单频固体激光器输出功率稳定控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单频固体激光器具有体积小、效率高、光束质量好、寿命长等优点,得到了广泛的应用。单频固体激光器输出功率稳定控制系统是保证单频固体激光器正常工作的重要系统,其性能对单频固体激光器的正常使用和光束质量等有很大影响,也是单频固体激光器广泛应用的关键技术之一。
     本文在分析影响单频固体激光器输出功率稳定因素的基础上,设计了一种新型单频固体激光器输出功率稳定控制系统。该系统采用L01型集成光电传感器为功率探测元件,18B20型数字温度传感器为温度探测元件,以高性能微处理器ADuC848为核心对单频固体激光器输出功率进行稳定控制。论文主要内容包括以下几个方面:
     第一,概述了单频固体激光器输出功率稳定控制技术的研究现状及意义,确定了本论文的研究内容及设计要求。
     第二,简要介绍了单频固体激光器的系统组成和工作原理,分析了影响单频固体激光器输出功率稳定的主要因素。分析结果表明:泵浦源——半导体激光器(LD)和激光晶体的温度变化及LD注入电流的波动是影响单频固体激光器输出功率稳定性的主要因素。在此基础上设计了单频固体激光器输出功率控制方案。即先稳定LD和激光晶体温度,再根据当LD温度恒定,注入电流大于阈值电流时,LD的输出功率和注入电流成线性关系这一特点,对单频固体激光器的输出功率进行稳定控制。
     第三,设计了单频固体激光器输出功率稳定控制系统的硬件电路和软件系统,其中主要包括温度和功率的采集,处理,显示和输出等部分。并对所设计的硬件系统和软件系统进行了调试。
     最后,建立了单频固体激光器输出功率稳定控制测试系统,并进行了实验研究。研究结果表明:在130分钟内,1064nm单频Nd:YAG激光器输出功率的稳定性达到1.29%,满足本论文设计要求。
     本论文研究设计的单频固体激光器输出功率稳定控制系统设计合理,具有集成度高、控制效果好、工作可靠等优点,具有很好的工程应用价值。
Single-frequency solid-state laser is widely used for its advantages of small volume, high efficiency, good beam quality, and long longevity etc. Output power control system is the important equipment for single-frequency solid-state laser normally working. Its performance has large influence on the solid-state laser's characteristics such as the conversion efficiency and beam quality etc. It is a key technology for single-frequency solid-state laser to be widely used.
     On the basis of analyzing the characteristics of which affect the stability of the output power, a new type of single-frequency solid-state laser output power control system has been designed in this thesis. A control system uses the L01 integrated sensor as output power sensor, the 18B20 digital thermometer as temperature sensor and a high performance microprocessor ADuC848 as a control core, to control the single-frequency solid-state laser's output power. The main contents of the thesis are as follows:
     Firstly, the research status and significance of single-frequency solid-state laser output power stability control system have been summarized. The content and design requirements of this thesis have been confirmed.
     Secondly, the working principle and composition of single-frequency solid-state laser have been introduced. The factors that affect the output power of single-frequency solid-state laser have been analyzed. The results indicate that the temperature changing of LD and laser crystal, the fluctuations of LD injection current are the main factors that affect the stability of its output power. Based on this, the Control program of stable single-frequency solid-state laser output power has been developed, that is, the LD and the laser crystal temperature should be stabled firstly, and then based on the linear relation characteristics between output power and injection current of LD when injection current is greater than the threshold current, the stability control of the single-frequency solid-state laser output power are executed.
     Thirdly, the single-frequency solid-state laser output power control system hardware and control software have been designed. System mainly includes the collection, processing, display and output sections of temperature and power. The hardware and software system have been debugged.
     Lastly, the test system is built. The effect of control system is examined experimentally. The results indicate that the outpower of 1064nm single-frequency Nd:YAG laser can be controlled in 130 minutes with a stability of 1.29%.
     The single-frequency solid-state laser output power control system has been researched and developed in this thesis. With the advantages of high integration, good effect, reliable working etc, the system has good engineering value.
引文
[1]周炳琨,高以智,陈倜嵘,陈家骅.激光原理[M].国防工业出版社,2004:19-23.
    [2]蓝信钜等.激光技术[M].北京:科学出版社,2005:1-3
    [3]马金铭.激光二极管端面泵浦固态激光器及倍频技术研究[D].北京:国防科学技术大学,2005
    [4]R.NeWman. Excitation of the Nd3+fluorescence in CaWO4 by recombination radiation in GaAs [J]. APPI.Phys.Lett,1963,34 (2):437-439
    [5]R.N.Hall, GE.Fenner, J.D. Kingsley, etc. Coherent light eission from GaAs junctions. Phys. Rev. Lett, 1962,9(9):366-368
    [6]R.J.Keyes and T.M.Quist. Injection xtunineseent pumping of CaF2:U3+With GaAs diode lasers, APPI.Phys.Lett,1974,24(1):50-52
    [7]M.Ross, Profc, etal. YAG Laser Operatlon by Semiconductor Laser Pumping [J]. Proeeeding of The IEEE,1968,56(2):196-197
    [8]F.W.Ostermayer, R.B.Allen, etc. Room-temperation CW operation of a GaAs diode Pumped Nd:YAG laser.APPI.Phys.Lett,1971, vol (19):289-292
    [9]L.C.Connant, C.W.Reno. GaAs laser diode Pumped Nd:YAG laser, APPI.Opt,1974, vol 1(13):2457-2458
    [10]T.Bear, M.S.Keirstead. Laser diode pumped Nd:YAG/KTP laser.Lasers Electro-OP. OPt.Sco.Amer, 1985,21:135-139
    [11]张宽收等.全固化Nd:YVO4单频绿光激光器[J].中国激光,1994,A21(8):617-620
    [12]何晶良,王建明等.激光二极管泵浦Nd:YV04/LBO腔内倍频瓦级连续波绿光激光器[J].光学学报,1998,18(7):562-565
    [13]郑义,郭洪,姚建铨等.激光二极管端面泵浦的高效高功率固体激光器.中国专利,申请号:02278626.0,1999
    [14]朱光平等.激光二极管泵浦Cr:LISAF内腔倍频激光器研究[J].深圳大学学报,2001,12(1):21-24
    [15]杜戈果等.LD泵浦Nd:YAG 946nmCW激光器研究[J].激光与红外,2001,31(3):147-149
    [16]Qin, Lian jie etc. LD pumped actively Qswitehed Nd:GdVO4/KTP red laser Optics and Laser Teehnology [J],2003,35(4):257-260
    [17]陈历学,李淳飞.指数反馈光学双稳态光强稳定器.哈尔滨工业大学学报1983,4:2634
    [18]BarryL.Shoop,B.Pezeshki,J.WGoodmanetal.Laser-powerStabilizationUsingaQuantum-wellModulato r.IEEEPhotonTechnol.Let.1992,4(2):136-139
    [19]Atsushi Murakarni,Junji Ohtsubo and YunLiu.Stability Analysis of Semiconductor Laser with Phase-conjugate Feedback.IEEE Quantum Electronics.1997,33(10):1825-1831
    [20]林彦,霍玉晶,何淑芳,陈佳琦.光电反馈法稳定全固态绿光激光器输出功率[J].激光与红外,2005,1:48-50
    [21]王君立.全固态激光器温控系统研究进展.《光机电信息》,2002,11:12-16
    [22]高致慧,李景镇,马丹,张怀宇.基于电光调制的激光功率稳定系统[J].激光杂志,2002.2:14-17
    [23]叶红安,杨九如,李成.半导体激光器混合功率控制系统[J].光子学报,2007.1:23-25
    [24]李适民,黄维玲,等.激光器件原理与设计[M].北京:国防工业出版社,2005.
    [25]郝迎超,宁继平,杨吉生.LD纵向抽运固体激光器中的耦合系统[J].激光杂志,2002,23(1):25-27.
    [26]乔亚天.梯度折射率光学[M].北京:科学出版社,1991:86-102.
    [27]翟群,吕百达,蔡邦维,等.激光二极管端面泵浦耦合技术研究[J].激光杂志,1997,18(6):10-13.
    [28]吕百达.固体激光器件[M].北京:北京邮电大学出版社,2003:43-47.
    [29]吕海宝.激光光电检测[M].长沙:国防科技大学出版社,2000:20-27.
    [30]张靖,张宽收,王润林,等.全固化单频Nd:YVO4环形激光器[J].中国激光,2000,A27(8):694-696.
    [31]关荣锋,赵军良.实用半导体激光电源的研制[J].焦作工学院学报,1997,16(4):71-73.
    [32]Analog Devices Inc.ADuC848 datasheet. http://www.analog.com/UploadedFiles/Data_Sheets /ADUC845_847_848.pdf
    [33]Maxim/Dallas Semiconductor, Inc. DS18B20 datasheet. http://datasheets.maxim-ic.com/en/ds/DS 18B20.pdf
    [34]Jim Williams.A Thermoelectric Cooler Temperature Controller for Fiber Optic Lasers. http://www.eetchina.com/ART_8800357115_640279_219c1c79200312.HTM
    [35]余建祖.电子设备热设计及分析技术[M].北京:高等教育出版社,2001:231-235.
    [36]黄德修,刘雪峰.半导体激光器及其应用[M].北京:国防工业出版社,1999:105-106.
    [37]Troy Murphy. ADN8830-EVAL TEC Controller Instructions Application Note (AN-705) www.analog.com/UploadedFiles/Application_Notes/662449027AN705_0.pdf
    [38]ST Micro electronics.L298 DUAL FULL-BRIDGE DRIVER. http://www.st.com/stonline/books/pdf/docs/1773.pdf
    [39]周惠潮.常用电子元件及典型应用[M].北京:电子工业出版社:2005:464-466.
    [40]Analog Devices Inc.AD780datasheet.http://www.analog.com/static/imported-files/data_sheets/AD780.pdf
    [41]李刚等.ADuc845单片机原理、开发方法及应用实例[M].北京:电子工业出版社,2006:105-108.
    [42]冈村迪夫.OP放大电路设计[M].北京:科学出版社,2004:198-200.
    [43]张国雄,金篆芷.测控电路[M].北京:机械工业出版社,2000:113-114.
    [44]钱积新,王慧.控制系统的数字仿真及计算机辅助设计[M].北京:化学工业出版 社,2003:79-80.
    [45]侯志林.过程控制与自动化仪表[M].北京:机械工业出版社,2003:179-180.
    [46]余永权,汪明慧.单片机在控制系统中的应用[M].北京:电子工业出版社,2003:109-111.
    [47]Richard Palmer.PWM Power Driver Modulation Schemes. http://focus.tij.co.jp/jp/lit/an/sloa092/sloa092.pdf

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700