Li-N共掺p型氧化锌薄膜的制备及光电性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论利用射频磁控溅射及热退火技术,以氮化锂为掺杂源Li和Zn的名义原子比为2:98的陶瓷靶为溅射靶材,研究不同生长气氛对锂氮共掺氧化锌薄膜结构、电学及光学性质的影响。生长气氛为氩气和氧气的名义摩尔比为60:1时,锂氮共掺氧化锌薄膜具有单一的沿c轴的择优取向,且此时样品具有稳定的p型导电性。采用光致发光技术对Li和N双受主共掺杂的p型ZnO的光学特性进行了研究,指认了其紫外发光区域发光峰的起源。通过变温光致发光的测量,拟合不同温度下中性受主束缚激子的峰位,确定了LiZn的光学受主能级位于价带顶131.6 meV处。
     在制备出p型锂氮共掺氧化锌的基础上,以同样的生长及热处理条件制备出本征氧化锌和锂掺杂氧化锌。通过对不同掺杂样品的结构、电学和光学性质进行了测试,比较和分析测试结果,发现氮的掺入不仅减小了锂单掺对晶体质量的破坏,而且由于No受主对浅施主Lii的钝化作用,使得锂氮共掺氧化锌中存在更多的有效浅受主LiZn,从而在p型导电性质和稳定性方面有了很大的提高。
ZnO, an II-VI compound semiconductor, was considered as a promising material for ultraviolet light-emitting diodes, laser diodes and photodetectors, due to its many excellent physical properties, such as a wide band gap of 3.37 eV and a large excitonic binding energy of 60 meV at room temperature.
     To realize application of ZnO-based devices, both n-type and p-type ZnO with good conductivity and high quality are of the essence. It has been proven that stable n-type ZnO films can be prepared easily, doped by doner like Al and Ga. Therefore, study on preparation and properties of p-type ZnO thin films has become a very important issue for applications of ZnO in photo-electronic devices.
     It is well known that a few groups have reported the p-type ZnO is obtained. Many dopants, such as N, P, As, Sb, Li, were employed to prepare the p-type ZnO films.But the growth of reproducible p-type ZnO remains a big challenge, and some physical questions (such as stability, optical and electrical properties, and acceptor dopant) of p-type ZnO can not still be resolved very well. Otherwise,the low carrier concentrations is the most significant obstacle for ZnO-based optoelectronic devices practically. The key to obtain the high quality device is producible low resistivity and reproducible p-type ZnO.
     Among many dopant, Li and N are considered as the best candidates for producing p-type ZnO due to small strain effects and shallow acceptor levels of substitutional LiZn and NO acceptors based on first-principle calculation. In order to improve the stability and electrical properties of p-type ZnO, several groups tried to fabricate Li-N dual-doped ZnO films(ZnO: (Li, N)) by various techniques such as RF-magnetron sputtering, two-step heat treatment, pulsed laser deposition, and plasma-assisted molecular-beam epitaxy (P-MBE). Hang-Ju Ko just obtained n-type Li-N dual doped ZnO by P-MBE method using Li3N as dopant, however, Ye et al fabricated the ZnO: (Li, N) films with good p-type conduction by pulsed laser deposition. X.H. Wang also obtained the p-type ZnO: (Li, N) films, but resistivity is high and hole density is low.
     Although Li-N dual doped p-type ZnO have been investigated widely, its electrical and optical properties still need enhance, and mechanism of the p-type conductivity is not clear yet. It’s reported that the hole in the film is produced by the cluster acceptor dopant of LiZn-2N-2O by the measurements of XRD and XPS, combining with the dopant theory. However,recently,it’s also reported that the dual-acceptor complex LiZn-NO is unlikely to form due to their repulsive interaction.
     To resolve the problems about Li-N dual doped p-type ZnO mentioned above, in this thesis, by X-ray diffraction (XRD), photoluminescence (PL) measurement, and Hall Effect measurement,we investigate the structure, electric and optic properties of ZnO: (Li, N) thin films prepared on quartz substrates by radio-frequency magnetron sputtering, using diffetent molar ratio of Ar/O2 as sputtering gases respectively. And we investigate the effect of different ambient on the growth of Li-N dual doped p-type ZnO. Then the ZnO films doped by different dopant had been made, to study the effect of N on the p type electric conduction of ZnO: (Li, N) thin film. The details are as follows:
     ( 1 ) The ZnO: (Li, N) thin films prepared on quartz substrates by radio-frequency magnetron sputtering, using diffetent molar ratio of Ar/O2 as sputtering gases . And the as-grown films were annealed in vacuum for 30 min at 600℃. By investigating the structure, electric and optic properties of ZnO: (Li, N) thin films, we find small change of the molar ratio of Ar/O2 could change the structure and properties of the ZnO: (Li, N) thin films largely.
     (2)When the molar ratio of the Ar/O2 is 60:1, it’s proved that which growth ambient avails the growth of p-type ZnO: (Li, N) thin films, via analysing the structure, constitution, electric and optic properties of the ZnO: (Li, N) thin films. And unless that condition, the film can’t grow with high c-axis preferential orientation.
     (3)The optical properties of the p-type ZnO: (Li, N) thin film was also investigated by temperature-depent PL, the different emission bands in UV region were assigned, and the optical acceptor level of LiZn was calculated to be131.6 meV above the covalence band.
     (4)The pure ZnO and the Li doped ZnO thin films were prepared under the same gowth and annealing condition with the p-type ZnO: (Li, N) thin film. By X-ray diffraction (XRD), photoluminescence (PL) measurement, and Hall Effect measurement,we investigate the structure, electric and optic properties of the films with different dopants. It’s found that because of the dopant N, the crystal quality of the p-type ZnO: (Li, N) thin film has been enhanced. And the additional introduction of N may help compensate the single Lii donor defects. So that there are more LiZn defects as accptors in the ZnO: (Li, N) thin film. Which improve the p-type conductivity and stability of ZnO thin films.
引文
[1]Ohtomo, M. Kawasaki, Y. Sakurai, et al,Room temperature ultraviolet laser emission from ZnO nanocrystal thin films grown by laser MBE [J]. Mat. Sci. & Eng. B, 1998, 54, 24
    [2]S.L. King, J.G.E.Gardenlers, I.W.Boyd, Pulsed-laser deposited ZnO for device application [J]. Appl. Surf. Sci, l996, 96-98, 811-818.
    [3]Look D. C., Claflin B., p-type doping and devices based on ZnO [J]. Phys. Stat. Sol. (B), 2004, 241,624.
    [4]Tang Z. K., Wong G. K. L., Yu P. M. et al., Room-temperature ultraviolet laser emissionfrom self-assembled ZnO microcrystallite thin films [J]. Appl. Phys. Lett., 1998, 72,3270-3272.
    [5]Klingshirn, The Luminescence of ZnO under Oneand Two-Quantum Excitation [J]. Phys. Status. Solid (b), 1975, 71,547-556.
    [6]宋词,杭寅,徐军,氧化锌晶体的研究进展。人工晶体学报,2004,33, 81-87.
    [7] F. Kohan, G. Ceder, and D. Morgan, Chris G. Van de Walle, First-principles study of native point defects in ZnO [J]. Phys. Rev. B, 2000, 61, 15019-15027.
    [8]S. B. Zhang, S. H. Wei, Alex Zunger, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO [J]. Phys. Rev. B, 2001, 63 ,075205-075211.
    [9]A. F. Kohan, G. Leder, D. Morgan, First-principles study of native point defects in ZnO [J]. Phys. Rev. B, 2000, 61,15019-15027.
    [10]Tetsuya Yamamoto, Hiroshi Katayama-Yoshida,Unipolarity of ZnO with a wide-band gap and its solution using codoping method [J]. J. Cryst. Growth 2000, 214/215, 552-555
    [11]Park C. H., Zhang S. B., Wei S. H., Origin of p-type doping difficulty in ZnO: The impurity perspective [J]. Phys. Rev. B, 2002, 66,073202-07204.
    [12]P. Fons, A. Yamada, K. Iwata, K. Matsubara, S. Niki, K. Nakahara and H. Takasu, Beam Interactions with Materials and Atoms [J]. Nuclear Instruments and Methods in Physics Research Section B, 2003, 199, 190.
    [13]D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, G. Cantwell, Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy [J]. Appl. Phys. Lett. 2002, 81, 1830-1832.
    [14]M. G. Wardle, J. P. Goss, P. R. Briddon, Theory of Li in ZnO: A limitation for Li-based p-type doping [J]. Phys. Rev. B, 2005, 71, 155205
    [15]X. L. Du et.al, 3rd International Workshop on ZnO and Related Materials Sendai, Japan, Oct5, 2004
    [16]Y. J. Zeng, Z. Z. Ye, W. Z. Xu, D. Y. Li, J. G. Lu, L. P. Zhu, and B. H. Zhao, Dopant source choice for formation of p-type ZnO: Li acceptor [J]. Appl. Phys. Lett., 2006, 88, 062107.
    [17]N.Y.Garces,N.C.Giles, L.E.Halliburton,D.C.Reynolds and D.C.Look, Production of nitrogen acceptors in ZnO by thermal annealing [J]. Appl. Phys. Lett., 2002, 80, 1334.
    [18]K.Iwata,P.Fons,A.Yamadaand S.Niki, Nitrogen-induced defects in ZnO : Ngrown on sapphire substrate by gas source MBE [J]. J.Cryst.Growth, 2000, 209, 526.
    [19]B. Yao, L. X. Guan, G. Z. Xing, Z. Z. Zhang, B. H. Li, Z. P. Wei, X. H. Wang, C. X. Cong, Y. P. Xie, Y. M. Lu, and D. Z. Shen, P-type conductivity and stability of nitrogen-doped zinc oxide prepared by magnetron sputtering [J]. J. Luminescence, 2007, 122-123, 191.
    [20]Teresa M .Barnes, Kyle Olson, and Colin A. Wolden, On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide [J]. Appl. Phys. Lett., 2005, 86, 112112.
    [21]D.C.Look, G.M.Renlund, and R.H.Burgener, As-doped p-type ZnO produced by an evaporation/sputtering process [J]. Appl. Phys.Lett., 2004, 85, 5269.
    [22]Veerameuth Vaithianathan, Byung-Teak Lee, and Sang Sub Kim, Preparation of As-doped p-type ZnO films using a Zn3As2/ZnO target with pulsed laser deposition [J]. Appl. Phys. Lett., 2005, 86, 062101.
    [23]Y. R. Ryu, T. S. Lee, and H. W. White, Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition [J]. Appl. Phys. Lett., 2003, 83, 87.
    [24]Kyoung-Kook Kim, Hyun-Sik Kim, Dae-Kue Hwang, Jae-Hong Lim, and Seong-Ju Park, Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant [J]. Appl. Phys. Lett.,2003, 83, 63.
    [25]F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu, and W. P. Beyermann, High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy [J]. Appl. Phys. Lett., 2005, 87, 152101.
    [26]T. Matsushita, Yasushi, Koiwai, Y. Kikuchi, et al. Growth of p-type zinc oxide films by chemical vapor deposition. [J]. Jpn. J.Appl.Phys., 1997, 36,L1453-L1455.
    [27]Ji Zhenguo, Yang Chengxin, Liu Kun, Ye Zhizhen, Fabrication and characterization of p-type ZnO films by pyrolysis of zinc-acetate–ammonia solution [J]. J.Cryst.Growth, 2003, 253, 239-242.
    [28]Yan Y., Zhang S. B., Control of Doping by Impurity Chemical Potentials: Predictions for p-Type ZnO [J]. Phys. Rev. lett., 2001, 86, 5723-5726.
    [29]H. W. Liang, Y. M. Lu, D. Z. Shen, Y. C. Liu, J. F. Yan1, C. X. Shan, B. H. Li, Z. Z. Zhang J. Y. Zhang, and X. W. Fan1, P-type ZnO thin films prepared by plasma molecular beam epitaxy using radical NO [J]. phys. stat. sol. (a), 2005, 202, 1060–1065
    [30]Xu Weizhong, Ye Zhizhen, Zhou Ting, Zhao Binghui, Zhu Liping, Huang Jingyun, Low-pressure MOCVD growth of p-type ZnO thin films by using NO as the dopant source [J]. J.Cryst.Growth, 2004, 265, 133-136
    [31]M. K. Ryu, S. H. Lee, M. S. Jang, G. N. Panin and T. W. Kang, Postgrowth annealing effect on structural and optical properties of ZnO films grown on GaAs substrates by the radio frequency magnetron sputtering technique [J]. J. Appl. Phys., 2002, 92, 154.
    [32]Young-Don Ko, Jihoun Jung, Kyu-Hyun Bang, Min-Chul Park, Kwang-Soo Huh, Jae-Min Myoung, Ilgu Yun, Characteristics of ZnO/Si prepared by Zn3P2 diffusion [J]. Appl. Surf. Sci, 2002, 202, 266.
    [33]Kyu-Hyun Bang, Deuk-Kyu Hwang, Min-Chul Park, Young-Don Ko, IlguYun, Jae-Min Myoung, Formation of p-type ZnO film on InP substrate by phosphor doping [J]. Appl. Surf. Sci, 2003, 210, 177.
    [34]Y. W. Heo, S. J. Park, K. Ip, S. J. Pearton, and D. P. Norton, Transport properties of phosphorus-doped ZnO thin films [J]. Appl. Phys. Lett., 2003, 83, 1128.
    [35]F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, and J. L. Liu, Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy [J]. Appl. Phys. Lett., 2005, 87, 252102-252104.
    [36]Yamamoto T., Codoping for the fabrication of p-type ZnO [J]. Thin Solid Films, 2002,420-421,100-106.
    [37] Canyun Zhang, Xiaomin Li, Jiming Bian, Weidong Yu, and Xiangdong Gao, Structural and electrical properties of nitrogen and aluminum codoped p-type ZnO films [J]. Solid State Communicatons, 2004, 132, 75
    [38] Tetsuya Yamamoto, Hiroshi Katayama-Yoshida,Unipolarity of ZnO with a wide-band gap and its solution using codoping method [J]. J. Cryst. Growth, 2000, 214/215, 552-555
    [39] L.G. Wang and Alex Zunger, Cluster-Doping Approach for Wide-Gap Semiconductors: The Case of p-Type ZnO [J]. Phys. Rev. Lett., 2003, 90, 256401-256404.
    [40] Nakahara K., Takasu H., Fons P., Yamada A., Iwata K., Matsubara K., Hunger R., S. Niki, Growth of N-doped and Ga+N-codoped ZnO films by radical source molecular beam epitaxy [J]. J. Cryst. Growth, 2002,237–239,503-508.
    [41] A. Krtschil, A. Dadgar, N. Oleynik, J. Bl?sing, A. Diez, and A. Krost, Local p-type conductivity in zinc oxide dual-doped with nitrogen and Arsenic [J]. Appl. Phys. Lett. 87, 2005, 262105-262107.
    [42] X. H. Wang, B. Yao, D. Z. Shen, Z. Z. Zhang, B. H. Li, Z. P.Wei, Y. M. Lu, D. X. Zhao, J. Y. Zhang, X. W. Fan, L. X. Guan, and C. X. Cong, Optical properties of p-type ZnO doped by lithium and nitrogen [J]. Solid State Communicatons, 2007, 141 (11), 600-604.
    [43] J. G. Lu, Y. Z. Zhang, Z. Z. Ye, L. P. Zhu , L. Wang, B. H. Zhao, and Q. L. Liang, Low-resistivity, stable p-type ZnO thin films realized using a Li-N dual-acceptor doping method [J]. Appl. Phys. Lett., 2006, 88, 222114.
    [44] T. H. Vlasenflin, and M. Tanaka, P-type conduction in ZnO dual- acceptor-doped with nitrogen and phosphorus [J]. Solid State Communicatons, 2007, 142, 292.
    [45] X.H. Wang, B. Yao, Z.Z. Zhang, B.H. Li, Z.P. Wei, D.Z. Shen, Y.M. Lu and X.W. Fan,The mechanism of formation and properties of Li-doped p-type ZnO grown by a two-step heat treatment [J]. Semicond. Sci. Technol., 2006, 21,494–497
    [46] X.H. Wang, B. Yao, Z.P. Wei, D.Z. Sheng, Z.Z. Zhang, B.H. Li, Y.M. Lu, D.X. Zhao, J.Y. Zhang, X.W. Fan, L.X. Guan,and C.X. Cong,Acceptor formation mechanisms determination from electrical and optical properties of p-type ZnO doped with lithium and nitrogen [J]. J. Phys. D: Appl. Phys., 2006, 39 ,4568–4571.
    [47] X.Y. Duan, R.H. Yao, Y.J. Zhao, The mechanism of Li, N dual-acceptor co-doped p-type ZnO [J].Appl. Phys. A, 2008, 91, 467–472
    [48] Syuichi Takada, Relation between optical property and crystallinity of ZnOthin films prepared by rf magnetron sputtering [J]. J. Appl. Phys., 1993, 73, 4739
    [49] R. Kukla, T. Krug, R. Ludwig and K. Wilmes, A highest rate self-spttering magnetron source [J]. Vacuum, 1990, 41,1968-1970.
    [50]丛秋滋.多晶二维X射线衍射[M].科学出版社,1997, p36.
    [51]陈治明,王建农.半导体器件的材料物理学基础[M].科学出版社,第五章,p263
    [52] G. Lermann, T. Bischof, A. Matemy, And W. Kiefer, T. Kummell, G. Bacher, A. Forchel, and G. Landwehr, Resonant micro-Raman investigations of the ZnSe–LO splitting in II–VI semiconductor quantum wires [J]. J. Appl. Phys., 1997, 81,11446
    [53] J. I. Pankove, Optical Processes in Semicounductor, Pretice-Hall, Englewood clifts, 1971.
    [54] J. G. Lu, Y. Z. Zhang, Z. Z. Ye, Y. J. Zeng, H. P. He, L. P. Zhu, J. Y. Huang, L. Wang, J. Yuan, B. H. Zhao, and X. H. Li, Control of p- and n-type conductivities in Li-doped ZnO thin films [J].Appl. Phys. Lett., 2006, 89, 112113-112115.
    [55] Y.J.Zeng, Z.Z.Ye, J.G.Lu, W.Z.Xu, L.P.Zhu, B.H.Zhao,and S.Limpijumnong, Identification of acceptor states in Li-doped p-type ZnO thin films. [J].Appl. Phys. Lett , 2006, 89, 042106- 042108.
    [56] K.Minegishi, Y.Koiwai,Y .Kikuchi, K.Yano, M.Kasuga, and A.Shimizu, Growth of p-type zinc oxide films by chemical vapor deposition [J]. Jpn. J.Appl. Phys., 1997, 36,L1453-L1455.
    [57] Zhi-zhen Ye, Jian-Guo Lu,Han-Hong Chen, Yin-Zhu Zhang,Lei-Wang, Bing-Hui Zhao, Jing- Yun Huang, Preparation and characteristics of p-type ZnO films by DC reactive magnetron sputtering [J]. J .Crystal Growth, 2003, 253,258–264.
    [58] T. Aoki, Y. Hatanaka, D. C. Look, ZnO diode fabricated by excimer-laser doping [J]. Appl. Phys. Lett., 2000, 76 ,3257-3259.
    [59] M. Joseph et al,p-Type Electrical Conduction in ZnO Thin Films by Ga and N Codoping [J]. Jpn. J. Appl. Phys., 1999, 38,L1205.
    [60] M. Joseph et al.,Fabrication of the low-resistive p-type ZnO by codoping method [J]. Physica (Amsterdam), 2001, 302B–303B, 140.
    [61] X. Li et al., Electrochem. Solid State (2003), 6, c56.
    [62] C. X. Shan, X. W. Fan, J. Y. Zhang, Z. Z. Zhang, X. H. Wang, J. G. Ma, Y. M. Lu, Y. C. Liu, D. Z. Shen, X. G. Kong, and G. Z. Zhong, Temperature dependent photoluminescence study on phosphorus doped ZnO nanowires [J]. J. Vac. Sci. Technol. A , 2002, 20, 1886.
    [63] J. Gutowski, N. Presser, and I. Broser. Acceptor-exciton complexes in ZnO: A comprehensive analysis of their electronic states by high-resolution magnetooptics and excitation spectroscopy [J]. Phys. Rev. B, 1988, 38, 9746.
    [64] K. Tamura, T. Makino, A. Tsukazaki, M. Sumiya, S. Fuke, T. Furumochi,M. Lippmaa, C.H. Chia, Y. Segwa, H. Koinuma, M. Kawasaki, Donor-acceptor pair luminescence in nitrogen-doped ZnO films grown on lattice-matched ScAlMgO4 (0001) substrates [J]. Solid State Commun., 2003, 127, 265.
    [65] Wang L J,Gilesa N C.Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy [J]. J.Appl.Phys., 2003, 94:973-978 83109
    [66] S.H. Jeong, B.S. Kim, B.T. Lee, Photoluminescence dependence of ZnO films grown on Si(100) by radio-frequency magnetron sputtering on the growth ambient [J]. Appl. Phys. Lett., 2003, 82, 2625.
    [67] X.L. Wu, G.G. Siu, C.L. Fu, H.C. Ong, Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films [J]. Appl. Phys. Lett., 2001, 78, 2285.
    [68] G.Z. Xing, B. Yao, C.X. Cong, T. Yang, Y.P. Xie, B.H. Li, D.Z. Shen, Effect of annealing on conductivity behavior of undoped zinc oxide prepared by rf magnetron sputtering [J]. J. Alloys Comps., 2008, 457, 36.
    [69] Thomas Moe B?rseth, Filip Tuomisto, Jens S. Christensen, Edouard V. Monakhov, Bengt G. Svensson, and Andrej Yu. Kuznetsov, Vacancy clustering and acceptor activation in nitrogen-implanted ZnO [J]. Phys. Rev. B, 2008, 77, 045204.
    [70] Bixia Lin and Zhuxi Fu,Yunbo Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates [J]. Appl. Phys. Lett., 2001, 79, 943.
    [71] Cheol Hyoun Ahn, Young Yi Kim, Dong Chan Kim, Sanjay Kumar Mohanta, and Hyung Koun Cho, Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films [J]. J. Appl. Phys., 2009, 105, 013502.
    [72] D.G. Zhao, S.J. Xu, M.H. Xie, S.Y. Tong, H. Yang. Stress and its effect on optical properties of GaN epilayers grown on Si(111), 6H-SiC(0001), and c-plane sapphire. [J]. Appl. Phys. Lett., 2003, 83, 677.
    [73] J. C. Sun, J. Z. Zhao, H. W. Liang, J. M. Bian, L. Z. Hu, H. Q. Zhang, X. P. Liang,W. F. Liu, and G. T. Du. Realization of ultraviolet electroluminescence from ZnO homojunction with n-ZnO/p-ZnO:As/GaAs structure. [J]. Appl. Phys. Lett., 2007, 90, 121128.
    [74] Guotong Du, Yongguo Cui, Xia Xiaochuan, Xiangping Li, Huichao Zhu, Baolin Zhang, Yuantao Zhang, and Yan Ma. Visual-infrared electroluminescence emission from ZnO/GaAs heterojunctions grown by metal-organic chemical vapor deposition. [J]. Appl. Phys. Lett., 2007, 90, 243504.
    [75] J.Z. Zhao, H.W. Liang, J.C. Sun, J.M. Bian, Q.J. Feng, L.Z. Hu, H.Q. Zhang, X.P. Liang, Y M Luo and G T Du. Electroluminescence from n-ZnO/p-ZnO : Sb homojunction light emitting diode on sapphire substrate with metal–organic precursors doped p-type ZnO layer grown by MOCVD technology. [J]. J. Phys. D: Appl. Phys., 2008, 41, 195110.
    [76] S. Chu, J. H. Lim, L. J. Mandalapu, Z. Yang, L. Li, and J. L. Liu. Sb-doped p-ZnO/Ga-doped n-ZnO homojunction ultraviolet light emitting diodes [J]. Appl. Phys. Lett., 2008, 92, 152103
    [77] L. J. Mandalapu, Z. Yang, S. Chu, and J. L. Liu. Ultraviolet emission from Sb-doped p-type ZnO based heterojunction light-emitting diodes [J]. Appl. Phys. Lett., 2008, 92, 122101
    [78] Hang-Ju Koa, Yefan Chen, Soon-Ku Hong, Takafumi Yao. Doping effects in ZnO layers using Li3N as a doping source [J]. J. Cryst. Growth, 2003, 251, 628–632

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700