化学添加剂对土壤砷生物有效性调控的效果和初步机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砷是我国优先控制的污染物。随着社会经济和工业的发展,全球许多国家面临严重的砷污染威胁,砷污染已成为人们普遍关注的环境污染之一。土壤砷污染与修复的研究已成为世界各国的科学热点问题和前沿研究领域。土壤污染物的化学修复技术是一种实用可行的土壤污染治理方法。本项目的研究目的是,通过研究化学添加剂对土壤砷生物有效性调控的效果及其可能的作用机理,筛选出经济有效、易于实施的化学添加剂应用于农业生产,从而为土壤As污染控制和农产品安全提供可靠的技术措施。本项研究针对我国土壤As污染的现状,通过室内恒温恒湿培养试验和温室盆栽试验,选用砷超积累植物蜈蚣草、粮食作物小麦和油料作物油菜以及不同蔬菜品种,通过向砷污染土壤添加不同的化学添加剂,研究其对土壤砷的有效性和形态及不同植物吸收利用砷的影响,明确化学添加剂对土壤砷有效性和形态的调节作用及初步机理。主要研究结果如下:
     1.在室内恒温恒湿试验条件下,添加石灰石粉、人工沸石、铁矿粉、含钛纳米材料、赤泥和煤渣处理的土壤有效As含量比对照均呈减少趋势(负相关),减少量分别为63.7%、63.6%、58.3%、41.5%、54.6%和49.9%,差异均达到极显著;土壤松散态As、铝结合态As、铁结合态As等有效态砷形态含量也均显著降低。添加EDTA、有机堆肥、过磷酸钙、磷矿粉和聚丙烯酸钠处理的土壤有效As含量随着培养时间的增加呈增加趋势(正相关),增加量分别为32.3%、50.2%、58.7%、44.6%和104%,且差异达到极显著,其中以聚丙烯酸钠增加最为明显;土壤松散态As、铝结合态As、铁结合态As等有效态砷形态含量也均显著提高。这表明,添加不同化学添加剂,一定程度上钝化/活化土壤中的砷,使得砷的可利用性和可移动性降低或提高。
     2.土壤盆栽条件下,添加EDTA,有机堆肥,过磷酸钙,磷矿粉及聚丙烯酸钠等5种化学添加剂提高土壤砷的有效性、促进土壤砷形态向有效态转化,从而促进蜈蚣草和油菜的生长并提高对砷的吸收积累。如,添加过磷酸钙处理蜈蚣草地上部干物重增加最为明显,平均比对照增长近64%。蜈蚣草砷浓度提高以EDTA处理最高,平均比对照高出近21%。蜈蚣草的砷累积量以过磷酸钙处理最高,比对照增长了近69%。
     3.土壤盆栽条件下,添加石灰石粉,人造沸石,铁矿粉,赤泥及煤渣等5种化学添加剂降低土壤砷的有效性,有效抑制小麦和油菜对土壤中砷的吸收积累并减小砷对小麦和油菜的毒害。如,添加这5种化学添加剂均显著降低小麦地上部砷浓度,其中铁矿粉、赤泥和煤渣处理的小麦内砷浓度分别平均比对照减少41%、29%和35%,统计分析均达显著水平。
     4.在土壤中添加EDTA,有机堆肥,过磷酸钙,磷矿粉及聚丙烯酸钠等5种化学添加剂有提高蜈蚣草盆栽土壤中性磷酸酶和脲酶活性及降低土壤蔗糖酶活性的作用。如,蜈蚣草盆栽土壤中性磷酸酶活性与对照相比平均增幅为2%—111%,脲酶活性平均增幅为3%—19%,土壤蔗糖酶平均减幅为9%—36%。在土壤中添加石灰石粉,人造沸石,铁矿粉,赤泥及煤渣等5种化学添加剂使得小麦和油菜盆栽土壤中性磷酸酶和脲酶活性提高,土壤蔗糖酶活性降低。小麦盆栽土壤中性磷酸酶活性与对照相比平均增幅为5%—35%,脲酶活性平均增幅为2%—9%,土壤蔗糖酶平均减幅为10%—55%;油菜盆栽土壤中这三种酶的活性与对照相比平均变幅分别为19—54%,4%—16%和0.6%—33%。
     5.添加铁矿粉和含钛纳米材料提高蔬菜地上部生物重,同时显著降低砷含量。添加铁矿粉和含钛纳米材料显著减少地上部砷含量,上海五月慢分别是24%和25%,芥菜型油菜品种芥菜50-1分别是3%和8%,芥菜型油菜品种岷县牛尾梢分别是37%和11%,甘蓝型油菜品种苏油15号分别是45%和66%,甘蓝型油菜品种D050-1分别是2%和42%。
     6.添加铁矿粉和含钛纳米材料处理的蔬菜体内的可溶性蛋白质与对照相比均降低。如,甘蓝型油菜品种苏油15号可溶性蛋白显著减少约21%和39%。但是,添加铁矿粉和含钛纳米材料处理的蔬菜叶片叶绿素a、叶绿素b和叶绿素总量含量与对照差异不显著。
     7.土壤添加铁矿粉和含钛纳米材料缓解了蔬菜的氧化胁迫。主要表现为,蔬菜叶片中SOD酶和CAT酶活性及GSH含量与对照相比均降低,而MDA积累减少。如,蔬菜叶片中SOD酶活性与对照相比平均减幅为6%—40%,CAT酶活性平均减幅为1%—22%,GSH含量平均减幅为1%—20%,蔬菜叶片中MDA含量与对照相比平均增幅为0.3%—23%。
Arsenic is a priority pollutant to be controled in China. With the development of socio-economy and industry, many countries around the world are facing serious arsenic contamination. Nowadays, remediation of arsenic contaminated soil is a hotspot of scientific research and application around the world. Chemical remediation is a feasible and practical method to repair polluted soil. The purpose of this project was to study the influence of chemical additives on bioavailability of soil arsenic and its preliminary mechanisms, to select the best effective chemical additives used in agricultural production, and then to provide reliable measures to control soil arsenic contamination and to assure the security of agricultural products. Based on the status quo of the soil pollution in China, a constant temperature and humidity experiment and pot experiments using a hyperaccumulator Pteris vittata L., a food crop Triticum aestivum L. , and an oil crop Brassica napus L. were carried out to understand the effects of adding different chemical additives on the growth of the plant, the uptake and accumulation of arsenic by the plants as well as its preliminary mechanisms. The main results were as follows:
     1. Application of limestone, ersatz zeolite, iron powder, titania, red mud and cinder reduced markedly the soil available As under the conditions of constant temperature and humidity experiment, with the percentage decreased by 63.7%, 63.6%, 53.8%, 41.5%, 54.6% and 49.9%, respectively; application of EDTA, compost, calcium superphosphate, rock phosphate and sodium polyacrylate increased significantly the soil available As, with the percentage increased by 32.3%, 50.2%, 58.7%, 44.6% and 104%, respectively, of which the sodium polyacrylate was the most effective. The results showed that application of chemical additives could passivate or activate As in polluted soil by reducing or increasing the availability and movability of soil As.
     2. Application of EDTA, compost, calcium superphosphate, rock phosphate and sodium polyacrylate increased the amount of the soil available As and the growth and arsenic uptake of P. vittata L. in pot experiment. Calcium superphosphate was the most markedly effective additives, with an increasing percentage of 76% in biomass over the control. EDTA was the most markedly effective in increasing arsenic uptake by P. vittata L., with the increasing percentage of 21%. And the greatest arsenic accumulation of P. vittata L. went to calcium superphosphate, which the increasing percentage was 69%.
     3. Application of limestone, ersatz zeolite, iron powder, titania, red mud and cinder reduced the soil available As and arsenic uptake of wheat and promoted its growth in pot experiment. Iron powder, red mud and cinder reduced markedly arsenic uptake of wheat with a decreasing percentage of 26% and 35% over the control.
     4. Application of EDTA, compost, calcium superphosphate, rock phosphate and sodium polyacrylate increased soil neutral phosphatase activity and soil urease enzyme activity, but reduced soil sucrose enzyme activity of potting soil grown P. vittata L. The change range of soil neutral phosphatase activity, urease enzyme activity and sucrose enzyme activity are 2%-lll%, 3%-19% and 9%-36%, respectively. Application of limestone, ersatz zeolite, iron powder, red mud and cinder increased soil neutral phosphatase activity and soil urease enzyme activity, and reduced soil sucrose enzyme activity of wheat and rape, with the change range of soil neutral phosphatase activity, urease enzyme activity and sucrose enzyme activity over the control being 2%-111%, 3%-19% and 9%-36%, and 19%-54%, 4%-16% and 0.6%-33%, respectively.
     5. Application of iron powder and titania promoted the growth and reduced arsenic uptake of vegetables in pot experiment, with the decreasing percentages of 24% and 25%, 3% and 8%, 31% and 11%, 45% and 66% and 2% and 42%, respectively, for B. campestris L.ssp.chinensis, B. juncea var.50-1, B. juncea var.Minxianniuweishao, B. napus var.Suyou15 and B. napus var.D050-1.
     6. Application of iron powder and titania reduced soluble protein content in vegetables in pot experiment and the decreases of soluble protein content in napus var.Suyou15 were 21% and 39%, respectively. There was no obvious difference among the content of Chlorophyll a, Chlorophyll b and total Chlorophyll after addition of iron powder and titania.
     7. Application of iron powder and titania relieved oxidative stress in vegetables, which was mainly showed as a decrease in activity of SOD and CAT, and the content of GSH and MDA in the shoots of vegetables, with the change range of 6%-40%, 1%-22%, 1%-20%, and 0.3%-23%, respectively.
引文
1.安冬,何光煜,胡小强.煤烟污染型砷氟联合中毒.贵州医药,1992,16(1):1-5
    2.北大法律周刊,2000,1(3)
    3.常福辰,施国新,吴国荣,丁小余,解凯彬,王建军,丁静.Cd~(2+)、Hg~(2+)复合污染下金鱼藻的细胞膜脂过氧化和抗氧化酶活性的变化.广西植物,2002,22(5):453-457
    4.常思敏,马新明,蒋媛媛,贺德先,张贵龙.土壤砷污染及其对作物的毒害研究进展.河南农业大学学报,2005,39(2):161-166
    5.陈声明.绿色食品与保护.环境污染与防治,1998,17(8):29-34
    6.陈同斌,范稚莲,雷梅,黄泽春,韦朝阳.磷对超富集植物蜈蚣草吸收砷的影响及其科学意义.科学通报,2002,8(15):1156-1159
    7.陈同斌,刘更另.砷对水稻生长发育的影响及其原因.中国农业科学,1993,26(6):50-58
    8.陈同斌,韦朝阳,黄泽春,黄启飞,鲁全国,范稚莲.砷超富集植物蜈蚣草及其对砷的富集特征.科学通报,2002,47(3):207-210
    9.陈同斌.土壤溶液中的砷及其与水稻生长效应的关系.生态学报,1996,16(2):147-153
    10.陈同斌.土壤中砷的吸附特点及其与水稻生长发育的关系.[中国农业科学院博士学位论文],1990
    11.戴伟,陈晓东.北京低山地区土壤酶活性与土壤理化性质的关系.河北林学院学报,1995,10(1),13-18
    12.范稚莲.土壤和超富集植物中磷、砷相互关系.[广西大学硕士论文],2001
    13.傅丽君,赵士熙,王海,杨文金.4种农药对土壤微生物呼吸及过氧化氢酶活性的影响.福建农林大学学报(自然科学版),2005,34(4):441-443
    14.傅平.砷的地球化学屏障作用初探.重庆环境科学,1999,21(6):48-49
    15.龚平,孙铁珩,李培军.重金属对土壤微生物的生态效应.应用生态学报,1997,8(2):218-224
    16.郭观琳,周启新,李秀颖.重金属污染土壤原位化学固定修复研究进展.应用生态学报,2005,16(10):1990-1996
    17.何伯泉,周国华,薛玉兰.赤泥在环境保护中的应用.轻金属,2001,(2):24-26
    18.何念祖,孟赐福.植物营养原理.上海:上海科技出版社,1987,152
    19.和文祥,陈会明,朱铭莪.汞镉砷元素污染土壤的酶监测研究.环境科学学报,2000,20(3):338-343
    20.和文祥,朱铭莪,张一平.土壤酶与重金属关系的研究现状.土壤与环境,2000,9(2):139-142
    21.纪立东,孙权,马秀琴,储燕宁,沈瑞清.宁夏引黄灌区农田土壤酶活性及其空间变异.生态环境,2007,16(6):1738-1739
    22.柯长茂,李先机,翁正一.生活用煤引起的砷中毒.环境科学丛刊,1980,(4):48-53
    23.李瑞美,方玲,王果,张潮海,华村章.重金属污染土壤的有机-中性化修复技术试验.福建农业学报,2004,19(1):50-53
    24.李删,程舟.镉与锌复合污染对栝楼幼苗生理特性的影响.西北植物学报,2007,27(6):1191-1196
    25.李兆君,马国瑞,徐建民,何艳.植物适应重金属Cd胁迫的生理及分子生物学机理.土壤通报,2004,35(2):234-238
    26.李志超.微生物对甲基汞的降解作用.环境科学,1984,5(3):61-64
    27.梁华.赤泥利用的近期研究动态.世界有色金属,1999,(3):32-34
    28.廖晓勇,陈同斌,肖细元,黄泽春,安志装,莫良玉,李文学,陈煌,郑袁明.污染水稻田中土壤含砷量的空间变异特征.地理研究,2003,22(5):635-643
    29.廖晓勇,陈同斌,谢华,肖细元.磷肥对砷污染土壤的植物修复效率的影响:田间实例研究.环境科学学报,2004,24(3):455-462
    30.廖自基.微量元素的环境化学及生物效应.中国环境科学出版社,1992
    31.刘登义,王友保,张徐祥,司琴.污灌对小麦幼苗生长及活性氧代谢的影响.应用生态学报,2002,13(10):1319-1322
    32.刘更另,高素端.红壤中砷对农作物的影响.土壤通报,1987,18(5):231-233
    33.刘杰,朱义年,罗亚平,张徽林.清除土壤重金属污染的植物修复技术.桂林工学院学报,2004,24(4):507-511
    34.刘世鹏,刘济明,陈宗礼,曹娟云,白重炎.模拟干旱胁迫对枣树幼苗的抗氧化系统和渗透调节的影响.西北植物学报,2006,26(9):1781-1787
    35.刘威,束文圣,蓝崇钰.宝山堇菜—一种新的镉超富集植物.科学通报,2003,10,48(19):2046-2049
    36.刘文菊,张西科,谭俊璞,刘藏珍,李仁岗,张福锁.磷营养对苗期水稻地上部累积镉的影响.河北农业大学学报,1998,4(21):28-32
    37.龙新宪,杨肖娥,倪吾钟.重金属污染上壤修复技术研究现状与展望.应用生态学报,2002,13(6):757-762
    38.骆永明.金属污染土壤的植物修复.土壤,1999,31(5):261-265
    39.马成仓,李清芳,洪法水.汞对玉米幼苗膜脂过氧化及体内保护系统的影响.西北植物学报,1997,17(2):217-220
    40.孟立君,吴凤芝.土壤酶研究进展.东北农业大学学报,2004,35(5):622-626
    41.潘瑞炽,豆志杰,叶庆生.茉莉酸甲酯对水分胁迫下花生幼苗SOD活性和膜脂过氧化作用的影响.植物生理学报,1995,21(3):221-228
    42.秦天才,吴玉树,黄巧云,胡红青.镉、铅单一和复合污染对小白菜抗坏血酸含量的影响.生态学杂志,1997,16(3).31-34
    43.青长乐,牟树森,蒲富永,付绍清.论土壤重金属毒性临界值.农业环境保护.1992,11(2):51-56
    44.邱永祥,蔡南通,吴秋云,罗文彬,李光星,汤浩.铅对叶菜用甘薯根系生长及植株光合作用的影响.浙江农业学报,2006,18(6):429-432
    45.曲贵伟,依艳丽.聚丙烯酸铵对重金属离子的吸附效应及在土壤修复上的应用.安徽农业科学,2006,34(20):5331-5335
    46.任冬梅,毛亚南.赤泥的综合利用.有色金属工业,2002,(5):58-59
    47.任先云,周振荣,张阁有,张玉敏,罗振东,岱沁,梁秀芬,张美云.富砷饮水对居民免疫功能的影响.中国地方病防治杂志,2000,15(6):347
    48.沈桂琴,廖瑞章.重金属、非重金属、矿物油对土壤酶活性的影响.农业环境保护,1987,6(3):24-27
    49.沈振国,陈满怀.土壤重金属污染生物修复的研究进展.农村生态境,2000,16(2):39-44
    50.施泽明,倪师军,张成江.成都城郊典型蔬菜中重金属元素的富集特征.地 球与环境,2006,34(2):52-56
    51.宋书巧,周永章,周兴,吴欢.土壤砷污染特点与植物修复探讨.热带地理,2004,24(1):6-9
    52.孙瑞莲,赵秉强,朱鲁生,徐晶,张夫道.长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用.植物营养与肥料学报,2003,9(4):406-410
    53.孙铁珩,周思毅.城市污水土地处理技术指南.北京:中国环境科学出版社,1997
    54.唐莉娜,熊德中,刘淑欣.土壤酸度调节对烤烟养分吸收、干物质积累的影响.福建农业大学学报,1998,28(3):35-340
    55.唐世荣,黄昌勇,朱祖祥.污染土壤的植物修复及其研究进展.上海环境科学,1996,15(12):37-39
    56.万忠梅,吴景贵.土壤酶活性影响因子研究进展.西北农林科技大学学报,2005,33(6):87-92
    57.王保军.微生物与重金属的相互作用.重庆环境科学,1996,18(1):35-38
    58.王春旭,李生志,许荣玉.环境中砷的存在形态研究.环境科学,1993,14(4):53-57
    59.王国荃等.地方性砷中毒的研究进展.新疆医科大学学报,2004,01(6):26
    60.王连方,颜世铭.我国地方性砷中毒研究进展.世界元素医学,1999,6(3):19-24
    61.王鸣刚,任小换,刘晓风.植物修复重金属污染土壤的机理及其应用前景.甘肃农业大学学报,2007,10(5):108-113
    62.王艳杰,傅桦.近10年来土壤重金属污染植物修复研究.首都师范大学学报:自然科学版,2005,25(12):141-145
    63.王友保,刘登义,张莉.铜砷及其复合污染对黄豆影响的初步研究.应用生态学报,2001,12(1):117-120
    64.王云,魏复盛编著.土壤环境元素化学.北京:中国环境科学出版社,1995,42-57
    65.韦朝阳,陈同斌,黄泽春,张学青.大叶井口边草-一种新发现的富集砷的植物.生态学报.2002,22(5):777-778
    66.魏显有,王秀敏,刘云惠,檀建新.土壤中砷的吸附行为及其形态分布研究.河北农业大学学报,1999,22(3):28-31
    67.夏立江,华珞,李向东.重金属圬染生物修复机制及研究进展.核农学报,1998,12(1):59-64
    68.谢正苗,黄昌勇,何振立.土壤砷的化学平衡.环境科学进展,1998,6(1):3
    69.徐冬梅,刘广深,王黎明,刘维屏.重金属汞对土壤酸性磷酸酶的影响及其机理.环境科学学报,2004,24(5):865-870
    70.徐红宁,许嘉琳.我国砷异常区的成因及分布.土壤,1996,02:24-26
    71.许嘉琳,杨居荣,荆红卫.砷污染土壤的作物效应及其生态效应.土壤,1996,28(2):85-89
    72.薛生国,陈英旭,林琦,徐圣友,王远鹏.中国首次发现的锰超积累植物-商陆.生态学报,2003,23(5):935-937
    73.闫颍,袁星,樊宏娜.五种农药对土壤转化酶活性的影响.中国环境科学,2005,24(5):588-591
    74.杨万勤,王开运.土壤酶研究动态与展望.应用与环境生物报,2002,8(5):564-570
    75.杨文婕,刘更另.砷对植物衰老的影响.植物生理学通讯,1997,33(1):54-55
    76.杨肖娥,倪吾钟,傅承新.东南景天-一种新的锌超积累植物.科学通报,2002,47(19):1634-1637
    77.杨志新,冯圣东,刘树庆.镉、锌、铅单元素及其复合污染与土壤过氧化氢酶活性关系的研究.土壤与环境,2000,9(1):15-18
    78.张桂山,贾小明,马晓航,钱忠,史春余,张夫道.山东棕壤重金属污染土壤酶活性的预警研究.植物营养与肥料学报,2004,10(3):272-276
    79.张国祥,杨居荣,华珞.土壤环境中的砷及其生态效应.土壤,1996,02:64-68
    80.张晓红,陈敏.砷的污染毒性及对人体健康的影响.甘肃环境研究与检测,1999,(12):215-217,222
    81.周代兴,刘定南,朱绍廉.高砷煤污染引起慢性砷中毒的调查.中华预防医学杂志,1993,27(3):147-150
    82.周礼恺,张志明,曹承绵,李荣华.土壤的重金属污染与土壤酶活性.环境科学报,1985,5(2):176-183
    83.周世萍,段昌群,韩青辉,张正旺,孙超云,胡艳红.毒死蜱对土壤蔗糖酶活性的影响.生态环境,2005,14(5):672-674
    84.邹新禧.超强吸水剂(第二版),北京:化学工业出版社,2001:577-578
    85.Aualiitia T U,Picketing W F.The specific sorption of trace amounts of Cu,Pb,and Cd by inorganic particulates.Water,Air,and Soil Pollution,1986,35:171-185
    86.Baker A J M,McGrat S P.The possibility of insitu-heavy metal decontamination of polluted soils using crops of metal-accumulating plants,Resources,Conservation and Recycling,1994,11:41-49
    87.Barona A,Aranguiz I,Elias A.2001.Mwtal associations in soils before and after EDTA extractive decontamination:implications for the effectiveness of further clean-up procedures.Environmental Pollution,113(1):79-85
    88.Cang Long,Zhou Dongmei,Deng Changfen.Effect of Citrac Acid and EDTA on Adsorption of Chromium(VI) in Yellow Brown Soil and Red Earth.Journal of Agro-Environment Science,2004,23(4):710-713
    89.Carbonell A A,Aarabi M A,DeLaune R D,et al.Arsenic in wetland vegetation:Availability,phytotoxicity,uptake and effects on plant growth and nutrition.The Science of the Total Environment,1998,217:189-199
    90.Carbonell A A,Aarabi M A,Delaune R D,et al.The influence of arsenic Chemical form and concentration on Spartina patens and Spartina altemiflora growth and tissue arsenic concentration.Plant and Soil.1998.198:33-43
    91.Chen H,Cutright T.EDTA and HEDTA effects on Cd,Cr,and Ni uptake by Helianthus annuus.Chemospere,2001.45(1):21-28
    92.Chen R,Smith BW,Winefordner JD,Tu MS,Kertulis G,Ma LQ.Arsenic speciation in Chinese brake fern by ion-pair high-performance liquid chromatography-inductively coupled plasma mass spectroscopy.Analytica Chimica Acta,2004,504:199-207
    93.Chen Y X,Lin Q,Luo Y M.The role of citric acid on the phytoremediation of heavy metal contaminated soil.Chemosphere,2003,25(6):807-811
    94.Chen Yahua,Li Xiangdong,Shen Zhengguo.Leaching and uptake of heavy metals by ten different species of plants duing an EDTA-assisted phytoextraction process.Chemosphere,2004,57:187-196
    95. Chen Yahua, Shen Zhenguo, Zong Lianggang. Effects of EDTA on Pb Accumulation by Seedlings of Two Brassica Juncea Varieties. Research of Environmental Sciences, 2005, 18(1): 67-70
    96. Chlopecka A, Adriano D C. Influence of zeolite, apatite and Fe-oxide on Cd and Pb uptake by crops. The Science of the Total Environment, 1997, 207: 195-206
    97. Das D, Chatterjee C ,Mandal B K. Arsenic in groundwater in six districts of West Bengal, India: the biggest arsenic calamity in the world, Part 2: Arsenic Concentration in drinking water, hair, nails, urine, skin-scale and liver tissue of the affected people. Analyst, 1995, 120: 917-924
    98. Davenport J R, Peryea F J. Phosphate fertilizers influence leaching of lead and arsenic in a soil contaminated with lead arsenate .Water, Air and Soil Pollution, 1991,57:101-110
    99. Deng S P, Tabatabai M A. Cellulase activity of soil effect of trace element s. Soil Biol Biochem ,1995 ,27 (7): 977-979
    
    100.DiGregorio S, Serra R, Villani M. Applying cellular automata to complex environmental problems: the simulation of the bioremediation of contaminated soils. Theoretical Computer Science, 1999, 217(1): 131-156
    101.DiGregorio S, Serra R, Villani M. Applying cellular automata to complex environmental problems: the simulation of the bioremediation of contaminated soils. Theoretical Computer Science, 1999, 217(1): 131-156
    102.Dong D M, Nelson Y M, Lion L W, Shuler M L, Ghiorse W C. Adsorption of Pb and Cd onto metal oxides and organic material in natural surface coatings as determined by selective extraction:mew evidence for the importance of Mn and Fe oxides. Water Research, 2000, 34(2): 427-436
    103.Eharg AA. Arsenic in rice-understanding a new disaster for South-East Asia. Trends in Plant Sciences. 2004, 9:415-417
    104.Frankenberger J R, Johanson J B, Nelson C O. Urease activity in sewage sludge amended soils. Soil Biol. Biochem, 1983, 15: 543-549
    105.Franky C H, Patrick V B, Gren E R L. 1998. Biodegradation of Uranium-citrate complexes: implications for extraction of uranium from soils. Environmental Science & Technology, 32:379-382
    106.Garacia-Sanchez A, Alvarez-Ayuso E. Arsenate in soils and waters and its relation to geology and mining activities (Salamanca province, Spain.J.of Geochemical Exploration, 2003, 80(1): 69-79
    107.Garcia-Sánchez A, Alastuey A, Querol X.Heavy metal adsorption by different minerals: application to the remediation of polluted soils. The Science of the Total Environment, 1999,242(1-3): 179-188
    108.Gibbs R J. Transport phases of transition metals in the Amazon and Yukon Rivers. Giol. Soc. Am. Bull., 1977, 88: 829-843
    109.Green-Pedersen H, Jensen B T, Pind N. Nickel adsorption on MnO_2, Fe(OH)_3, montmorillonite, humic acid and calcite: a comparative study. Environmental Technology, 1997,18: 807-815
    
    110.Han F.X., Su Y., Mont D.L.. Assessment of global indust rial-age anthropo-genic arsenic contamination. Naturwissen-schaften, 2003, (90): 395-401
    
    111 .Huang J W, Chen J, Berti W R. Phytoremediation of lead-contaminated soil:role of synthetic chelates in lead phytoextraction. Environmental Science & Technology, 1997, 31(3): 800-805
    
    112.Jain A, Raven K P. Loeppert R H. Arsenite and Arsenate Adsorption on Ferrihydrite: Surface Charge Reduction and Net OH-Release Stoichiometry. Environ. Sci. Technol, 1999, 33(8): 1179-1184
    113.Jinadasa K.B.P. Heavy metals in the environment-survery of cadmium levels in vegetables and soils of Greater Sydney, Astralia J.Environ Qual, 1997, 26: 924-933
    114.Karblane H. The effect of organic, lime, and phosphorus fertilizers on Pb, Cs, and Hg content in plants. Proceedings of the Estonian Academy of Sciences Ecology, 1996, 6(1): 52-56
    115.Kayser A, Wenger K, Keller A. Enhancement of Phytoextraction of Zn, Cd, and Cu from calcareous soil, the use of NTA and sulfur amendments. Environmental Science & Technology, 2000,34: 1778-1783
    116.Khodadoust A P, Sorial G A, Wilson G J. Integrated system for remediation of contaminated soils. Journal of Environmental Engineering, 1999, 125(11): 1033-1041
    117.Kom rek, Tlustola P, Szákováa J. 2007. The use of maize and pop lar in chelant-enhanced phytoextraction of lead from contaminated agricultural soil..Chem osphere, 67: 640-651
    118.Lai Huangyu, Chen Zuengsang. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis). Chemosphere, 2005, 60: 1062-1071
    119.Lin C C, Kao C H. Effect of NaCl stress on H_2O_2 metabolism in rice leaves. Journal of Plant Growth Regulation, 2000, 30: 151-155
    120.Lindsay W. L., NorvellW. A. Equilibium relationships of Zn~(2+), Fe~(2+), Ca~(2+) and H~+ with EDTA and DTPA in soils. Proceedings of the Soil Science Society ofAmerica, 1969,33: 62-68
    121.Lombi E., Zhao F. J., Zhang G. In situ fixation of metals in soils using bauxite residue: Chemical assessment. Environmental Pollution, 2002, 118 (3): 435-443
    122.Luo Chunling, Shen Zhenguo, Li Xingdong. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS.Chemosphere, 2005, 59: 1-11
    123.Luoma S N, Bryan G W.A statistical assessment of the form of trace metals in oxidized estuarine sediments employing chemical extractants. Science of Total Environment, 1981, 7: 165-196
    124.Ma L Q, Komar KM, Tu C, Zhang W, Cai Y, Kennelley E D. A fern that hyperaccumulates arsenic. Nature, 2001,409 (6820) : 579
    125.Ma Y B, Uren N C. Transformations of heavymetals added to soil-application of a new sequential extraction p rocedure. Geoderma, 1998, 84: 157-168
    126.Martnez C N, Mcbride M B. Solubility of Cd~(2+), Cu~(2+), Pb~(2+), and Zn~(2+) in aged coprecipitates with amorphous iron hydroxides. Environmental Science&Technology, 1998, 32: 743-748
    127.Mckenzie R M. The adsorption of lead and other heavy metals on oxides of manganese and iron. Australian Journal of Soil Research, 1980, 18: 61-73
    128.Mclaren, S.J. Environmental Pollution, 1995, 90(1): 67
    129.Meharg A A, Macnair M R. An altered phosphate uptake systemin arsenate-tolerant Holcus lanatus L. New Phytologist, 1990, 116: 29-35
    130.Moffat A S. Plants proving their worth in toxic metal cleanup. Science, 1995, 269: 302-303.
    131.Mulligan C N, Yong R N, Gibbs B F. Remediation technologies for metal-contaminated soil and groundwater: an evaluation. Engineering Geology, 2001, 60(1-4): 193-207
    132.Ng J C, Kratzman S M, QiL X. Speciation and absolute bioavailability:risk assessment of arsenic-contaminated sites in a residential suburb in Canberra.Analyst, 1998, 123: 889-892
    133.Ni Caiyi, Tian Glxangmi, Luo Yongmi. Influences of organic compounds and nitric acid solution on release of copper, zinc and lead from a mixed metal polluted agricultural soil. Acta Pedologica Sinica, 2004,41(2): 237-244
    134.Ni Caiying, Chen Yingxul, Luo Yongming, Tian Guangming. Activation of Copper in Natural Polluted Soil by Different Activator. Journal of Agro-Environment Science, 2004,23(1): 85-89
    135.Nriagu J O, Paeyna J M. Quantitative assessment of world-wide contamination of air, water and soils by trace metals.Nature(London), 1988, 333: 134-139
    136.Okieimen F E, Sogbikea C E, Ebhoaye J E. Removal of cadmium and copper ions from aqueous solution wity cellulose graft copolymers. Separation and Purification Techology,2005(44):85-89
    137.Patrick Wilhelm, Dietmar Stephan. 2007, Photodegradation of rhodamine B in aqueous solution via SiO_2&TiO_2 nanospheres, Journal of Photochemistry and Photobiology A. Chemistry 185: 19-25
    138.Peryea F J. Phosophate - induced release of arsenic from soils contaminated with lead and arsenic. Soil Sci. Soc. Am. J ,1991, 55: 1301-1305
    139.Pilon-Smits E. Pilon M. Breeding mercury-breathing plants for environmental cleanup. Trends in Plant Science, 2000, 5(6): 235-236
    140.Rabman M, Tondel M, Ahmad S A. Hypertension and arsenic exposure in Bangladesh Source. Hypertension, 1999,33: 74-78
    141.Raskin I, Smith R D,Salt D E. Phytoremediation of metals: using plants to remove pollutants from the environment. Current Opinion in Biotechnology, 1997, 8(2): 221-226
    142.Raven K P, Jain A, Loeppert R H. Arsenite and Arsenate Adsorption on Ferrihydrite: Kinetics, Equilibrium and Adsorption Envelopes. Environ Sci.Technol, 1998, 32(3): 344-349
    143 .Robinson B H, Brooks R R, Howes A W. The potential of the high-biomass nickel hyperaccumulator Berheya coddii for phytoremediation and phytomining. Journal of Geochemical Exploration, 1997, 60(2): 115-126
    144.Rui qiang Liu, Dongye Zhao, In situ immobilization of Cu( II )in soils using a new class of iron phosphate nanoparticles. Chemosphere, 2007, 68: 1867-1876
    145.SadiqM. Arsenic chemistry in soils: An overview of thermodynamic predictions and field observation. Water, Air, Soil Pollution, 1997, 93: 117-136
    146.Shea D. Developing national sediment quality criteria. Environmental Science&Technology, 1988, 11: 1256-1261
    147.Shen Zhenguo, Liu Youliang, Chen Huaiman. Effects of chelators EDTA and DTPA on the uptake of zinc, copper, manganese and iron by hyperaccumulator thlaspi caerulescens. Acta Phytophysiologica Sinica, 1998, 24(4): 340-346
    148.Srivastava M, Ma LQ, Singh N, Singh S. Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. Journal of Experimental Botany, 2005, 56(415): 1335-1342
    149.Tripathi B N and Gaur J P. Relationship between copper and zinc-induced oxidative stress and proline accumulation in Scenedesmussp. Planta, 2004, 10(7): 425-439
    150.Trivedi P, Axe L. Modeling Cd and Zn sorption to hydrous metal oxides. .Environmental Science&Technology, 2000, 34(11): 2215-2223
    151.Tu C M. Effect of four experimental insecticides on enzyme activities and levels of adenosine triphosphate in mineral and organic soil. SciHealth J Enciron Part B, 1991, 25(6): 787
    152.Tu C, Ma LQ, Bondada B.Arsenic accumulation in the hyperaccumulator Chinese brake and its utilization potential for phytoremediation. Journal of Environmental Quality, 2002, 31(5): 671-1675
    153.Tu C, Ma LQ. Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator Ladder brake, Joural of Environmental Quality, 2002, 31: 641-647
    154.Usman A R A, Kuzyakov Y, Lorenz K, Stahr K.Remediation of a soil contaminated with heavy metals by immobilizing compound. Journal of Plant Nutrition, 2006, 169:205-212
    155.Valcho D.Zhejazkov. Effect of heavy metals on peppermint and cornmint. Plant and Soil, 1996,17:59-66
    156.Vogan J.L., Focht R.M.,.Clark D.K and Graham S.L. Performance evaluation of a permeable reactive barrier for remediation of dissolved chlorinated solvents in groundwater. Journal of Hazardous Materials, Volume 68, Issues 1-2, 12 August 1999, 97-108
    157.Wang Jing-xian, Chen Shuo, Quan Xie, Zhao Hui-min, Zhao Ya-zhi. Enhanced photodegradation of phenolic compounds by adding TiO_2 to soil in a rotary reactor. Journal of Environmental Sciences 2006, 18(6): 107-1112
    158.Warren G P, Alloway B J, Lepp N W, et al. Field trials to asses the uptake of arsenate by vegetables from contaminated soil and remediation with iron oxides. The Sc ience of the Total Environment, 2003,311(1-3): 19-33
    159.Wasaysa, Barrington S F ,Tokunaga S. Remediation of soil polluted by heavy metals using salts of organic acids and chelating agents. Environmental Technology, 1998,19 (4):2 69-380
    160.Wenzel W W, Kirchbaumer N, Prohaska T. Arsenic fractionation in soils using an imp roved sequential extraction procedure. Analytical Chemical Acta, 2001, 436: 309-323
    161.Wesqermorel and Sally. Stow douglas category identification of changed Land-use polygons in an intergrated image processing geographic information system. PE&RS, 1992, 58(11): 1593-1599
    162.White P J. Phytoremediation assisted by microorganisms. Trend in plant science, 2001, 6(11): 502
    163.Wing R E, Rayford W E, Doane W M. Carboxy-containing tarch graft polymer: preparating and use in heavy metal removal. Joumal of Applied Polymer Science. 1979,24:105-113
    164.Zhu C. L., Luan Z. K., Wan Y. Q. Removal of cadmium from aqueous solutions by adsorption on granular red mud (GRM). Sep. Purif. Technol, 2007, 57: 161-169
    165.Zorpas A A, Constantinides T, Vlyssides A G. Heavy metal uptake by natural zeolite and metals partitioning in sewage sludge compost. Bioresource Technology, 2000,72: 113-119

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700