杉木连栽地轮栽柳杉和闽楠后养分及铝分布与迁移动态
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杉木在我国用材林生产历史上占有重要地位,但杉木多代连栽引起生产力下降和地力衰退现象在南方山区普遍存在。因此,杉木人工林的立地长期生产力问题引起了人们越来越多的关注,许多学者经过研究认为通过科学的栽杉能够实现杉木人工林的可持续经营,不致引起地力衰退。在传统上普遍认为轮作、混交有利于改善地力和生产力。但由于林木生长周期长,一种栽培方式实施的效果通常要到十几年甚至数十年之后才能体现出来,加之林地环境的多变性而导致土壤肥力的异质性,使得人们对杉木多代连栽地经过长期轮栽后林地地力的演变、铝在生态系统中的贮存及迁移状况、养分的贮存及迁移尤其是微量营养元素的贮存及迁移的研究还不够深入系统,相关报道少。本研究选择了位于杉木中心产区的福建省南平市西芹镇西芹林场中近30年的三代杉木林,以及二代杉木林砍伐后与杉木林同时种植的柳杉林和闽楠林作为研究的试验地。从杉木多代连栽地长期轮栽柳杉和闽楠后不同林分群落结构、生物量分配及生产力、土壤肥力、凋落物现存量及凋落物归还量、养分及铝的现存量和归还量、凋落物分解速率、养分及铝释放特点、养分及铝的空间分布及生物循环过程等角度进行系统深入的比较研究,结果如下:
     (1)杉木连栽地轮栽柳杉和闽楠后,三种林分灌木层物种多样性最丰富的是柳杉林,其次是杉木林,最少的是闽楠林;杉木林和柳杉林林下植被的物种丰富度大于闽楠林。草本层植物的种类和数量的大小顺序是杉木林>柳杉林>闽楠林,柳杉林和杉木林的林下植被丰富,而闽楠林的林下植被则发育不良。
     (2)单株平均木生物量、林分乔木层及林分生物量总量都是柳杉林>闽楠林>杉木林。三种林分乔木层生物量都占生态系统生物量的绝对量,达90%以上。林分的净生长量是闽楠林>柳杉林>杉木林,乔木层的净生长量亦是闽楠>柳杉>杉木,这对于以收获干材为目的的人工用材林经营是非常有利的。
     (3)杉木连栽地轮栽柳杉和闽楠后,表层和中层土壤的总孔隙度、非毛管孔隙度、土壤通气度、非毛管孔隙度与毛管孔隙度的比值都较杉木三代林的增大,土壤的最大持水量、最小持水量、毛管持水量是闽楠林>柳杉林>杉木林,>0.25 mm水稳性团聚体、>1 mm水稳性团粒的数量是闽楠林>柳杉林>杉木林,土壤结构体破坏率是杉木林>柳杉林>闽楠林。说明轮栽改善了土壤孔隙的质量和土壤结构,协调了土壤的水气矛盾。土壤营养元素在不同土层中变化各不相同,在不同的土层会有波动,变化相当复杂。杉木连栽地轮栽柳杉和闽楠后,土壤的HA/FA、交换性盐基离子总量都增大,胶体的品质得到改善。表层土壤交换性酸量呈现出闽楠林>柳杉林>杉木林,但中下层土壤则呈现出杉木林>柳杉林>闽楠林,说明轮栽能够减少中下层土壤的潜性酸量。轮栽后虽然在0-60 cm土层中土壤全铝含量的平均值和活性铝总量平均值呈现出闽楠林>柳杉林>杉木林,但生物毒性较大的交换性铝和单聚体羟基铝占活性铝的百分率则是杉木林>柳杉林>闽楠林,说明轮栽降低了铝的危害。
     (4)三种林分凋落物现存量(包括树上的枯枝枯叶)是柳杉林(8.72 kg/hm2)大于闽楠林(7.10 kg/hm2)和杉木林(7.18 kg/hm2),三种林分都表现出未分解层的凋落物量大于分解层的凋落物量,杉木林和柳杉林的树上枯枝枯叶量大于闽楠林,说明杉木和柳杉凋落物具有较强的宿存性和滞后性。凋落物C现存总量是柳杉林>杉木林>闽楠林,凋落物铝现存总量是闽楠林(66.82 kg/hm2)>柳杉林(49.85 kg/hm2)>杉木林(22.45 kg/hm2),营养元素现存总量是柳杉林(236.42 kg/hm2)>闽楠林(224.37 kg/hm2)>杉木林(164.33kg/hm2)。
     (5)柳杉林和闽楠林年凋落物总量分别是杉木林的2.18倍和1.56倍。杉木林、柳杉林和闽楠林凋落物的归还节律不同,杉木林只有一个明显的主峰(8月份),属单峰型;柳杉林则出现了两个明显的主峰(5月份和8月份),属双峰型;闽楠林亦只有一个明显主峰(4月份),属单峰型。林分通过凋落物形式归还给林地的营养元素的年归还量由大到小的顺序是柳杉林(274.37 kg/hm2)>闽楠林(138.84 kg/hm2 )>杉木林(104.75 kg/hm2)。C和Al的年归还总量是柳杉林>闽楠林>杉木林和柳杉林>杉木林>闽楠林。杉木林凋落叶中C、N、P、K、Ca、Mg、Fe、Mn、Cu、Zn及Al素归还高峰出现在8月份,闽楠凋落叶中各元素的归还高峰出现在4月份,柳杉凋落叶中各元素的归还高峰出现在5月份和8月份。凋落枝中的C、N、P、K, Ca、Mg、Fe、Mn、Cu、Zn及Al素归还量模型与凋落枝归还模式相同,杉木凋落枝各元素的归还的高峰在8月份,柳杉凋落枝各元素的归还高峰在5月份,闽楠凋落枝中各元素的归还高峰是在8月份。
     (6)通过1a的凋落物分解试验,结果表明,6种凋落物分解速率的由大到小的顺序为杉木叶>柳杉叶>闽楠叶>杉木枝>闽楠枝>柳杉枝。经过1a的分解实验,闽楠枝的C含量出现富集,柳杉枝则与开始时的含量基本一致,杉木叶、杉木枝、闽楠叶、柳杉叶则呈现下降。三种凋落叶和闽楠枝的N都出现富集,杉木枝和柳杉枝则下降。P素浓度在杉木叶、杉木枝、闽楠叶、柳杉叶出现富集,柳杉枝和闽楠枝则下降。K素浓度只有柳杉叶的浓度增加,其余的凋落物都出现下降。6种凋落物中Mg含量均下降。闽楠枝Ca呈现富集,其余5种凋落物的Ca浓度均出现下降。微量营养元素除闽楠叶中的Mn含量呈现下降外,其余微量营养元素在6种凋落物中均增加。经过1a的分解,Al的浓度在6种凋落物中均增加。
     (7)凋落物经过1a的分解后,6种凋落物中C的残留率是闽楠枝>柳杉枝>杉木枝>杉木叶>闽楠叶>柳杉叶,均表现出净释放。除了柳杉叶中的K素残留率最后回到原来水平外,其余凋落物中的大量营养元素都表现出净释放。Fe、Cu、Zn在分解过程中残留量的变化较为复杂,而Mn的变化幅度则较为平缓。6种凋落物中的铝经过1a的分解后均出现富集。
     (8) C的年释放量是闽楠林最大,杉木林和柳杉林比较接近。闽楠林和柳杉林营养元素的年释放量分别比杉木林每年多归还了467 819.64 g/hm2、20 537.87 g/hm2的营养元素。闽楠林大量营养元素的年归还量分别是柳杉林和杉木林的1.67倍、1.74倍。大量营养元素的年释放量在三种林分中都呈现出Ca>N>K>Mg>P。除了闽楠汗十的微量营养元素年归还总量表现为释放外,其余凋落物中的微量营养元素都表现出富集,微量营养元素的年富集量是柳杉林>杉木林。Al在三种林分的凋落枝和凋落叶中都呈现出了富集,且是柳杉林>杉木林>闽楠林。
     (9)大量营养元素在各结构层中的含量变幅都是闽楠林最小,而微量营养元素则是闽楠林变幅最大。各元素的贮量在杉木林和柳杉林中的大小顺序都是Al>Fe>K>C>Mg>Ca >N>P>Mn>Zn>Cu,在闽楠林中是Fe>AI>K>C>Ca>Mg>N>Mn>P>Zn>Cu. C总贮量是柳杉林>闽楠林>杉木林,柳杉林和闽楠林生态系统的C贮量分别比杉木林生态系统的C贮量增加了33967.55 kg/hm2、27 181.42 kg/hm2。生态系统Al总贮量是闽楠林>柳杉林>杉木林,闽楠林和柳杉林分别比杉木林生态系统的Al贮量增加了157 465.07 kg/hm2、80807.86 kg/hm2。杉木林生态系统各结构层铝贮量由大到小的顺序是土壤层>枯枝落叶>乔木层>灌木层>草本层,柳杉林和闽楠林是土壤层>枯枝落叶>乔木层>草本层>灌木层。三种生态系统中Al的贮量都集中分布在土壤层中,且是闽楠林>柳杉林>杉木林,分别占生态系统中Al总贮量的99.79%、99.99%、99.99%,土壤是Al的巨大的贮存库,土壤中的Al极少转移至植物体中。生态系统营养元素总贮量是闽楠林>柳杉林>杉木林,与杉木林相比分别增加了483 955.20 kg/hm2和245 339.01 kg/hm2。在杉木林和柳杉林生态系统中各结构层营养元素贮量的大小顺序是土壤层>乔木层>枯枝落叶>灌木层>草本层,在闽楠林是土壤层>乔木层>枯枝落叶>草本层>灌木层。三种生态系统中的营养元素都呈现出土壤层的贮量高于其它各层贮量的总和,因此,土壤才是养分的巨大储藏库。
     (10)乔木层中各营养元素在杉木林中贮量由大到小的顺序是N>Ca>K>Fe>Mg> P>Mn>Zn>Cu,在柳杉林是N>Ca>K>Mg>P>Fe>Zn>Mn>Cu,在闽楠林是N>Ca>K>P>Mg>Mn>Fe>Zn>Cu。三种林分对营养元素的富集规律明显不同,但都表现出对N、Ca、K的富集作用强。
     (11)乔木层C、铝和营养元素的积累速率都是闽楠>柳杉>杉木,营养元素的年总归还量是柳杉林>闽楠林>杉木林,C的年总归还量是柳杉林>闽楠林>杉木林,柳杉林和闽楠林分别比杉木林增加了1 187.97 kg/(hm2·a)、868.64 kg/(hm2·a)。铝总归还量是柳杉林>杉木林>闽楠林。柳杉林和闽楠林营养元素的总吸收量分别是杉木林的1.46倍和1.43倍,闽楠林和柳杉林差异不明显。三种人工林生态系统营养元素总的循环系数是柳杉林>杉木林>闽楠林,柳杉林养分的循环强度最大,闽楠林的最小,杉木林居中。
     (12)C的归还/吸收的总循环系数却是杉木林>柳杉林>闽楠林,杉木林和柳杉林差异不明显,说明闽楠林C的吸收与归还之间较杉木林和柳杉林难于达到平衡。铝的总循环系数是柳杉林>杉木林>闽楠林。说明柳杉林易于达到铝的归还与吸收的平衡,而闽楠林最不易达到平衡,铝的循环强度最小。
     (13)杉木每生产1t干物质平均需要的营养元素量为8.99 kg/t,柳杉平均需要10.77kg/t,闽楠平均需要13.39 kg/t,说明杉木对营养元素的利用效率高于柳杉和闽楠树种。闽楠每生产1t干物质平均需要C量441.40 kg/t、柳杉平均需要464.40 kg/t,杉木平均需要473.41 kg/t,C的利用效率是闽楠>柳杉>杉木。杉木每生产1t的干物质平均需要铝0.12kg/t,柳杉平均需要0.11kg/t,闽楠平均需要0.12 kg/t,可见三树种对铝的利用效率相同。
Cunninghamia lanceolata had an important position in the domestic plantation history of production for timber, but the actuality was common that the productivity descended and the woodland degraded after successive planting of Cunninghamia lanceolata. Therefore, the problem about sustainable productivity of site for plantation of Cunninghamia lanceolata had attracted more attention. Many scholars believed that scientific planting of Cunninghamia lanceolata could achieve sustainable management of the plantation, and would not cause the woodland degradation. There was a common thought that rotative and mixed planting was advantaged to improve site and productivity. Because of the long growth cycle of forest, and that the effect of planting mode usually appeared after 10 years or decades, coupled with the variability of woodland environment causing the heterogeneity of soil fertility, the studies were not going deep into the evolvement of site, and the storage and transfer of Al and nutrition in the ecosystem, especially that of microelement after rotative planting in the field of successive planting of Cunninghamia lanceolata.There has little relevant reports about these studies. The plot was in the productive center of Cunninghamia lanceolata, Xiqin forestry center, in Nanping county, Fujian province. There were 30 a of Cunninghamia lanceolata forests of the third generation where Cryptomeria fortunei and Phoebe bournei was planted after the second generation Cunninghamia lanceolata felling down (hereinafter referred to as the Cryptomeria fortunei forest and the Phoebe bournei forest, respectively). This studies were about community structure, biomass allocation and productivity, soil fertility, litters remain and return, litters decomposition rate; remain and return amount of nutrient and Al; decomposition rate, releasing characteristics, spatial distribution and biological cycle of nutrient and Al for the forest which rotatively planted with Cryptomeria fortunei and Phoebe bournei after second generation plantation of Cunninghamia lanceolata compared with the third generation of Cunninghamia lanceolata (hereinafter referred to as the Cunninghamia lanceolata forest). The results were as follows.
     (1) The Cryptomeria fortunei forest had the most species diversity values in shrub layer, followed by Cunninghamia lanceolata forest, and the Phoebe bournei forest. The species richness values of undergrowth in Cunninghamia lanceolata and Cryptomeria fortunei forest were bigger than that of Phoebe bournei forest. The rank of the number of species and individuals in herb layer was Cunninghamia lanceolata forest>Cryptomeria fortunei forest> Phoebe bournei forest. The undergrowth in Cunninghamia lanceolata and Cryptomeria fortunei forest were rich, and that of Phoebe bournei forest developed badly.
     (2) The rank of biomass of standard tree, tree layer and the forest was Cryptomeria fortunei forest>Phoebe bournei forest>Cunninghamia lanceolata forest. The biomasses of tree layer in three forests were above 90% respectively. Net growth of the forest was Phoebe bournei forest> Cryptomeria fortunei forest>Cunninghamia lanceolata forest, and that of tree layer was as the same. It was very beneficial to management of timber forest.
     (3) The values of total porosity, non-capillary porosity, ventilating degree and ratio of non-capillary porosity/capillary porosity of the surface and middle soil layers in the stands after rotative planting were higher than that in the Cunninghamia lanceolata forest. The rank of maximum and minimum water holding capacity,and capillary water holding capacity was Phoebe bournei forest>Cryptomeria fortunei forest>Cunninghamia lanceolata forest, the rank of amount of water stable aggregates with size bigger than 0.25 mm and 1 mm was Phoebe bournei forest>Cryptomeria fortune forest>Cunninghamia lanceolata forest, and the rank of damage rate of soil structure was Cunninghamia lanceolata forest> Cryptomeria fortunei forest > Phoebe bournei forest. Rotative planting improved the quality of soil porosity and soil structure, and coordinated the contradiction of soil between water and gases. Soil nutrients had some complicated changes in different soil layers. After rotative planting, HA/FA, total exchangeable base cations of soil increased, and the quality of colloid was improved. The topsoil exchange of acid showed Phoebe bournei forest>Cryptomeria fortunei forest>Cunninghamia lanceolata forest, but that of middle soil and subsoil showed Cunninghamia lanceolata forest> Cryptomeria fortunei forest>Phoebe bournei forest, meaning that the rotative planting might reduce the potential acid. Although the average contents of Al and active Al in 0-60 cm soil layer were Phoebe bournei forest>Cryptomeria fortunei forest>Cunninghamia lanceolata forest, but the percentages of exchangeable Al and AI-hydroxy-poly with higher biological toxicity were higher were Cunninghamia lanceolata forest>Cryptomeria fortunei forest>Phoebe bournei forest, meaning that rotative planting reduced the Al hazards.
     (4) The remain amount of litters (including deadbranch and deadleaf) in Cryptomeria fortunei forest (8.72 kg/hm2) was more than that in Phoebe bournei forest (7.10 kg/hm2) and Cunninghamia lanceolata forest (7.18 kg/hm2). The amount of litters in non-decomposition layers were more than that in decomposition layers in the three forests. The bigger amount of deadbranch and deadleaf in Cunninghamia lanceolata and Cryptomeria fortunei forests than that in Phoebe bournei forest meant that the litters in Cunninghamia lanceolata and Cryptomeria fortunei forest had a strong persistent and lag characteristics. The total remain amount of C of litters was Cryptomeria fortunei forest> Cunninghamia lanceolata forest> Phoebe bournei forest. The total remain amount of Al of litters was Phoebe bournei forest (66.82 kg/hm2)> Cryptomeria fortunei forest (49.85 kg/hm2)>Cunninghamia lanceolata forest (22.45 kg/hm2), and nutrition storage was Cryptomeria fortunei forest (236.42 kg/hm2)>Phoebe bournei forest (224.37 kg/hm2)>Cunninghamia lanceolata forest (164.33 kg/hm2).
     (5)The total amounts of litters of Crypotomeria fortunei forest and Phoebe bournei forest were 2.18 and 1.56 times respectively of that of Cunninghamia lanceolata forest. The changing laws of annual litters return were different among the three forests. Cunninghamia lanceolata forest had only one maximum peak for litters (August), Crypotomeria fortunei forest had two maximum peak for litters (May and August), and Phoebe bourne forest also had one maximum peak for litters (April). The annual nutrition return amount by litters was Crypotomeria fortunei forest (274.37 kg/hm2)> Phoebe bournei forest (138.84 kg/hm2)>Cunninghamia lanceolata forest (104.75 kg/hm2). The amount of C was Crypotomeria fortunei forest>Phoebe bournei forest>Cunninghamia lanceolata forest, and that of Al was Crypotomeria fortunei forest> Cunninghamia lanceolata forest>Phoebe bournei forest. The return maximum peak 1 of C、N、P、K、Ca、Mg、Fe、Mn、C、Zn and Al in litters for Cunninghamia Lanceolata forest appeared in August; that of Phoebe bournei forest presented in April, and Crypotomeria fortunei forest was in May and August. The return pattern of C、N、P、K、Ca、Mg、Fe、Mn、Cu、Zn and Al in branch litters was the same as that of biomass of branch litters, the maximum peak of Cunninghamia lanceolata forest in August; that of Crypotomeria fortunei forest in May, and that of Phoebe bournei forest in August.
     (6)Decomposition of the litters was studied for one year. The results showed that the rank of the rate of the six litters's decomposition was Cunninghamia lanceolata leaves>Crypotomeria fortunei leaves>Phoebe bournei leaves>Cunninghamia lanceolata branches>Phoebe bournei branches>Crypotomeria fortunei branches. After la decomposition, C contents of Phoebe bournei branches enriched, and that of Crypotomeria fortunei branches didn't change, but C contents dropped in cunninghamia Lanceolata leaves, Cunninghamia Lanceolata branches, Phoebe bourneid leaves and Crypotomeria fortunei leaves. N was enriched in three leaves litterss and Phoebe bournei branches, but dropped in Crypotomeria fortune branches. The concentration of P increased in Cunninghamia lanceolata leaves and branches, and that of the other litters all descended. The concentration of K increased in Crypotomeria fortunei leaves, and that of the other litters all dropped. In the six litters, the contents of Mg all dropped. The concentration of Ca enriched in Phoebe bournei branches, but descended in other five litters. Microelements all increased in the six litterss except Mn in Phoebe bournei leaves. After a year of decomposition, the concentration of Al in the six litters all increased.
     (7)After a year of decomposition for litters, the remain rate of C in the six litters was Phoebe bournei branches>Crypotomeria fortunei branches>Cunninghamia lanceolata branches> Cunninghamia lanceolata leaves>Phoebe bournei leaves>Crypotomeria fortunei leaves, and all released. Except the remain rate of K in Crypotomeria fortunei leaves back to the original level, the macroelements of the other litters all released. The changes of remain rate for Fe、Cu、Zn were complex in the process of decomposition. The change extent of Mn was gently. Al enriched in the six litters after a year decomposing.
     (8)The most releasing amount of C was in Phoebe bournei forest, but that in Cunninghamia lanceolata and Crypotomeria fortunei forests were more close. The annual releasing amounts of nutrition in Phoebe bournei and Crypotomeria fortunei forest were 467 819.64 g/hm2 and 20 537.87 g/hm2 more than that in Cunninghamia lanceolata forest. The annual return amount of macroelement in Phoebe bournei was 1.67 and 1.74 times of that in Crypotomeria fortunei and Cunninghamia lanceolata forest. The annual releasing amount of macroelements among the three forest appeared Ca>N>K>Mg>P. Microelements in all litters enriched except in Phoebe bournei leaves. The enrichment amount of microelements was Crypotomeria fortunei forest>Cunninghamia lanceolata forest. Al in leaf and branch litters enriched, and presented Crypotomeria fortunei forest>Cunninghamia lanceolata forest> Phoebe bournei forest.
     (9)The change degrees of macroelement contents of each layer in Phoebe bournei forest was the smallest, but that of microelements contents was in the contrary. The storage sequence in Cunninghamia lanceolata and Cryptomeria fortunei forests was Al>Fe>K>C>Mg>Ca>N >P>Mn>Zn>Cu, but Fe>Al>K>C>Ca>Mg>N>Mn>P>Zn>Cu.in Phoebe bournei forest. The total C storage was Cryptomeria fortunei forest>Phoebe bournei forest> Cunninghamia lanceolata forests. Compared with Cunninghamia lanceolata, the C storage of Cryptomeria fortunei and Phoebe bournei forest were increased by 33 967.55 kg/hm2,27 181.42 kg/hm. The total Al storage was Phoebe bournei forest>Cryptomeria fortunei forest> Cunninghamia lanceolata forest. Al storage of Phoebe bournei and Cryptomeria fortunei forests increased 157 465.07 kg/hm2 and 80 807.86 kg/hm2 respectively than that of Cunninghamia lanceolata forest. Al storages of Cunninghamia lanceolata forest in decreasing order were soil layer> litter layer>tree layer> shrub layer>herb layer, and that of Cryptomeria fortunei and Phoebe bournei were soil layer>litter layer>tree layer>herb layer> shrub layer. Al storage of three forests concentrated in soil layers and decreasing order was Phoebe bournei forest> Cryptomeria fortunei forest>Cunninghamia lanceolata forest, which accounts for 99.79%,99.99%,99.99% of total Al storage respectively. The huge storage of Al was soil, and Al transferred few to plants. The total storage of nutrient in three forests was Phoebe bournei forest> Cryptomeria fortunei forest> Cunninghamia lanceolata forest. Compared with Cunninghamia lanceolata forest, Phoebe bournei and Cryptomeria fortunei forest increased by 483 955.20 kg/hm2,245 339.01 kg/hm2. In Cryptomeria fortunei and Cunninghamia lanceolata forest, the decreasing order of nutrient storage was soil layer>tree layer>litter layer>shrub layer>herb layer, and that in Phoebe bournei forest was soil layer>tree layer> litter layer> herb layer>shrub layer. In the three forests, the storage of nutrient in soil was higher than other layers.Therefore, soil was the huge nutrient storage.
     (10) The storage of nutrient in tree layer in Cunninghamia lanceolata forest was N> Ca> K> Fe> Mg> P> Mn> Zn> Cu, that in Cryptomeria fortunei forest was N> Ca> K> P> Mg> Mn> Fe> Zn> Cu, and N>Ca>K>P>Mg>Mn>Fe>Zn>Cu in Phoebe bournei forest. Nutrient enriching laws in three forest was different, but all had strong enriching faction for N, Ca and K elements.
     (11) The accumulation rates of C, Al and nutrient in tree layers were Phoebe bournei forest> Cryptomeria fortunei forest> Cunninghamia lanceolata forest. The total annual return amounts of nutrition and C were Cryptomeria fortunei forest> Phoebe bournei forest> Cunninghamia lanceolata forest. Compared with Cunninghamia lanceolata forest, C return amounts of Phoebe bournei and Cryptomeria fortunei forest increased byl 187.97 kg/(hm2·a) and 868.64 kg/(hm·a). The total return amount of Al was Cryptomeria fortunei forest> Cunninghamia lanceolata forest> Phoebe bournei forest. The total absorbed amounts of nutrient in Cunninghamia lanceolata and Phoebe bournei forest were 1.46 and 1.43 times of that in Cunninghamia lanceolata forest. The total cycle coefficient of nutrient of the three plantation ecosystems were Cryptomeria fortunei forest> Cunninghamia lanceolata forest> Phoebe bournei forest, and the nutrient cycling intension of Cryptomeria fortunei forest was the strongest, the smallest was Phoebe bournei forest.
     (12) The total coefficient of return/absorb of C was Cunninghamia lanceolata forest> Cryptomeria fortunei forest> Phoebe bournei forest, and the differences between Cunninghamia lanceolata forest and Cryptomeria fortunei forest was not obvious, meaning that phoebe bournei forest was most difficult to get the C balance between return and absorb. The total cycle coefficient Al was Cryptomeria fortunei forest> Cunninghamia lanceolata forest> Phoebe bournei forest. it was easiest for Cryptomeria fortunei forest to get Al balance between return and absorb, and Phoebe bournei forest was the most difficult one with the smallest cycle strength.
     (13) The average need of nutrient was 8.99kg/t for Cunninghamia lanceolata forest to produce 1 t dry substances,10.77 kg/t for Cryptomeria fortunei forest, and 13.39 kg/t for the Phoebe bournei forest, which indicated that the using efficiency of nutrient for Cunninghamia lanceolata forest was higher than Cryptomeria fortunei and Phoebe bournei forest. The need of C to produce 1 t dry matter for Phoebe bournei forest was 441.40 kg/t, Cryptomeria fortunei forest 464.40 kg/t, and Cunninghamia lanceolata forest 473.41 kg/t. The using efficiency of C was Phoebe bournei forest> Cryptomeria fortunei forest> Cunninghamia lanceolata forest. To produce It dry matter, the average need of Al for Cunninghamia lanceolata forest was 0.12 kg/t, that of Cryptomeria fortunei forest was 0.11 kg/t, and Phoebe bournei forest needed 0.12 kg/t, showing that the using efficiency of Al for three species was the same.
引文
[1]Adams M B,Angradi T R.Decomposition and nutrient dynamics of hardwood leaf litter in the Femow whole-watershed acidification experiment[J]..For Ecol Manage,1996,83:61-69.
    [2]Aerts R.Climate leaf chemistry and leaf litter decomposition in terrestrial ecosystems:a triangular relationship[J].Oikos,1997,79.439-449.
    [3]Armiger W H,Caldwell B E.Differential tolerance of soybean varieties to an acid soil high in exchangeable aluminum[J].Agronj,1968,60(1):67-70.
    [4]Benendicte Cherbuy,Richard Joffre,Dominique Gillon and Serge Rambal.Internal remobilization of carbohydrates,Iipids-nitrogen and phosphorous in the Mediterranean evergreen oak Quercus ilex[J].Tree Physiology,2001,21:9-17.
    [5]Bengesson B,Asp H,Jensen P.et al.lnfluence of aluminium on phosphate and calcium uptake in beech (Fagus Sylvatica) grown in nutrient solution and soil solution[J].Physiol. Plant,1988,74:299-305
    [6]Berg B,Berg M P,Bottner P.Litter mass loss rates in pine forests of Europe and Eastern United States:some relationships with climate and litter quality[J].Biogeochemistry,1993,20:127-153.
    [7]Berg B.Litter decomposition and organic matter turnover in northern forest soils[J].For Ecol Manage,2000, 133:13-22.
    [8]Berrien,M.,B.H.BrasweIl.The metabolism of the earth understand the cabon cycle[J].AMBIO(人类环境杂志),1994,23:4-12.(in Chinese)
    [9]Boudot.J.P and Becquer.T.Aluminium toxicity in declining forests:a general overview with a seasonal assesment in a silver fir forest in the Vosges mountains[J].Annales des Sciences Forestieres,1994,51:21-51.
    [10]Brasell H M.Elements returned to forest floor in two rain forest and three plantation plots in tropical Australia[J]. J.Ecol..1983,71:367-378.
    [11]Bray J R.,Gorham E.Litter production in forest of the world[J].Adv Ecol Res,1964,2:101-157.
    [12]Brian R.Vegetation management in tropical forest plantations[J].Can.J.For.Res.1993,23(10):1989-2005.
    [13]Brown S.Present and potential roles of forests in the global climata change debate[J].Unasylva 185,1996,47:3-10.
    [14]Clarkson D T.The effect of aluminum and some other trivalent metal cations on cell division in the root apices of Allium cepa[J].Ann Bot,1965,29:310-315.
    [15]Clarkson,D.T.Efect of aluminum on the uptake and metabolism of phosphorus by barley seeding[J].Plant physiology,1996,(41):165-172.
    [16]Cornforth IS.Leaf-litter in a tropical rain forest[J] J.Appl.Ecol..1970,7:603-608.
    [17]D.L.Godbld,E.Fritz,and A.Huttermann.Aluminum toxicity and forest decline[J].Proc.Natl. Acad.Sci.USA.1988,85:3 888-3 892.
    [18]D.W.Sheriff.Response of carbon gain and growth of Pinus radiate stand to thinning and fertileizing[J].Tree Physiology,1996.16:527-536.
    [19]Daubenmire R,PrussoDC.Studies of the decomposition rate of tree litter[J],Ecology,1963,44(3):589-592.
    [20]David R.Vann.Amishi Joshi.Distribution and cycling of C,N,Ca,Mg,K and P in three pristine,old-growth forest in the Cordillera de Pinuchue,Chile[J].Biogeochemistry,2002,60(1):25-47.
    [21]Dixon R K,Brown S,Houghton R A.Carbon pools and flux of global forest ecosystems[J].Science,1994,262: 185-190.
    [22]Dong Deming,Micheal H R.Thornton I.Effect of soil pH on Al availability-in soil and its uptake by the soybeam plant (Glycime max)[1].Geochem Explor,1995,55:223-230.
    [23]Ebermayer E.Die gesamte Lehre der Woldstreu mit Rucksicht auf die chemische statik des Waldbaues[M]. Berlin:Julius springer.1876,116.
    [24]Edmonds R L,Thomas T B. Decomposition and nutrient release from green needles of western hemlock and Pacific silver fir in an old-growth temperate rain forests. Olympic National Park Washington[J].Can J For Res,1995,25:1049-1057.
    [25]Edwards P J.Studies of mineral cycling in a montane rain forests in New Guinea.The production and disapperance of litter[J] J.Ecol.1977,65:971-992.
    [26]Edwards P J.Studies of mineral cyding in mountain rain forest in New Guinea[J].Journal of Ecology,1982, 70(3):807-827.
    [27]Elisabeth K.Greenhouse gas emission and the Pacific:Moving ahead[J].AMBIO,1996,25(4):219.
    [28]Eswaran H.,E Vanden Berg&P Reich.Organic C in soils of the world [J].Journal of soil Science Society of Amerca,1993,57:192-194.
    [29]F.P.C.Blamey,C.J.Asber.酸性土壤中植物的耐铝机理[J].热带亚热带土壤科学,1993,2(1):50-53.
    [30]Fallcelli J M,Pickett S T A.Plant litter:its dynamics and effects on plant community structure[J].Bot Rev, 1991,57:1-32.
    [31]Fang J.Y.,Chen A.P.,Peng,C.H.,Zhao,S.Q.,Ci,L.J.Chages in forest biomass carbon storage in China between 1949 and 1998[J].Science,2001,292:2 320-2 322.
    [32]Findlay S, Carreiro M. Krischic V,et al. Effects of damage to living plants on leaf litter quality[J].Ecol.Applic.1996,6:269-275.
    [33]Foy C D,Chaney R L,white M S.The physiology of metal of toxicity in plants[J].Annu.Rew.Plant Physiol., 1978,29:511-566.
    [34]Foy CD,Chaney RL,White MS.The physiology of metal of toxicity in plants[J].Annu.Rew. Plant Physiol..1978,29:511-566.
    [35]Gholz H L.Fisher R F.Nutrient dynamics in slash pine plantation ecosystems[J]. Eology,1985, 66(3):647-659.
    [36]Goulden,M.L.,Munger,J.W.,Fan,S.M.,etal.Exchange of carbon dioxide by a deciduous forest:Response to interannual climate variability[J].Science,1996,271:1576-1578.
    [37]Grace,J.,Lloyd,J.,Mclntyre,J.,et al.Carbon dioxide uptake by an undisturbed tropical rain forest in Southwest Amazonia,1992 to 1993[J].Science,1995,270:778-780.
    [38]Guibaud.G and Ayele.J.PH and ionic strength effect on release of aluminium by limousin acidic brown earth soils[J]. Environmental Technology,2000,21:257-269.
    [39]Hamilton J QDelucia E H,George K.et al.Forest carbon balance under elevated CO2[J].Oecologia,2002,131: 250-260.
    [40]Hartwell B L.,Pember F R.The presence of aluminium as a reason for the difference in the effect of so-called acid soil on barley and rye[J].Soil Sci.,1918,6:59-279.
    [4]] Hirano.Y and Hijii.N.Effects of low pH and aluminum on root morphology of Jalanese red cedar saplings[J].Environmental Pollution,1998,101(3):339-347.
    [42]Houghton R A.Skole D L Carbon. The earth as transformed by human action[M].Cambridge University Press,1990,393-408.
    [43]Huang J W, Grunes D L, Kochian L V. Aluminum effects on the dinetics of calcium uptake into cells of the wheat root apex[J].Planta,1992,188:414-421.
    [44]IPCC.Climate change 1995.The science of climate change[M].Cambridge UK:Cambridge University Press, 1996,572.
    [45]IPCC.Climate Change 2001:The Scientific Basis.Contribution of Working Group 1 to The Third Assessment Report of the IPCC[M].Cambridge Univ.Press,Cambridge,2001.
    [46]Janssens,I.A.,Freibauer,A.,Ciais,P.,et al.Europe's terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions[J].Science,2003,300:1 538-1 542.
    [47]Kakuzawa K.et al.Leafs litter production in a lantation of Alnus inokumae[J].J.Ecol.,1977,72:993-999.
    [48]Keith D Richards,Eric J Schott,Aluminum Induces Oxidative Stress Genes in Arabidopsis thaliana[J],Plant Physial,1998,116:409-418.
    [49]Kieliszewska.R.E and Rudawska.M. Effect of low pH and aluminium on growth of Pinus sylverstris seedling mycorrhizal with Suillus luteus[J].Stress factors and air pollution,1998,36:751-756.
    [50]Kim.GT and Choo.GC. Effects of aluminum solution treatment on seed germination and seedling growth of three tree species[J].Journal of Korean Applied Ecology,1993,7:1-5.
    [51]Kimball B A.Carbon dioxide and agricultural yield:an assemblage and analysis of 430 prior observations[J]. Agronomy Journal,1983,75:779-788.
    [52]Kimmins J P.Forest ecology [M].New York:Macmillan Publishing Company,1987,31-129.
    [53]Kinraide TB and Parker DR. Cation amelioration of aluminum toxicity in wheat[J].Plant Physiol.,1987,83: 546-551.
    [54]Kochian L V.Cellular mechanisms of aluminum toxicity and resistance in plants[J].Annu.Rev.Plant Physiol.Plant Mol.Biol.,1995,46:237-260.
    [55]Kourtev P S, Ehrenfeld J G, Huan W Z. Enzyme activities during litter decomposition of two exotic and two native plant species in hardwood forests of New Jersey[J]. Soil Biology and Biochem-istry,2000,34:1 207-1 218.
    [56]Krutzsch,H.. Untersuchungen uber die Wakdstrau[J].Tharandt Forstl.Jb.,1869,vol.19,pp.193-227.
    [57]Larisa Galve,Z and R.B.Clark. Effects of sillicon growth and mineral composition of sorghum (sorghum bicolor)growth with toxic levels of aluminum. R.J.Wright et al (Eds) Plant-soil interactions at low pH.1991,815-824.
    [58]Lovett G M,Lindberg S E.Atmoshpheric deposition and canopyinteractions of nitrogen in forests[J].Can.J,For.Res.,1993,23:1603-1616.
    [59]Lovett G M,Nolan S S,DriscolI C T,et al.Factors regulating throughfall flux in a New Hanphire forested landscaPe[J].Can.J.For.res.,1996,26:2 134-2 144.
    [60]Macklon AES, Sim A.Modifying effects of non-toxic levels of aluminum on the uptake and transports of phosphate in ryegrass[J]. Exp.Boi.,1992,43:915-923.
    [61]Maguire. D.A..Branch mortality and potential litter fall from Douglas-fir trees in stands of varying density[J]. Forest Ecology and Management,1994,70:41-53.
    [62]Margalef R.Information theory in ecology[J].General Systematics,1958,(3):36-71.
    [63]Marschner H. Mineral Nutrition of High Plants[M], Academic Press,1986:366-489.
    [64]Martin W.Microbial populations of leaf litter in relation to environmental conditions and decomposition[J].Ecology,1.963,44:370-377.
    [65]Matsumoto H.Cell biology of aluminum toxicity and tolerance in higher plants[J].Int Rev.Cytol.,2000,200: 1-46.
    [66]Melillo JM,McGuire DA.Kicklighter DW,et al.Global climate change and terrestrial net primary production[J].Nature,1993,363:234-240.
    [67]Menhinick E F.A compareison of some species individuals'diversity indices applied to samples of field insects[J].Ecology,1964,4(5):859-861.
    [68]Mercik S,Nemeth K.Effects of 60-year N、P、K and Ca fertilization on EUF-nutrient fractions in the soil and on yields of rye and potato crops[J].Plant and soil,1985,83(1):151-159.
    [69]Minocha R, Minocha S C, Long S L,et al. Effects of aluminum on DNA synthesis, cellular polyamines, polyamine biosynthetic enzymes and inorganic ions in cell suspension cultures of a woody plant, catharanranthus roseus[J]. Physiol Plant,1992,85:417-424.
    [70]N.V.Hue. Effects of soil acidity adjustment and lime on the concentration of Al、Ca、Mn in Macadamia Seedlings[J].Communications In Soil Science And Plant Analysis,1987,18(11):29-32.
    [71]Nilsson M C, Wardle D A. Dah lberg A. Effects of plant litter species composition and diversity on the boreal forest plant-soil system [J].Oikos,1999,86:16-26.
    [72]0'Neill,B.C.,Oppenheimer,M.Dangerous climate impacts and the Kyoto protocol [J].Science,2002,296: 1971-1972.
    [73]Ovington J D,Madgwick H AL.The growth and compositeon of natural land of Birch L Dry matter production[J].PGsoil,1959,3:271-283.
    [74]Ovington J D.Organic prodection,tumover and mineral cycling in woodland[J].Biolrev,1965,10:295-336.
    [75]P W Voigt, T E Staley. Selection for Aluminum and Acid-Soil Resistance in White Clover[J]. Crop Science, 2004,44(1):38.
    [76]Parker D R,Kinraide T B.Aluminum speciation and phytotoxicity in dilute hydyoxy-aluminum solutions[J].Soil Sci Soc Am J,1988,52:438-445.
    [77]Pastor J,Bockheim J GDistribution and cycling of nutriaent in an aspen- mixed- hardwood-spodosol eyesystem in Northern Wisconsin[J]. Ecology,1984,85(2):339-353.
    [78]Philips,O.L.,Malhi,Y.,Higuchi,N.,et al.Changes in the carbon balance of tropical forests: Evidence from long-term plots[J].Science,1998,282:439-442.
    [79]Phillips O.L.,Malhi,Y., Higuchi N.,et al.Changes in the carbon balance of tropical forests: evidence from long-term plots[J].Science,1998,282:440-442.
    [80]Pielou E C.Ecological Diversity[M].NewYork:Wiley-Interscience,1977.
    [81]Post W.M.,W.R Emanuel,P J.Zinke & A G.Strangenherger. Soil carbon pools and world life zones[J]. Nature,1982,298:156-159.
    [82]Potter G QRagsdale H L,Swank W T.Atmospheric deposition and foliar leaching in a regenerationg southern Ap-palachian forest canopy[J] J.Ecol.,1991,79:97-115.
    [83]Prosser.I.P. and Hailes.K.J. A comparison of soil acidification and aluminium under Eucalyptus forest and unimproved pasture[J]. Australian Journal of Soil Research,1993,31:245-254.
    [84]Reiners WA,et al,. Changes in litterfall along a gradient in altitude[J]J Ecol.,1987,75:629-638.
    [85]Rodin L E. Production and Mineral Cycling in Terrestrial Vegetation[M].Transl. Scripat. Technical. London: Oliver and Boyd,1967,288.
    [86]Samuels TD,Kucukakyuz K and Magaly RZ.Al partitioning patterns and root growth as related to Al sensitivity and Al tolerance in wheat[J].Plant physiol.,1997,113:527-534.
    [87]Scholes,R.J.,Noble,I.R..Storing carbon on land[J].Science,2001,294:1012-1013.
    [88]Scott N A,Binkley D.Foliage litter quality and annual net N mineralization:comparison across North American forest sites[J].Oecologia,1997,111 (2):151-159.
    [89]Singh K P,Singh P K,Tripathi S K.Litterfall,litter decomposition and nutrient release patterns in four native tree species raised on coal mine spoil at Singrauli,India[J].Biology and Fertility of Soils,1999,29(4):371-378.
    [90]Singh KP, Singh P K, Tripathi S K. Litterfall, litter decomposition and nutrient release patterns in four native tree species raised on coal mine spoil at Singrauli,India[J].Biol Fertil Soils,1999,29:371-378.
    [91]Smith W H.Air pollution and forests—Interactions between air contaminants and forest ecosystem [M].New York:Springer—Verlag.1981,192-199.
    [92]Soon Y K. Fractionation of Aluminum in Acid Soils:A Review and a Proposed Procedure[J].Comm in Soil Sci Plant A nal,1993,24(13\14):1683-1708.
    [93]Spain A V.Litterfall and the standing crop of litter in three tropical Austrian rain forest[J]. J.Ecol.,1984,72: 947-961.
    [94]Spurr S H,Barnes B V.森林生态学[M].北京:中国林业出版社,1982,12-13.
    [95]Stenseth,N.C.,Mysterud A.,Ottersen G.,et al.Ecological effects of climate fluctuations[J]. Science,2002, 297:1 292-1 296.
    [96]Stigliani W M, Doelman P. Salomons W,et al. SEATM.l Chemical time bombs-predicting the unpredictable[J]. Environment,1991,33:4-30.
    [97]Sulkava P,Huhta V.Habitat patchiness affects decomposition and faunal diversity:a microcosm experiment on forest floor[J].Oecologia,1998,116(3):390-396.
    [98]Swift M,Heal O W,Anderson J M.Decomposition in terrestrial ecosystems[M].University of California Press,Berkeley,California,USA.1979.
    [99]Switxer G.L. & Nelson D.Nutrient accumulation and cycling in loblolly pine(Pinus tades L.) plantation ecosystems:the first twenties[J].Soil Science Society America Proceedings,1972,36:143-147.
    [100]Syed-omar,S.R.,Iulkifli,H.Shamsuddin,J.Y.Zuraidab,J.C.Winne and GH.Elkan.Use of lime,gyodum and their combinations to improve nodulationand yield of groundnut in an acidic soil. R.J.Wright et al(Eds).Plant-soil interactions at low pH.1991,275-288.
    [101]Twilley R R,Pozo M,Garcia V H,et al.Litter dynamics in riverine mangrove forests in the Guayas River estuary,Ecuador[J].Oecologia,1997,111 (1):109-122.
    [102]Ulrich,B.and Panbrath,J.Effects of Acumulation Air Pollutants in Forst Ecosystems[M]. by D. Reided Publishing Company,1983:331-342.
    [103]Van lear D.H.Above-and below-stump biomass content of a mature loblolly pine plantation[J]. Can.J.For.Res.,1995,25(2):361-367.
    [104]Von Uexkull HR,Mutert E.Global extent development and economic impact of acid soils[J].Plant Soil,1995,171(1):1-15.
    [105]Vucetich,J.A.,Reed D.D.,Breymeyer A.,et al.Carbon pools and ecosystem properties along a latitudinal gradient in northern Scots pine(Pinus sylvestris)forests[J].Forest Ecology and Management,2000,136: 135-145.
    [106]Waksman SA,Gerretsen FC.Influence of temperature and moisture upon the nature and extent of decomposition of plant residues by microorganisms[J].Ecology,1931,12:33-60.
    [107]Waring R H, Schlesinger W H. Forest ecosystem concepts and management [M].Orlando,Academic Press,INC,1985:181-210.
    [108]White A.,Cannell M.G.R.,friend A.D.Climate change impacts on ecosystems and the terrestrial carbon sink:a new assessment[J].Global Environmental Change,1999,9:21-30.
    [109]William H,et al.Soil respiration and the global carbon cycle[J].Biogeochemistry,2000,48:7-20.
    [110]Yadvinder Malhi,John Grace.Tropical forests and atmospheric carbon dioxide[J]. Tree,2000,15(8):332-337.
    [111]Zheng S J,Jiang F M,Hideaki M,High Aluminum Resistance in Buckwheat[J],Plant Physial,1998, 117:745-751.
    [112]Zheng S J,Yang J L.Target sites of aluminum phytotoxicity[J].Biol.Plant.,2005,49:321-331.
    [113]曹洪法,高吉喜,舒俭民.Al对马尾松幼苗影响的研究[J].生态学报,1992,12(3):239-246.
    [114]陈爱玲,陈青山,蔡丽萍.杉木建柏混交林土壤肥力的研究[J].南京林业大学报(自然科学版),2001,25(3):43-46.
    [115]陈楚莹,张家武.改善杉木人工林的林地质量和提高生产力的研究[J].应用生态学报,1990,1(2):97-106
    [116]陈存及,陈伙法主编.阔叶树种栽培[M].北京:中国林业出版社,2000,150-155.
    [117]陈存及,董建文,林敬德,等.半天然杉阔混交林分形成、发育与结构特征[J].福建林学院学报,1996,16(4):310-314
    [118]陈德旺.杉木火力楠混交林生产力与改土效果研究[J].北华大学学报(自然科学版),2004,5(2):151-154.
    [119]陈堆全.木荷凋落物分解及对土壤作用规律的研究[J].福建林业科技,2001,28(2):35-38
    [120]陈恩凤.土壤肥力物质基础及其调控[M].北京:科学出版社,1990.
    [121]陈伦祥.融水县四荣公社杉木连栽对林木生长及土壤肥力的影响[J].广西林业勘察设计,1983,(1):17-25
    [122]陈美华,余章机,蒋德书,等.大豆幼苗Al中毒研究初报[J].西南农业学报,1992,5(4):112-115.
    [123]陈仁华.武夷山甜槠林群落凋落物养分循环研究[J].江西农业大学学报,2005,27(2):195-199.
    [124]陈小红,李贤伟,赵安玖.林木营养元素交互作用研究概述[J].四川林勘设计,2002,1:21-24.
    [125]成杭新,严光生,沈夏初等.化学定时炸弹:中国陆地面临的新问题[J].长春科技大学学报,1999,29(1):68-73.
    [126]仇荣亮,吴菁,吕越娜.我国南方主要酸况沉降区土壤中Al的释放与缓冲作用[J].环境化学,1998,17(2):143-147.
    [127]丁爱芳,俞元春,陈萍萍.土壤铝对林木根系的影响[J].浙江林学院学报,2001,18(2):119-122.
    [128]董世仁,沈国舫,聂道平.油松人工林养分循环的研究Ⅱ:油松人工林营养元素动态特性[J].北京林业大学学报,1986,(1):11-22.
    [129]杜荣.我国饲料中微量矿物质浅析[J].中国畜牧杂志,1989,25(4):20-23.
    [130]杜晓明,田仁生.重庆南山马尾松衰亡与铝中毒[J].环境科学研究,1996,9(6):21-24.
    n31] 樊后保,苏素霞,卢小兰等.林下套种阔叶树的马尾松林凋落物生态学研究Ⅲ.凋落物现存量及其养分含量[J].福建林学院学报,2003,23(3):]93-197.
    [132]范少辉,廖祖辉,应金花,等.不同立地管理措施对2代杉木4年生幼林生长影响的研究[J].林业科学研究,2002,15(2):169-174
    [133]范少辉,马样庆,傅瑞树,等.不同栽植代数杉木人工林林下植被发育的比较研究[J].林业科学研究,2001,14(1):8-16
    [134]范少辉,盛炜彤,马祥庆,等.多代连栽对不同发育阶段杉木人工林生产力的影响[J].林业科学研究.2003,16(5):560-567.
    [135]方晰,田大伦,项文化,等.第2代杉木人工林微量元素的积累、分配及其生物循环特征[J].生态学报,2003,23(7):1313-1320
    [136]方精云,陈安平,赵淑清,等.中国森林生物量的估算:对Fang等Science一文(Science,2001,291:2 320-2322)的若干说明[J].植物生态学报,2002,26(2):243-249.
    [137]方精云,陈安平.中国森林植被碳库的动态变化及其意义[J].植物学报,2001,43(9):967-973.
    [138]方精云,刘国华,徐嵩龄.中国森林植被的生物量和生产力[J].生态学报,1996,16(5):497-508.
    [139]方精云,刘国华,朱彪,等.北京东灵山温带森林生态系统的碳循环[J].中国科学(D辑地球科学),2006,36(6):533-543.
    [140]方精云.探索CO2失汇之谜[J].植物生态学报,2002,26(2):255-256.
    [141]方精云.中国森林生产力及其对全球气候变化的响应(英文)[J].植物生态学报,2000,24(5):635-638.
    [142]方奇.湖南林区杉木连裁对土壤肥力及其林木生长的影响[A]见:盛炜彤.人工林地力衰退研究(C).北京:中国科学技术出版杜,1992:74-86.
    [143]方奇.加强土壤和地被物管理对杉木林生态系统生物量能量利用与养分循环的影响[J].林业科学,1990,26(3):201-208.
    [144]方奇.杉木连栽对土壤肥力及其林木生长的影响[J].林业科学,1987,23(4):389-397
    [145]方晰,田大伦,项文化,等.第二代杉木中幼林生态系统碳动态与平衡[J].中南林学院学报,2002,22(1):1-6.
    [146]方晰,田大伦,项文化,等.杉木人工林凋落物量及其分解过程中碳的释放率[J].中南林学院学报,2005,25(6):12-16.
    [147]方晰,田大伦,项文化,等:第2代杉木人工林微量元素的积累、分配及其生物循环特征[J].生态学报,2003,23(7):1313-1320
    [148]方运霆,莫江明,黄忠良,等.鼎湖山马尾松、荷木混交林生态系统碳素积累和分配特征[J].热带亚热带植物学报2003,11(1):47-52.
    [149]冯林.落叶松天然林营养元素的积累和分布.中国森林生态系统定位研究[C].哈尔滨:东北林业大学出版社,1994.73-79.
    [150]冯宗炜,陈楚莹,王开平,等.亚热带杉木纯林生态系统中营养元素的积累、分配和循环的研究[J].植物生态学与地植物学丛刊,1985,9(4):245-256.
    [151]冯宗炜,陈楚莹,张家武,等.不同自然地带杉木林的生物生产力[J].植物生态学与地植物学丛刊,1983,8(2):93-100.
    [152]冯宗炜,陈楚莹,张家武. 湖南会同地区马尾松林生物量的测定[J].林业科学,1982,18(2):127-134.
    [153]冯宗炜,王效科,吴刚. 中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999b.
    [154]冯宗炜,王效科,吴刚. 中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999a,99-187.
    [155]冯宗炜.杉木人工林生长发育与环境相互关系的定位研究.中国科学院林业土壤研究所编.杉木人工林
    [156]傅金和.杉木林中的微量元素含量、积累和生物循环[J].中南林学院学报,1989,增刊:76-84.生态系统研究论文集[C].1980,1-27.
    [157]高吉喜,曹洪法,孙德玲,等.铝对马尾松生长状况影响的研究[J].中国环境科学,1992,12(2):118-121.
    [158]郭成达.福建省土壤腐殖质组成和特性的地理分异[J].土壤,1996,28(4):183-186.
    [159]郭继勋,祝廷成.羊草草原枯落叶分解的研究[J].生态学报,1993,13 (3):214-219.
    [160]郭景恒,张晓山,汤鸿霄.酸沉降对地表生态系统的影响 Ⅰ.土壤中铝的活化与迁移[J].土壤,2003,35(2):89-12.
    [161]国家林业局.森林土壤分析方法[M].北京:中国标准出版社,2000,13-116.
    [162]郝鲁宁,刘厚田.Al对水稻幼苗的生理影响[J].植物学报,1989,31(11):847-853.
    [163]何海,乔永康,刘庆,等.亚高山针叶林人工恢复过程中生物量和材积动态研究[J].应用生态学报,15(5):748-752.
    [164]何宗明,陈光水,刘剑斌,等.杉木林凋落物产量、分解率与储量的关系[J].应用与环境生物学报,2003,9(4):352-35.
    [165]何宗明,范少辉,卢镜铭,等.立地管理措施对2代6年生杉木林生长的影响[J].林业科学,2006,42(11):47-51
    [166]洪富文,程伟儿.福山阔叶林生态系统的土壤养分库及其有效养分动态[J].台湾林业科学,1996, 11(4):465-473.
    [167]侯学煜.中国150种植物化学成分及其分析方法[M].北京:高等教育出版社,1959.
    [168]侯学煜.中国植被地理及优势植物化学组成[M].北京:科学出版社,1982.
    [169]候元兆.林业可持续发展和森林可持续经营的框架理论(下)[J].世界林业研究,2003,16(2):1-6).
    [170]胡肄慧,陈灵芝,陈清朗,等.几种树木枯叶分解速率的试验研究[J].植物生态学与地植物学学报、1987、11(2):124-132.
    [171]黄邦全.植物Al毒害及遗传育种研究进展[J].植物学通报,2001,18(4):385-395.
    [172]黄建辉,陈灵芝,韩兴国.几种微量元素在辽东栋枝条分解过程中的变化特征[J].生态学报,2000, 20(2):229-234.
    [173]黄清麟.保阔栽针的试验研究[J].福建林学院学报,1994,14(4):287-290
    [174]黄衍初,曲长菱.土壤中铝的溶出及形态研究[J].环境科学11996,17(1):57-59
    [175]计维农.太湖流域主要粮食作物中19种元素背景值及其特征[J].环境科学学报,1987,7(1):86-92.
    [176]贾黎明,方陆明,胡延杰.杨树刺槐混交林及纯林枯落叶分解[J].应用生态学报,1998,9(5):463-467.
    [177]姜志林.下蜀森林生态系统定位研究论文集[C].北京:中国林业出版社,1992.
    [178]蒋延龄,周广胜.兴安落叶松林碳平衡和全球变化影响研究[J].应用生态学报,2001,12(4):481-484.
    [179]蒋有绪.川西亚高山冷杉林枯枝落叶层的群落学作用[J].植物生态学与地植物丛刊,1981,6(2):89-98.
    [180]焦如珍,杨承栋.不同杉木人工林根际及非根际土壤微生物数量及种类的变化[J].林业科学研究,1999,12(1):13-18.
    [181]金小麟.华北地区针叶林下凋落物层化学性质的研究[J].生态学杂志.1991,10(1):94-99.
    [182]孔繁祥,桑伟莲,蒋新,等.铝对植物的毒害及植物抗铝作用机理[J].生态学报,2000,20(5):855-862.
    [183]雷丕锋,项文化,田大伦,等.樟树人工林生态系统碳素贮量与分布研究[J].生态学杂志,2004,23(4):25-30.
    [184]李昌华.杉木人工林和阔叶杂木林土壤养分平衡因素差异的初步研究[J].土壤学报,1981,18(3):255-261.
    [185]李德华,贺立源,刘武定.不同耐铝性玉米基因型根际营养元素状况的差异[J].中国农学通报,2004,020(004):191-195,224.
    [186]李海涛,于贵瑞,李家永,等.亚热带红壤丘陵区四种人工林凋落物分解动态及养分释放[J].生态学报,2007,27(3):898-908
    [187]李庆逵主编.中国红壤[M].北京:科学出版社,1983,74-193.
    [188]李庆明,尹达龙.黑土肥力变化特点及其与土壤复合胶体性质的关系[.J].土壤学报,1982,19(4):351-359.
    [189]李淑兰,陈永亮.不同落叶林林下凋落物的分解与养分归还[J].南京林业大学学报(自然科学版),2004,28(5):59-62.
    [190]李文华,邓坤枚,李飞.长白山主要生态系统生物量生产量的研究[J].森林生态系统研究,1981,(试刊):34-50.
    [191]李晓兵,史培军.中国典型植被类型NDVI动态变化与气温、降水变化的敏感性分析[J].植物生态学报,2000,24(3):379-382.
    [192]李雪峰,张岩,牛丽君,等.长白山白桦(Betula platyphlla)纯林和白桦山杨(Populus davidiana)混交林凋落物的分解[J].生态学报,2007,27(5):1782-1790.
    [193]李育才主编.面向21世纪的林业发展战略[M].北京:中国林业出版社,1996.
    [194]李志安,曹裕松,邹碧,等.华南重要人工林及地带性森林凋落物酸碱缓冲能力[J].植物学报,2003,45(12):1398-1 407.
    [195]李志安,邹碧,丁永祯,等.森林凋落物分解重要影响因子及研究进展[J].生态学杂志,2004,23(6):77-83.
    [196]廖军,王新根.森林凋落量研究概述[J].江西林业科技,2000,3(1):31-34.
    [197]廖利平.人工林生态系统持续发展的调控对策研究[J].应用生态学报,1996,7(3):225-229.
    [198]林波,刘庆,吴彦,等.森林凋落物研究进展[J].生态学杂志,2004,23(1):60-64.
    [199]林波,刘庆.中国西部亚高山针叶林凋落物的生态功能[J].世界科技研究与发展,2001,23(5):49-54.
    [200]林光耀,范少辉,何宗明.不同立地管理措施对2代杉木人工林3年生林分生长影响的研究[J].林业科学研究,2001,14(4):403-407
    [201]林开敏,俞新妥,何智英,等.炼山后杉木幼林生长动态研究[J],福建林学院学报.1992.12(1):1-8
    [202]林明海,赖庆旺.不同熟化度红壤及红壤性水稻土的腐殖质组成及特性[J].土壤学报,1982,19(3):237-247.
    [203]林鹏,林光辉.几种红树植物的热值和灰分含量研究[J].植物生态学与地植物学报,1991,15(2):114-120.
    [204]林鹏,卢昌义,王恭礼,等.海南岛河港海莲红树林凋落物动态的研究[J].植物生态学与地植物学学报,1990,14(1):69-73.
    [205]林鹏,邵成.福建和溪亚热带林凋落物能流的研究[J].厦门大学学报(自然科学版),1995,(6):33-38.
    [206]林业部科技司.中国森林生态系统定位研究[C].哈尔滨:东北林业大学出版社,1994.
    [207]林益明,何建源,杨志伟,等.武夷山甜槠群落凋落物的产量及其动态[J].厦门大学学报:自然科学版,1999,38(2):280-286
    [208]林益明,林鹏,李振基,等.福建武夷山甜槠林群落能量的研究[J].植物学报,1996,38(12):989-991.
    [209]刘长怀,罗汝英.宁镇丘陵区森林土壤腐殖质的化学特性[J].南京林业大学学报,1990,14(]):1-6.
    [210]刘传照,李景文,潘桂兰,等.小兴安岭阔叶红松林凋落物产量及动态的研究)[J].生态学杂志,1993,12(6):29-33.
    [211]刘东华,蒋悟生.铝对植物的毒害[J].植物学通报,1995,12(1):24-32.
    [212]刘广全,王浩,秦大庸,等.黄河流域秦岭主要林分凋落物的水文生态功能[J].自然资源学报,2002,17(1):55-62.
    [213]刘厚田,张继平,沈英娃,等.重庆南山酸雨与马尾松衷之的关系[J].环境科学学报,1988,8(3):331-338.
    [214]刘强,彭少麟,毕华,等.热带亚热带森林凋落物交互分解的研究[J].中山大学学报(理),2004,43(4):86-891
    [215]刘树庆,杜孟康.不同肥力土壤有机无机复合体及腐殖质结合形态及其与肥力关系的研究[J].土壤通报,1989,20(6):267-270.
    [216]刘文新.水体中Al的化学形态及其生态效应的研究进展[J].生态学报,1996,16(2):212-220
    [217]刘文耀,谢寿昌.哀牢山北部木果石栋林的元素积累及循环[J].云南植物研究,1995,17(2):175-181.
    [218]刘兴良,肖林,等.川西云杉人工林养分含量、贮量及分配的研究[J].林业科学,2001,37(4):10-18.
    [219]刘洋,张健,冯茂松.巨桉人工林凋落物数量、养分归还量及分解动态[J].林业科学,2006,42(7):1-10.
    [220]刘莹,盖均益.大豆耐铝毒的鉴定和相关根系性状的遗传分析[J].大豆科学,2004,023(003):164-168.
    [221]刘有美.杉木与土壤退化.见:中国土地退化及防治研究论文集[C].北京:中国科学技术出版社,1990,32-37.
    [222]刘增文,高文俊,潘开文,等.枯落物分解研究方法和模型讨论[J].生态学报,2006,26(6):1993-2000.
    [223]卢俊培,刘其汉.海南岛尖峰岭热带林凋落叶分解过程的研究[J].林业科学研究,1989,2(1):25-32.
    [224]卢俊培,刘其汉.海南岛尖峰岭热带林凋落物研究初报[J].植物生态学与地植物学学报,1988,12:104-112.
    [225]吕晓涛,唐建维,何有才,等.西双版纳热带季节雨林的生物量及其分配特征[.J].植物生态学报,2007,31(1)11-22.
    [226]罗承德,张健,刘继龙.四川盆周山地杉木人工林衰退与Al毒害阈值的探讨[J].林业科学,2000,36(1):9-14.
    [227]罗红,刘鹏,徐根娣.铝对微生物区系组成的影响[J].生态环境,2004,012(001):11-13.
    [228]罗辑,程根伟,宋孟强,等.贡嘎山峨眉冷杉林凋落物的特征[J].植物生态学报,2003,27(1):59-65.
    [229]马克平,刘灿然,于顺利,等.北京东灵山地区植物群落多样性的研究Ⅲ几种类型森林群落的种-多度关系研究[J].生态学报,1997,17(6):573-583.
    [230]马祥庆,范少辉,刘爱琴,等.不同栽植代数杉木人工林土壤肥力的比较研究[J].林业科学研究,2000,13(6):577-582
    [231]缪自基主编.微量元素的环境化学与生物影响[M].北京:中国环境科学出版社,1992.
    [232]莫江明,Sandra Broun彭少麟,等.林下层植物在退化马尾松林恢复初期养分循环中的作用[J].生态学报,2002,22(9):1 407-1 413.
    [233]莫江明,布朗,孔国辉,等.鼎湖山生物圈保护区马尾松林凋落物的分解及其营养动态研究[J].植物生态学报,1996,20(6):534-542.
    [234]莫江明,方运霆,彭少麟,等.鼎湖山南亚热带常绿阔叶林碳素积累和分配特征[J].生态学报,2003,23(10):1970-1976.
    [235]莫江明,彭少麟,等.鼎湖山马尾松针阔叶混交林土壤有效氮动态的初步研究[J].生态学报,2001,21(3):492-497.
    [236]聂道平.油松人工林养分循环的研究Ⅲ.养分元素生物循环和林分养分平衡[J].北京林业大学学报,1986,(2):8-13.
    [237]聂道平.不同立地杉木人工林生产力和养分循环的比较,中国森林生态系统定位研究(林业部科技司
    [238]潘开文,刘照光.10a生连香树人工群落生物量研究[J].应用与环境生物学报,1999,5(2):121-130.编)[C].哈尔滨:东北林业大学出版社,1994,123-134.
    [239]潘瑞炽,董愚得编.植物生理学[M].第三版.北京:高等教育出版社,1995,32-40.
    [240]潘维俦,田大伦,高正衡.杉木人工林生态系统中的生物产量及其生产力的研究[J].中南林业科技,1978,(2):2-14.
    [241]潘维俦,田大伦,李利村,等.杉木人工林养分循环的研究:(二)丘陵区速生杉木林的养分含量、积累速率和
    [242]潘维俦,田大伦,李利村,等.杉木人工林养分循环的研究:(一)不同生育阶段杉木林的产量结构和养分动生物循环[J].中南林学院学报,1983,3(1):1-17.态[J].中南林学院学报.1981,1(1):1-21.
    [243]潘维俦,田大伦,李利村.杉木人工林养分循环研究[J].中南林学院学报,1981,1(1):1-15.
    [244]潘文忠.杉楠混交林生长及生态效应研究[J].安徽农学通报,2007,13(9):144-145.
    [245]庞淑薇,康德梦,王玉保,等.化学浸提法研究土壤中活性铝的溶出及形态分布[J].环境化学,1986,5(3):68-76.
    [246]彭龙福.35年生楠木人工林生物量及生产力的研究[J].福建林学院学报,2003,23(2):128-131
    [247]彭少麟,刘强.森林凋落物动态及其对全球变暖的响应[J].生态学报,2002,22(9):1 534-1 544.
    [248]秦瑞君,陈福兴.长期种植牧草和绿肥对降低土壤铝毒的作用[J].土壤肥料,]997,(5):37-39.
    [249]曲仲湘,吴玉树,王焕校,等.植物生态学(第二版)[M].北京:高等教育出版社,1980:180.
    [250]任泳红,曹敏.西双版纳季节雨林与橡胶多层林凋落物动态的比较研究[J].植物生态学报,1999,23(5):418-425.
    [251]邵彬,邓坤枚.长白山北坡亚高山云冷杉林的植物种类组成及重要值[J].自然资源学报,2000,15(1):66-73.
    [252]方奇.杉木连栽对土壤肥力及其林木生长的影响[J].林业科学,1987,23(4):389-397.
    [253]邵宗臣,何群,王维君.模拟酸雨对红壤Al形态的影响[J].热带亚热带土壤科学,1997,6(3):187-193.
    [254]沈国舫,董世仁.油松人工林养分循环的研究Ⅰ.营养元素的含量及分布[J].北京林业大学学报,]985,6(4):1-14.
    [255]沈国舫.对世界造林发展新趋势的几点看法[J].世界林业研究,1988,1(1):21-27.
    [256]沈海龙,丁宝永,沈国舫,等.樟子松人工林下针阔叶凋落物分解动态[J].林业科学,1996,32(5):393-402.
    [257]沈金雄,徐巧珍.大豆耐Al酸毒害研究概况[J].中国油料作物学报,1998,20(2):91-96.
    [258]沈文清,马钦彦,刘允芬,等.森林生态系统碳收支状况研究进展[J].江西农业大学学报,2006,28(2):312-317.
    [259]盛炜彤.我国人工用材林发展中的生态问题及治理对策[.J].世界林业研究,1995,8(3):51-556.
    [260]盛炜彤,范少辉.人工林长期生产力保持机制研究的背景、现状和趋势[J].林业科学研究,2004,17(1):106-115
    [261]盛炜彤.我国人工林的地力衰退及防治对策.见:盛炜彤主编:人工林地力衰退研究[C].北京:中国科学技术出版社,1992b,15-19.
    [262]盛炜彤主编.人工林地力衰退研究[C].北京:中国科学技术出版社,1992a:243-250.
    [263]盛炜彤,范少辉.杉木及其人工林自身特性对长期立地生产力的影响[J].林业科学研究,2002,15(6):629-636
    [264]盛炜彤,杨承栋,范少辉.杉木人工林土壤性质的变化[J].林业科学研究,2003,16(4):377-385.
    [265]盛炜彤主编.人工林地力衰退研究[C].北京:中国科学技术出版社,1992c.
    [266]孙玉军,张俊,韩爱惠,等.兴安落叶松(Laris gmelini)幼中龄的生物量和碳汇功能.生态学报,2007,27(5):1756-1 762.
    [267]谭云峰,黄建旗,陈新媛,等.油茶林生态系统中营养元素循环的研究[J].生态学报,1989,9(3):213-219.
    [268]唐建维,张建侯,宋启示,等.西双版纳热带人工雨林生物量及净第一性生产力的研究[J].应用生态学报,2003,14(1):1-6.
    [269]陶豫萍,吴宁,罗鹏,等.森林对污染物(SO2-4)的过滤器效应研究[J].长江流域资源与环境,2005,14(5):625-632.
    [270]田大伦,朱小年,蔡宝玉,等.杉木人工林生态系统凋落物的研究Ⅱ.凋落物的养分含量及分解速率[J].中南林学院学报,1989,9(增):45-55.
    [271]田大伦,谌小勇,康文星,等.杉木林生态系统凋落物分解量及养分释放规律[M].哈尔滨:东北林业大学出版社,1994,146-153.
    [272]田大伦,方晰.湖南会同杉木人工林生态系统的碳素含量[J].中南林学院学报,2004a,24(2):1-5.
    [273]田大伦,方晰,康文星.杉木林不同更新方式对林地土壤性质的影响[J].中南林学院学报,2003a,23(2):1-5.
    [274]田大伦,康文星,文仕知,等著.杉木林生态系统学[M].北京:科学出版社,2003,247-279.
    [275]田大伦,康文星,文仕知,等著.杉木林生态系统学[M].北京:科学出版社,2003b,250-261.
    [276]田大伦,宁晓波.不同龄组马尾松林凋落物量及养分归还量研究[J].中南林学院学报,1995,19(2):163-169.
    [277]田大伦,项文化,闫文德,等.速生阶段杉木人工林产量结构及生产力的代际效应[J].林业科学,2002,38(4):14-18.
    [278]田大伦,项文化,闫文德.马尾松与湿地松人工林生物量动态及养分循环特征[J].生态学报,2004b,24(10):2204-2 210.
    [279]田大伦.杉木林生态系统功能过程[M].北京:科学出版社,2005.
    [280]田茂洁.川中人工纯柏林凋落物分解动态研究[J].生态学杂志,2005,24(10):1 147-1 150.
    [281]田仁生,刘厚田.酸化土壤中Al及其植物毒性[J].环境科学,]990,11(6):41-46.
    [282]屠梦照,姚文华.鼎湖山南亚热带常绿阔叶林凋落物的特征[J].土壤学报,1993,30(1):35-42.
    [283]屠梦照.鼎湖山亚热带常绿阔叶林凋落物量.热带亚热带森林生态系统研究(第2集)[C].广州:科学普及出版社广州分社,1984,18-23.
    [284]王风友.森林凋落量研究综述.生态学进展[J].1989,6(2):82-89
    [285]王凤友,王业莲.红松针阔叶混交林森林凋落物的生态学研究:(Ⅰ)四个群落类型林地凋落物的现存量[A].周晓峰.森林生态系统定位研究[C].哈尔滨:东北林业大学出版社,1991,245-249.
    [286]王凤友.阔叶红松林生态系统的养分流.见:林业部科技司编.中国森林生态系统定位研究[C].哈尔滨:东北林业大学出版社,1994,80-85.
    [287]王凤友.森林凋落量研究综述[J].生态学进展,1989,6(2):82-89.
    [288]王福升,孙多,叶镜中,等.栽杉保阔法对杉木林凋落物性状的影响[J].南京林业大学学报,1999,23(6):10-14.
    [289]王金叶,车克钧,蒋志荣.祁连山青海云杉林碳平衡研究[J].西北林学院学报,2000,15(1):9-14.
    [290]王立新,王瑾,黄建辉.辽东栎叶片凋落物在不同气候带下的分解及其主要元素释放的比较[J].植物学报,2003,45(4):399-407.
    [291]王良睦,邵成,郑文教,等.福建和溪亚热带林凋落物及残留物研究[J].厦门大学学报(自然科学版),1996,(5):795-801.
    [292]王巧珍.福建柏和杉木人工林纯林凋落物热值及灰分含量月变化动态[J].福建林业科技,2005,32(1):34-37.
    [293]王锐萍,刘强,文艳,等.鼎湖山和尖峰岭十壤及凋落物中微生物数量季节动态[J].土壤通报,2005,36(6):933-937.
    [294]王淑元,林升寿.我国森林生态定位研究的进展[J].世界林业研究,1995,8(4):44-49.
    [295]王晓丽,杨婉身,陈惠,等.酸铝对杉木DNA合成的影响[J].西南农业大学学报,2000,22(4):362-364.
    [296]王效科,冯宗炜.中国森林生态系统中植被固定大气碳的潜力[J].生态学杂志,2000,19(4):72-74.
    [297]王莹,杨树旺.我国林业资源与可持续发展[J].中国环保产业CEPI,2004,4:10—11.
    [298]魏晶,吴钢,邓红兵.长白山高山冻原生态系统凋落物养分归还功能[J].生态学报,2004b,24(10):2 211-2 216.
    [299]魏晶,邓红兵,吴钢,等.长白山高山冻原生态系统三种养分含量的空间分布[J].生态学报,2004a,24(11):2 360-2 366.
    [300]温肇穆,梁宏温,黎跃.杉木成熟林乔木层营养元素生物循环的研究[J].植物生态学与地植物学报,1991,15(1):36-41.
    [301]翁轰,李志安,屠梦照,等.鼎湖山森林凋落物量及营养元素含量研究[J].植物生态学与地植物学学报,1993,17(4):299-304.
    [302]吴承祯,洪伟,陈辉,等.万木林中亚热带常绿阔叶林物种多样性研究[J].福建林学院学报,1996,16(1):33-37.
    [303]吴承祯,洪伟.武夷山杉木林凋落物动态初探[J].热带亚热带植物学学报,2002,10(3):201-206
    [304]吴中化.杉木[M].北京:中国林业出版社,1984.
    [305]希尔,OW.有机物的分解原理与研究方法[M].北京:中国林业出版社,1983,286-288.
    [306]夏汉平,余清发,张德强.鼎湖山3种不同林型下的土壤酸度和养分含量差异及季节动态变化特性[J].生态学报,1997,17(6):645-653.
    [307]项文化田大伦闫文德,等.第2代杉木林速生阶段营养元素的空间分布特征和生物循环[J].林业科学,2002,38(2):2-8.
    [308]项文化,刘煊章,蔡宝玉.间伐后马尾松林养分含量、积累和分布.见:刘煊章主编.森林生态系统定位研究[C].北京:林业出版社,1993,178-186.
    [309]肖复明,张群,范少辉.中国森林生态系统碳平衡研究[J].世界林业研究,2006,19(1):53-57.
    [310]肖厚军,王正银.酸性土壤铝毒与植物营养研究进展.西南农业学报,2006,19(6):1 180-1 188.
    [311]刑廷铣,李丽立,彭艺.土壤—作物—动物生态体系中微量元素含量[J].生态学杂志,2000,19(2):24-29.
    [312]熊毅.中国土壤(第二版)[M].北京:科学出版社,1990.
    [313]徐化成.森林地力的动态特性和人工林的地力下降问题.见:盛炜彤主编:人工林地力衰退研究[C].北京:中国科学技术出版社,1992,3-10.
    [314]许嘉琳,鲍子平,杨居荣,等.农作物中铅、镉、铜的化学形态[J].应用生态学报,1991,2(3):244-248.
    [315]许新健,陈金耀,俞新妥.武夷山六种杉木伴生树种落叶养分归还的研究[J].福建林学院学报,1995,15(3):2]3-217.
    [316]许振英.十多年来我国畜牧学科中微量元素研究[J].中国动物营养学报,1989,1(1):1-9.
    [317]薛立,何跃君,屈明,等.华南典型人工林凋落物的持水特性[.J].植物生态学报,2005,29(3):415-421.
    [318]薛立,邝立钢.杉木凋落物分解速率研究[J].四川林业科技,1990,11(1):1-4.
    [319]薛立,杨鹏.森林生物量研究综述[J].福建林学院学报,2004,24(3):283-288.
    [320]闫明,钟章成.铝胁迫对感染丛枝菌根真菌的樟树幼苗生长的影响[J].林业科学,2007,43(4):59-65.
    [321]严昶升.土壤肥力研究方法[M].北京:农业出版社,1988,287-291.
    [322]杨承栋,魏以荣.杉木连栽地土壤组成、结构、性质变化及其对杉木生长的影响[J].林业科学,1996,32(2):175-181
    [323]杨承栋.杉木人工林地力衰退的原因机制及其防治措施[J].世界林业研究,1997,10(4):34-39.
    [324]杨少红,高人,陈光水,等.不同栽杉代数杉木林C库与C吸存[J].东北林业大学学报,2006,34(4):42-45.
    [325]杨书运,张庆国,蒋跃林,等.中国森林生态系统对全球碳平衡的作用与地位[J].江苏林业科技,2006,33(1):45-49.
    [326]杨婉身,陈惠,王晓丽,等.酸雨对杉木磷吸收和代谢的影响[J].林业科学,2000,36(3):73-76.
    [327]杨细明.马尾松人工林凋落物分解及养分释放规律[J].福建林学院学报,2002,22(1):86-89.
    [328]杨玉盛,陈光水,郭剑芬,等.杉木观光木混交林凋落物分解及养分释放的研究(英文)[J].植物生态学报,2002b,26(3):275-282.
    [329]杨玉盛,陈光水,王义祥,等.格氏栲人工林和杉木人丁林碳吸存与碳平衡[J].林业科学,2007,43(3):113-117
    [330]杨玉盛,陈光水.杉木一观光木混交林群落N、P养分循环的研究[J].植物生态学报,2002a,26(4):473-480.
    [331]杨玉盛,何宗明,陈光水,等.杉木多代连载后土壤肥力变化[J].土壤与环境,2001,10(1):33-38.
    [332]杨玉盛,林瑞余,李庭波,等.森林凋落物淋溶中的溶解有机物与紫外-可见光谱特征[J].热带亚热带植物学报,2004,12(2):124-128.
    [333]杨玉盛,俞新妥,邱仁辉,等.不同栽杉代数根际土壤肥力及生物学特性变化[J].应用与生物学报.1999,5(3):254-258.
    [334]杨玉盛.不同栽植代数29年生杉木生长规律的研究[J].林业科学,1999,35(1):32-36
    [335]杨玉盛,李振问.南平溪后杉木林取代杂木林后土壤肥力变化的研究[J].植物生态学报,1994,18(3):236-242.
    [336]杨玉盛,杨伦增.杉木林取代杂木林后土壤腐殖质组成及特性变化的研究[J].福建林学院学报,1996,16(2):97-100.
    [337]杨玉盛,雷明德.杉木油桐仙人草复合经营的土壤结构特性与水分性质的研究[J].南京林业大学学报,1993,17(3):75-79.
    [338]杨玉盛著.杉木人工林可持续经营的研究[M].北京:中国林业出版社,1998b:24-38,
    [339]杨玉盛著.杉木人工林可持续经营的研究[M].北京:中国林业出版社.1998a,8-17.
    [340]姚瑞玲,丁贵杰,王胤.不同密度马尾松人工林凋落物及养分归还量的年变化特征[J].南京林业大学学报(自然科学版),2006,30(5):83-86.
    [341]叶镜中,姜志林,周本琳.福建省洋口林场杉木林生物量的年变化动态[J].南京林学院学报,1984,8(4):1-9.
    [342]俞慧娜,刘鹏,徐根娣,等.大豆根系和叶片叶绿素荧光特性对铝响应的比较[J].上海交通大学学报(农业科学版),2007,25(2):138-168.
    [343]于天仁.土壤化学原理[M].北京:科学出版社,1987.
    [344]余崇祥.湖南红壤中微量元素的含量与分布[J].农业现代化研究.1994,增(1);41-45.
    [345]余树全,李翠环,姜礼元,等.千岛湖天然次生林群落生态学研究[J].浙江林学院学报,2002,19(2):138-142.
    [346]俞新妥,陈存及,林思祖.福建杉木人工林生态系统生物产量的初步研究.南平:福建林学院,1979,46-48.
    [347]俞新妥,杨玉盛,何智英,等.炼山对杉木人工林生态系统的影响[J].福建林学院学报,1989c,9(3):238-255.
    [348]俞新妥,张其水.杉木连栽林地土壤生化特性及土壤肥力的研究[J].福建林学院学报,1989a,9(3):263-271
    [349]俞新妥.80我国年代杉木林资源动态及营林对策思考[.J].福建林学院学报,1990a,10(4):411-416.
    [350]俞新妥.混交林营造原理及技术[M]北京:中国林业出版社,1989b,1-18.
    [351]俞新妥.杉木林地力衰退问题的研究与对策[J].林业科技通讯,1990b,(9):1-2.
    [352]俞新妥.杉木人工林地力和养分循环研究进展[J].福建林学院学报,1992,12(3):264-276.
    [353]俞新妥.杉木栽培学[M].福州:福建科学技术出版社,1996a.
    [354]俞新妥.我国近期杉木资源动态及营林意见[J].林业科技通讯:1996b,11(1):34-37.
    [355]俞新妥.俞新妥文选[M].中国林业出版社,2003b,320-323.
    [356]俞新妥.中国杉木研究[J].福建林学院学报,1988,8(3):203-220.
    [357]俞新妥.杉木连栽林地土壤腐殖质组成及其特性的研究.见:中国林学会造林分会编:造林论文集[C],北京:中国林业出版社,1990c.
    [358]俞新妥主编.俞新妥文选[M].北京:中国林业出版社,2003a:320-324,399—405.
    [359]俞元春,丁爱芳.模拟酸雨对酸性土壤铝溶出圾其形态转化的影响[J].土壤与环境.2001,10(2):87-90.
    [360]俞元春,阮宏华,费世民.下蜀林场主要森林类型凋落物的研究—中国森林生态系统定位研究[C].哈尔滨:东北林业大学出版社,1994,112-121.
    [361]詹鸿振.阔叶红松林内枯枝落叶层的生态作用[J].植物研究,1989,9(1):95-102.
    [362]张昌顺,李昆.人工林养分循环研究现状与进展[J].世界林业研究,2005,18(4):35-39.
    [363]张德强,叶万辉,余清发.鼎湖山演替系列中代表性森林凋落物的研究[J].生态学报,2000,20(6):938-944.
    [364]张德强,余清发,孔国辉,等.鼎湖山季风常绿阔叶林凋落物层化学性质的研究[J].生态学报,1998,18(1):96-100.
    [365]张鼎华,叶章发,李宝福.杉木、马尾松轮作对林地七壤肥力和林木生长的影响[J].林业科学,2001,37(5):10-15.
    [366]张健,李贤伟,胡庭兴.Al毒害与森林衰退研究评述[J].世界林业研究,1999,12(2):28-30.
    [367]张其水,俞新妥.连栽杉木林生长状况的调查研究[J].福建林学院学报,]992,12(3):334-338.
    [368]张清海,叶功富,林益明.滨海沙地木庥黄凋落物分解过程中热值的动态变化[J].林业科学研究,2005,18(4):455-459.
    [369]张全发,郑重,金义兴.植物群落演替与土壤发展之间的关系[J].武汉植物学研究,1990,8(4):325-334.
    [370]张若蕙,楼炉焕,李根友,等.浙江珍稀濒危植物[M].杭州:浙江科学技术出版社,1994.181-183.
    [371]张万儒,许本彤.山地森林土壤枯枝落叶层结构和功能研究[J].土壤学报,1990,27(2):121-131.
    [372]张宪武.杉木连栽与土壤中毒.见:中国科学院林业土壤研究所编.杉木人工林生态系统研究论文集[C].1980,136-143.
    [373]章志琴.杉木与阔叶树凋落物分解特征的比较及其混合分解研究[D].福建农林大学硕士论文,2005,29-30.
    [374]赵其国,王明珠,何园球.我国热带亚热带森林凋落物及其对土壤的影响[J].土壤,1991,23(1):8-15.
    [375]郑超,谭中文,刘月廉.菠萝—甘蔗轮作制度对甘蔗生长和土壤微生物区系的影响[J].热带作物学报,2004,25(3):29-32.
    [376]郑万钧,杨衔缙,李锡文,等.中国树木志[M].北京:中国林业出版社,1982.795-797.
    [377]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978,68-467.
    [378]中华人民共和国林业部.1989-1993年全国森林资源统计.1994.
    [379]钟国辉,辛学兵.西藏色季拉山暗针叶林凋落物层化学性质研究[J].应用生态学报,2004,15(1):167-169.
    [380]周传艳,周国逸,王春林,等.广东省森林植被恢复下的碳储量动态[J].北京林业大学学报,2007,29(2):60-65.
    [381]周存宇.凋落物在森林生态系统中的作用及研究进展[J].湖北农学院学报,2003,23(2):140-145.
    [382]周后盛.杉木多代连栽地营造混交林营养元素生物循环的研究[J].吉林林学院学报,1999,15(3):136-139.
    [383]周晓峰.森林生态系统定位研究(第一集)[C].哈尔滨:东北林业大学出版社,1991.
    [384]周学金,罗汝英,叶镜中.杉木连栽对土壤养分的影响及其反馈[J].南京林业大学学报,1991,15(3):44-49.
    [385]周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[.J].植物生态学报,2000,24(5):518-522.
    [386]朱端卫,董元彦.低品位磷矿粉对酸性土壤化学性质的影响[J].土壤通报,1991,22(6):257-259.
    [387]朱建林.油松树冠营养元素浓度空间变异的研究.中国森林生态定位研究[C].哈尔滨:东北林业大学出版社,1994,98-102.
    [388]朱晓帆,卢红,金燕.峨嵋山冷杉衰之与土壤铝活化的关系研究[J].环境科学,1997,18(4):25-28.
    [389]邹春静.长白松人工林群落生物量和生产力的研究[J].应用生态学报,1995,6(2):123-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700