplication[J]. Virology,2005,79:8065-8078.
    [77]Soonjeon Youna, Julian L Leibowitza, Ellen W Collisson. In vitro assembled recombinant infectious bronchitis viruses demonstrate that the 5a open reading frame is not essential for replication[J]. Virology,2005,332:206-215.
    [78]Dalton K, Casais R, Shaw K, et al.cis-acting sequences required for coronavirus infectious bronchitis virus defective-RNA replication and packaging[J]. Journal of virolog,2001,75(1): 125-133.
    [79]Stirrups K, Shaw K, Evans S, et al. Leader switching occurs during the rescue of defective RNAs by heterologus strains of the coronavirus infectious bronchitis virus[J]. Journal of virology,1981: 791-801.
    [80]Liu P, Li L, Millership J J, et al. A U-turn motif-containing stem-loop in the coronavirus 5' untranslated region plays a functional role in replication[J]. RNA,2007,13:763-780.
    [81]Goebel S J, Miller T B, Bennett C J, et al. A hypervariable region within the 3'cis-acting element of the murine coronavirus genome is nonessential for RNA synthesis but affects pathogenesis[J]. Journal of virology,2007,81:1274-1287.
    [82]Wang L, Junker D, Collisson E W. Evidence of natural recombination within the S1 gene of infectious bronchitis virus[J]. Virol,1993,192(2):710-716.
    [83]Ambali A G, Jones R C. The effects of three reproduetive hormones and cortisone on the replication of avian infectious bronehitis virus invitro[J]. Rev Roum Virol,1990,41:151-156.
    [84]刘胜旺,刘玉芬,孔宪刚,等.鸡传染性支气管炎病毒中国分离株LH2/01/10纤突蛋白基因的遗传变异[J].中国农业科学,2004,37(2):306-312.
    [85]Zhou J Y, Zhang D Y, Ye J X, et al. Characterization of avian infectious bronchitis virus isolated in china from chickens with nephritis[J]. Vet Med B Infect Dis Vet Public Health,2004,51(4): 147-152.
    [86]Smati R, Silim A, Guertin C, et al. Molecular characterization of three new avian infectious bronchitis virus(IBV)strains isolated in Quebec[J]. Virus Genes,2002,25(1):85-93.
    [87]Ladman B S, Loupos A B, Gelb J T. Infectious bronchitis virus S1 gene sequence comparison is a better predictor of challenge of immunity in chickens than serotyping by virus neutralization[J]. Avian pathology,2006,35(2):127-133.
    [88]Dolz R, Pujols J, Ordonez G, et al. Antigenic and molecular characterization of isolate of the Italy 02 infectious bronchitis virus genotype[J]. Avian pathology,2006,35(2):77-85.
    [89]Cavanagh D, Davis P J. Evolution of avian coronavirus IBV:sequence of the matrix glycoprotein gene and intergenic region of several serotypes[J]. Gen Virol,1988,69(3):621-629.
    [90]Moore K M, Bennett J D, seal B S, et al. Sequence comparison of avian infectious bronchitis virus S1 glyeoproteins of the Florida serotype and five variant isolates from Georgia and California [J]. Virus Genes,1998,17(1):63-83.
    [91]任涛.IBV的致病性及主要结构基因的遗传变异研究.见:华南农业大学动物医学系禽病研究室编,鸡传染性支气管炎的研究论文集(一)[C].广州,2001,236-443.
    [92]任涛,廖明,曹伟胜,等.鸡传染性支气管炎病毒中国地方分离株膜蛋白基因的克隆及序列分析[J].中国兽医杂志,2006,42(8):3-6.
    [93]时莉,肖朝庭,等.我国部分地区1996-2008年传染性支气管炎病毒分离株膜蛋白基因的遗传变异与系统进化分析[J].中国动物传染病学报,2009,17(2): 3 1-37.
    [94]illiams A K, Wang L, Sneed L W, et al. Comparative analyses of the nucleocapsid genes of several strains of infectious bronchitis virus and other coronaviruses[J]. Virus Res,1992,25(3):213-222.
    [95]Bochkov Y A, Tosi G, Massi P, et al. Phylogenetic analysis of partial S1 and N gene sequences of infectious bronchitis virus isolates from Italy revealed genetic diversity and recombination [J].Virus Genes,2007,35:65-71
    [96]王晶钰,邓小敏,张彦明,等.鸡肾型IBV地方分离株N基因的克隆及分子遗传变异分析[J].西北农林科技大学学报,2006,34(5):50-58.
    [97]马亚珍,韩宗玺,邵昱吴,等.中国2005年~2006年鸡传染性支气管炎病毒地方分离株核蛋白基因的遗传变异分析[J].中国预防兽医学报,2008,30(6):420-424.
    [98]Britton P, Evans S, Dove B, et al. Generation of a recombinant avian coronavirus infectious Bronchitis virus using transient dominant selection[J]. J Virol Methods,2005,123(2):203-211.
    [99]步志高,陈万芳.传染性支气管炎病毒的分子变异及其机制[J].国外兽医学:畜禽传染病.1998,18(3):1-4.
    [100]Lee C W, Jackwood M W. Origin and evolution of Georgia 98(GA98), a new serotype of avian infectious bronchitis virus[J]. Virus Res,2001,80:33-39.
    [101]陈峰,周庆丰,廖秋生,等.鸡传染性支气管炎病毒中国分离株S1基因的序列分析[J].中国兽医科技,2005,35(7):515-519.
    [102]陈德胜,潘杰彦,曹瑞兵,等.传染性支气管炎病毒(IBV)国内分离毒株的分子流行病学分析[J].病毒学报.2003,19(2):149-153.
    [103]Wang L, Junker D, Collisson E W. Evidence of natural recombination within the S1 gene of infectious Bronchitis virus[J]. Virology,1993,192(2):710-716.
    [104]Estevez C, Villegas P, EI-Attrache J. A recombination event, induced in ovo, between a low passage infectious bronehitis virus field isolate and highlily embryo adapted vaccine strain[J]. Avian Dis,2003,47(4):1282-1290.
    [105]Seah J N, Yu L K, wang J. Localization of linear B-cell epitopes on infectious bronchitis virus nucleocapsid protein[J]. Veter Microbiol,2000,75:11-16.
    [106]宋翥远.传染性支气管炎病毒变异株全基因组序列测定与分析[D].湖南,湖南农业大学,2010.
    [107]Zou N L, Zhao F F, Wang Y P, et al. Genetic analysis revealed LX4 genotype strains of avian infectious bronchitis virus became predominant in recent years in Sichuan area, China[J]. Virus Genes,2010,41:202-209.
    [108]Ijms M A, Nedialkova D D, Zevenhoven-Dobbe J C, et al. Subgenornic mRNA Synthesis and Virion Biogenesis Depend on the Multifunctional nspl Autoprotease[J]. Journal of Virology. J. Virol,2007,81(19):10496-10505.
    [109]Zhang Y, Wang H N, Wang T, et al. Complete genome sequence and recombination analysis of infectious bronchitis virus attenuated vaccine strain H120[J]. Virus Genes,2010,41,377-388.
    [110]Posada D, Crandall K A. Evaluation of methods for detecting recombination from DNA sequences: Computer simulations. Proc Natl Acad Sci USA,2001,98:13757-13762.
    [111]Liu S, Kong X. A new genotype of nephropathogenic infectious bronchitis virus circulating in vaccinated and non-vaccinated flocks in China[J]. Avian Pathol,2004,33:321-327.
    [112]Ammayappan A, Upadhyay C, Jr J G, et al. Complete genomic sequence analysis of infectious bronchitis virus Ark DPI strain and its evolution by recombination[J]. virology Journal,2008, 5:157.
    [113]Lee C W, Jackwood M W. Evidence of genetic diversity generated by recombination among avian coronavirus IBV[J]. Arch Virol,2000,145:2135-2148.
    [114]Mondal S P, Cardona C J. Genotypic and phenotypic characterization of the California 99(Ca199) variant of infectious bronchitis virus[J]. Virus Genes,2007,34:327-341.
    [115]Kottier S A, Cavanagh D, Britton P. Experimental evidence of recombination in coronavirus infectious bronchitis virus[J].Virology,1995,213:569-580.
    [116]Jia W, Karaca K, Parrish D R, Naqi S A. A novel variant of avian infectious bronchitis virus resulting from recombination among three different strains[J]. Arch Virol,1995,140:259-271.
    [117]Wang L, Junker D, Collisson E W. Evidence of natural recombination within the S1 gene of infectious bronchitis virus[J]. Virology,1993,192:710-716.
    [118]Brooks, J E, Rainer A C et al. Comparisons of envelope through 5B sequences of infectious bronchitis coronaviruses indicates recombination occurs in the envelope and membrane genes. Virus Res,2004,100,191-198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700