含氟聚酰亚胺的合成及其在光波导上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解决超支化聚酰亚胺链缠结较弱这一问题,制备出一系列长链段的二酐单体,并且与三胺单体通过两步化学扣环法合成一系列含氟超支化聚酰亚胺材料,并且对其力学,热学,光学性质进行探讨。尝试用合成的材料进行光波导器件的制作。此外,合成一系列线性/A2+B3共聚的超支化氟代聚酰亚胺材料,线性部分的引入可以增加聚合物的链缠结,改善其机械性能。此外,侧链的引入可以增加聚合物的溶解性,进一步降低聚合物双折射值,并且我们对材料的热学,力学,光学性能进行研究。为了解决波导材料在加工制作过程中的芯层包层互溶问题,我们引入交联基团,交联膜的热稳定性和抗溶剂性都得到了增强,并且光学双折射值有所降低。于是我们用交联型超支化聚合物采用离子刻蚀的得到脊型波导条。利用两步化学扣环法成功合成出一系列具有不同线性长度的含氟超支化聚酰亚胺材料。所制备的超支化聚酰亚胺具有优良的热稳定性,在有机溶剂中有着很好的溶解性。材料的力学,热学,光学性能与材料中三胺单体的含量有着很好的线性依数关系。成功对其中一种聚合物进行炔基封端,并且得到了热学,光学性能更加优良的交联型含氟超支化聚酰亚胺材料。利用交联型聚酰亚胺E-coFHBPI 50进行器件制备,成功制备出脊型波导条,并且有着优良的光学性能。
Over the last two decades, advances in electronics have revolutionized the speed with which we perform computing and communications of all kinds. Three key technologies were combined to create a platform that enabled the electronic revolution: semiconductor materials, automated microfabrication of integrated electronic circuits, and integrated electronic circuit design. As a result, the mass manufacturing of low-cost integrated circuits has become possible. However, currently, bandwidth demand is outgrowing the performance of electronics in many applications. Signal propagation and switching speeds in the electronic domain are inherently limited. One area where these limitations are clearly seen is in telecommunications, where bandwidth expansion is desperately needed. To overcome these barriers, we must enter a new computing and communications revolution based on photonics which is known to outperform electronics in many areas. Photonics applications have an extremely large information capacity (very broad bandwidth) and very low transmission losses and heat generation, are immune to crosstalk and electromagnetic interference, and are lightweight and smaller in size compared to electronics. Photons also do not interact linearly when multiple wavelengths propagate in an optical medium, and thus allow parallel processing of different wavelengths. Moreover, photonics plays a crucial and complementary role to electronics in many application domains. Examples of successful uses of photonics can be found in broadband communications, high-capacity information storage, and large-screen and portable information displays.
     Polyimide (PI), an important high-performance plastic, has many excellent properties, such as excellent thermal stability, good mechanical properties, low coefficient of thermal expansion and high radiation resistance. In recent years, hyperbranched PIs have received considerable attention due to their low viscosity, good solubility and other attractive properties. Misutoshi Jikei et al. reviewed the synthesis and properties of hyperbranched polyimide. Jie Yin and Bershtein et al. investigated the application of hyperbranched polyimide (HBPI) in photosensitive materials and gas separation membrane, respectively. Compared to conventional linear polymers, hyperbranched polymers show attractive properties such as low viscosity, excellent solubility in organic solvents and facile functionalization. Besides the structure investigation of hyperbranched polymers, more and more studies are focused on their new applications, such as optical and electronic materials, polymer electrolytes, nanotechnology and other high-tech areas. Our laboratory explored several fluorinated hyperbranched polyimides (FHBPIs) for optical waveguide materials. The unique hyperbranched structure allows the isotropic orientation of PI's rigid aromatic segments, and thus reduces its birefringence value. The obtained polymers have excellent thermal stabilities and show low optical absorption in the near infrared region. Generally, highly branched polymers have poor mechanical properties because of the formation of globular macromolecules, i.e., due to the lack of chain entanglements. In this work, we used nonideal A2+B3 polymerization strategy to obtain some novel fluorinated hyperbranched polyimides (FHBPIs).
     Firstly, novel anhydride-terminated fluorinated hyperbranched polyimides (FHBPIs) were successfully prepared by condensation of a triamine monomer,1,3,5-tris (2-trifluoromethyl-4-aminopheoxy) benzene (TFAPOB), and series of aromatic ether dianhydride monomers with different flexible linear length via chemical imidization technique, respectively. The obtained FHBPIs have high thermal stability and good solubility in organic solvents. Their special hyperbranched structures and high fluorine contents give them fantastic optical property and low dielectric constant. Moreover, mechanical properties of FHBPIs have been improved by increasing the linear length of repeat units, and self-standing FHBPI films can be formed by solvent casting method. Rib-type polymeric waveguide device has been successfully prepared by using FHBPI-4d.
     In chapter 3, novel fluorinated linear-hyperbranched copolyimides (co-FHBPI) have been successfully prepared by condensation of 1,3,5-tris(2-trifluoromethy-4-aminopheoxy) benzene (TFAPOB),1,4-bis(4-amino-2-trifluoromethylphenoxy) benzene (6FAPB) and 4,4'-(2-(3',5'-ditrifluoromethylphenyl)-1,4-phenylenedioxy)-diphthalic anhydride monomers with different feed ratio, followed by reaction 3-ethynylaniline. The obtained polymers have high thermal stability and good solubility in organic solvents. The Tg refractive index, birefringence and Young's moduli regularly changed by combination of TFAPOB and 6FAPB content in the copolymer. Moreover, cured ethynyl terminated co-FHBPI 50 (E-coFHBPI 50) had good chemical resistance for common solvents and exhibited higher thermal stability than co-FHBPI. Rib-type polymeric waveguide device has been successfully prepared by using E-coFHBPI 50.
     In chapter 4, three series of soluble poly (ether imide)s (PEIs) were prepared from the obtained dianhydrides by two-step chemical imidization methods. Experimental results indicated that all the PEIs had glass transition temperature between 200℃and 230℃, the temperature at 5% weight loss between 520℃and 590℃under nitrogen. The PEIs showed great solubility by the introduction of bulky pendant groups and were capable of forming tough films. The cast PEI films (80-91μm in thickness) hand tensile strengths in the range of 88-117 MPa, tensile modulus in the range of 2.14-2.47 GPa, and elongation at break from 15 to 27%; high optical transparency, with a UV-vis absorption edge of 357-377 nm; low dielectric constants of 2.73-2.82 and low water uptakes (<0.66 wt%). These spin-coated PEI films present a minimum birefringence value as low as 0.0122 at 650 nm.
引文
1. Robert A. Norwood, Renyuan Gao, Jaya Sharma, and C. C. Teng. Sources of loss in single-mode polymer optical waveguides. Proc. SPIE.,2001,4439,19.
    2. Louay Eldada. Advances in telecom and datacom optical components. Opt. Eng., 2001,40,1165.
    3. S. Ermer, J. R. Reynolds, J. W. Perry, A. K.-Y. Jen, Z. Bao. Electrical, Optical and Magnetic Properties of Organic Solid-State Materials V. Materials Research Society, Pittsburgh, PA 2000,598.
    4. H.Takahashi, S.Suzuki, K.Kato, I. Nishi. Arrayed-waveguide grating for wavelength divisionmulti/demultiplexer with nanometre resolution. Electronics Letters,1990,26,87.
    5. A.J. Heeger. Semiconducting and Metallic Polymers:The Fourth Generation of Polymeric Materials (Nobel Lecture). Angew. Chem. Int. Ed.,2001,40,2591.
    6. W. Chen, C.F. Xie, S.M. Zhang. Accurate pattern synthesis of parallel dipole arrays and itsapplication to unequal elements. Electronics Letters,1988,24,386.
    7. T.Y. Tsai, Z.C. Lee, C.S. Gan, F.S. Chen, J.R. Chen, C.C. Chen. A novelwavelength-division multiplexer using grating-assisted two-mode interference. IEEE PHOTONICS TECHNOLOGY LETTERS,2004,16,2251.
    8. T.Y. Tsai, Z.C. Lee, Y.C. Fang, M.H. Cha. A novel compact wavelength-division multiplexer using highly dispersive waveguide-to-waveguide coupling, Optics Communications,2006,263,197.
    9. Y.W. Shin, O. Eknoyan, C.K. Madsen, H.F. Taylor. Rapidly tunable optical add-drop multiplexer utilising relaxed beam splitters, ELECTRONICS LETTERS, 2007,43,1428.
    10. S. Zhong, W. Chen, X.H. Yang, Y.J. Chen. Transparent optical path and crosstalk monitoring scheme for arrayed waveguide grating-based optical cross connect, 2000,12,1249.
    11. P.P. Yupapin, W. Suwancharoen. Chaotic signal generation and cancellation using a micro ring resonator incorporating an optical add/drop multiplexer. OPTICS COMMUNICATIONS,2007,280,343.
    12. K. Harada, K. Shimizu, N. Sugano, T. Kudou, T. Ozeki. Optical path cross-connect system using matrix wavelength division multiplex scheme. IEICE TRANSACTIONS ON ELECTRONICS,1999, E82C,292.
    13.丁么明,宋立新.光波导与光纤通信基础,北京,高等教育出版社.
    14.高鸿,含氟聚酰亚胺光波导材料的合成及其性能研究,吉林大学博士论文,2008年。
    15.李艾泽,含氟聚芳醚光波导材料的合成及其性能研究,吉林大学硕士论文,2005年。
    16.费旭,聚合物光波导材料的合成、表征及应用,吉林大学博士论文,2008年。
    17.姜伟,含硫氟代可自交联聚酰亚胺光波导材料的合成及性能研究, 吉林大学博士论文,2008年。
    18.胡娟,含氟聚酯和光刻胶波导材料的分子设计与性能研究,吉林大学硕士论文,2007年。
    19.傅娜,用于阵列式波导光栅聚合物的合成与表征,吉林大学硕士论文,2004年。
    20.李楠,赵华鹏等;含氟聚酰亚胺的研究及其在涂料中的应用,中国涂料,2010年。
    21. H.Y. Liu, G.D. Peng, P.L. Chu, Thermal tuning of polymer optical fiber Bragg gratings, IEEE Photonic Technol,2001,13,824.
    22.胡先志,胡佳妮,短距离光通信用塑料光纤的性能与应用,光通信研究,2001,6,41.
    23. M. Kagami, H. Ito, T. Ichikawa, S.Kato, M.Matsuda, N. Takshashi, Fabrication of large-core, high-1 optical waveguides in polymers Appl. Opt.1995,1041.
    24. J.P.D. Cook, G. O. Este, F.R. Shepherd, W.D. Westwood, J.Arrington, W. Moyer, J. Nurse, S. Powell, Stable, low-loss optical waveguides and micromirrors fabricated in acrylate polymers Appl. Opt.1998,27,1220.
    25. R. Schriever, H. Franke, H.G. Festl, E. Kratzig, Optical waveguiding in doped poly (methyl methacrylate) Polymer 1985,26,1425.
    26. R. Yoshimmura, M. Hikita, et.al., Low-loss polymeric optical waveguides fabricated with deuterated polyfluoromethacrylate Jounal of Lightwave Technologh, 1998,16(6),1030.
    27. T.H. Khoche, L. Muller, R. Klein, et.al., Low loss polymer waveguides at 1300 and 1550 nm using halogenated acrylates Electronics Letters,1996,32 (14), 1284.
    28. H.J. Lee, E.M. Lee, M.H. Lee, Et al., Crosslinkable fluorinated poly (arylene ethers) bearing phenyl ethynyl moiety for low-loss polymer optical waveguide devices J Polym Sci, Part A:Polym. Chem.,1998,36,2881.
    29. H.J. Lee, M.H. Lee, M.C. Oh, J.H. Ahn, S.G. Han, Crosslinkable polymers for optical waveguide devices. II. Fluorinated ether ketone oligomers bearing ethynyl group at the chain end J Polym. Sci, Part A:Polym. Chem.,1999,37,2355.
    30. C.W. Chang, C.H. Lin, P.W. Cheng, H.J. Facile and efficient preparation of phosphinate-functionalized aromatic diamines and their high-Tg polyimides J Polym. Sci, Part A:Polym. Chem.,2009,47,2486.
    31. T.A.C. Flipsen, A.J. Pennings, G. Hadziioannou, Polymer optical fiber with high thermal stability and low optical losses based on novel densely crosslinked polycarbosiloxanes Journal of Applied Polymer Science,1998,67,2223.
    32. D. Schonfeld, O. osch, P, Dannberg, Et al., Enhanced performance of polymer waveguides by replication and UV patterning in ORMOCER Proc. SPIE.,1997, 3135,53.
    33. D. W. Smith, D. A. Babb, Perfluorocyclobutane aromatic polyethers. Synthesis and characterization of new siloxane-containing fluoropolymers Macromoleculs, 1996,29,852.
    34. G. Fischbeck, R. Moosburger, C. Kostrzewa, A.Achen, K. Petermann, Singlemode optical waveguides using a high temperature stable polymer with low losses in the 1.55 μm rangeElectron, Lett.1997,33,581.
    35. D. W. Smith, Jr., S.M. Kumar, S. R. Chen, J.M. Ballato, E. J. Nelson, J. J. Jin, S. H. Foulger, in Design, Manufacturing, and Testing of Planar Optical Waveguide Devices (Ed:R. A. Norwood), Vol,4439, SPIE, Bellingham, MA 2001, P 51.
    36. W.S. Choi, F.W. Harris, Synthesis and polymerization of trifluorovinylether-terminated imide oligomers. I Polymer 2000,41,6213.
    37. J. Jin, M.S. Kumar, S. H. Foulger, D. W. Smith, Jr., H. B. Liu, B. Mojazza, P. Go, A. Shep, New phenylphosphine oxide containing perfluorocyclobutyl (PFCB) polymers for potential space applications Polym. Prepr.2002,43(1),609.
    38. S.E. lee, D. S. Lee, C. E. Kim, D.K. Yi, M. J. Kim, B. G. Shin, J.W. Kang, J. J. kim, D. Y. Kim, Polym. Prepr.2002,43(1) 625.
    39. H. Ma, S. Wong, J. D.Luo, S. H. Kang, A.K.-Y. Jen, R. Barto, C. W. Frank, Novel Linear And Dendritic Perfluorocyclobutane (PFCB)-Containing Polymers For Low Loss Optical Waveguide Devices Polym. Prepr.2002,43(2) 493.
    40. F.L. Dickert, P. Forth. P.A. Lieberzeit, G. Voigt. Fresenins Quality control of automotive engine oils with mass-sensitive chemical sensors-QCMs and molecularly imprinted polymers J. Anal. Chem.2000,366.802.
    41. G. Wulff. Molecular Imprinting in Cross-Linked Materials with the Aid of Molecular Templates—A Way towards Artificial Antibodies Angew. Chem. Int. Ed. Eng.1995,34,1812.
    42. S.K. Grayson, J.M.J. Frechet. Convergent Dendrons and Dendrimers:from Synthesis to Applications Chem. Rev.2001,101(12),3819.
    43. C. Pitois, D. Wieamann, M. Lindgren, A. Hult, Functionalized fluorinated hyperbranched polymers for optical waveguide applications Adv. Mater.2001,13, 1483.
    44. S.H. Kang, J.D. Luo, H. Ma, R. R. Barto, C. W. Frank, L. R. Dalton, A.K.-Y.Jen A hyperbranched aromatic fluoropolyester for photonic applications Macromolecules,2003,36 (12),4355-4359
    45. D.W. Grainger; C.W. Stewart, In Fluorinated Surfaces, Coatings and Films; Castner, D. G., Grainger, D. W., Eds.; Fluorinated Coatings and Films:Motivation and Significance American Chemical Society: Washington, DC,2001; pp 1-14.
    46. R.Souzy; B. Ameduri, Functional Fluoropolymers for Fuel Cell Membranes Prog. Polym. Sci.2005,30,644-687.
    47. M. A. Hickner; H. Ghassemi; Y. S. Kim; B. R. Einsla; J. E. McGrath, Alternative polymer systems for proton exchange membranes (PEMs) Chem. Rev.2004,104, 4587-4612.
    48. L. Eldada, Advances in telecom and datacom optical components Opt. Eng. 2001,40,1165-1178.
    49. H.Ma; A. K.-J. Jen; L. R. Dalton, Polymer-based optical waveguides:materials, processing, and devices Adv. Mater.2002,14,1339-1365.
    50. J. K. Nagal, J Am. Atomic polarizability and electronegativity Chem. Soc.1990, 112,4740.
    51. Hudliky, M. Chemistry of Organic Flourine Compounds,2nd ed.; Ellis Horwood: Chichester,1992; pp 531-557.
    52. T. Matsuura; S. Ando; S. Sasaki; F. Yamamoto, Polyimides derived from 2,2'-bis (trifluoromethyl)-4,4'-diaminobiphenyl.4. Optical properties of fluorinated polyimides for optoelectronic components Macromolecules 1994,27,6665.
    53. A. A.Goodwin; F. W.Mercer; M. T. McKenzie, Thermal behavior of fluorinated aromatic polyethers and poly (ether ketone) s Macromolecules 1997,30,2767.
    54. Y.C. Kung; G.S. Liou, S.-H. Hsiao. Synthesis and characterization of novel electroactive polyamides and polyimides with bulky 4-(1-adamantoxy) triphenylamine moieties J Polym Sci Part A:Polym Chem.2009,47,1740.
    55. J.P. Gritchley, P.A. Grattan, M.A. Whitte, J.S. Pippett Perfluoroalkylene-linked aromatic polyimides. I. Synthesis, structure, and some general physical characteristics J. Polym. Sci., Part A,1972,10,1789.
    56. F.E. Rogers, FOLYAMIDE-ACIDS AND POLYIMIDES FROM HEXAFLUOROPROPYLIDINE BRIDGED DI-AMINEUS.1967,3,356.
    57. B.C. Auman. D.P. Higley, K.V. Scherer, E.F. McCord, Synthesis of a new fluoroalkylated diamine,5-[1H,1 H-2-bis (trifluoromethyl)-heptafluoropentyl]-1, 3-phenylenediamine, and polyimides prepared therefrom Polymer,1995,36,651.
    58. T. Ichino, S. Sasaki, T. Matsuura, S. Nishi, Synthesis and properties of new polyimides containing flourinated alkoxy side chains J. Polym. Sci., Polym. Chem.,1990,28,323.
    59. A.E. Feiring, B.C. Auman, E.R. Wonchoba. Synthesis and properties of fluorinated polyimides from novel 2,2'-bis (fluoroalkoxy)benzidines Polym. Prepr.,1993,34,393.
    60. S. Ando; T. Matsuura; S. Sasaki, Cemtech, Perfluorinated polymers for optical waveguides 1994, Dec.20.
    61. S.Ando;T.Matsuura,S.Sasaki.Perfluorinatedpolyimide synthesis Macromolucules, 1992,25,5858.
    62. C.Feger;M.M.Khojasteh;J.E.McGrath, Polyimides:Chemistry and Characterization; Elsevier: Amsterdam,1994.
    63. M.J.M. Adadie; B. Sillion, polyimides and Other High-Temperature Polymers; Elsevier: Amsterdam,1991.
    64. K. Takashi, S. Atsushi, T. Shoji (Mitsui Chemistry Industry Co., Japan) Jpn Kokai Tokkyo Koho JP 2000 297,067 (Chem Abstr 2000;133:322563h), JP 2000 297,153 (Chem Abstr 2000;133:322280p), JP 2000 297,154 (Chem Abstr 2000;133:310300g).
    65. K. Xie, J.G. Liu, H.W. Zhou, S.Y. Zhang, M.H. He, S.Y. Yang. Soluble fluoro-polyimides derived from 1,3-bis (4-amino-2-trifluoromethyl-phenoxy) benzene and dianhydrides Polymer 2001,42,7276.
    66. K. Xie, S.Y. Zhang, J.G. Liu, M.H. He, S.Y. Yang. Synthesis and characterization of soluble fluorine-containing polyimides based on 1,4-bis (4-amino-2-trifluoromethylphenoxy) benzene J Polym Sci A:Polym Sci 2001,39,2581.
    67. M. Hasegawa, K. Horie. Photophysics, photochemistry, and optical properties of polyimides Prog Polym Sci,2001,26,265.
    68. C.P. Yang, Y.Y. Su. Colorless and high organosoluble polyimides from 2,5-bis (3,4-dicarboxyphenoxy)-t-butylbenzene dianhydride and aromatic bis(ether amine)s bearing pendent trifluoromethyl groups Polymer 2005,46,5778.
    69. D.X. Yin, YF. Li, H.X. Yang, S.Y. Yang, L. Fan, J.G. Liu. Colorless and high organosoluble polyimides from 2,5-bis (3,4-dicarboxyphenoxy)-t-butylbenzene dianhydride and aromatic bis(ether amine)s bearing pendent trifluoromethyl groups Polymer 2003,46,3119.
    70. S. Ando, T. Matsuura, S. Sasaki.15N-,1H-, and 13C-NMR chemical shifts and electronic properties of aromatic diamines and dianhydrides. J. Polym. Sci., Part A,1992,30,2285.
    71. S. Banerjee, M.K. Madhra, A.K. Salunke, D.K. Jaiswal. Synthesis and properties of fluorinated polyimides.3. Derived from novel 1,3-bis [3'-trifluoromethyl-4' (4"-amino benzoxy) benzyl] benzene and 4,4-bis [3'-trifluoromethyl-4'(4-amino benzoxy) benzyl] biphenyl Polymer 2003,44,613.
    72. D.J. Liaw, EC. Chang. Highly organosoluble and flexible polyimides with color lightness and transparency based on 2,2-bis [4-(2-trifluoromethyl-4-aminophenoxy)-3,5-dimethylphenyl] propane J. Polym. Sci Part A Polym Chem 2004,42,5766.
    73. C.L. Chung, C.P. Yang, S.H. Hsiao. Organosoluble and colorless fluorinated poly(ether imide)s from 1,2-bis(3,4-dicarboxyphenoxy)benzene dianhydride and trifluoromethyl-substituted aromatic bis(ether amine)s J Polym Sci Part A Polym Chem 2006,44,3092.
    74. K. Xie, S.Y. Zhang, J.G. Liu, M.H. He, S.Y. Yang. Synthesis and characterization of soluble fluorine-containing polyimides based on 1,4-bis (4-amino-2-trifluoromethylphenoxy) benzene J. Polym. Sci. Part A Polym Chem 2001,39, 2581.
    75. T. Suzuki, Y. Yamada, Y. Tsujita. Gas transport properties of 6FDA-TAPOB hyperbranched polyimide membrane Polymer 2004,45,7167
    76. K.C. Chuang, J.D. Kinder, D.L. Hull. D.B. McConville, W.J. Youngs. Rigid-rod polyimides based on noncoplanar 4,4'-biphenyldiamines:A review of polymer properties vs configuration of diamines Macromolecules 1997,30,
    77. S.H. Lin, F. Li, S.Z.D. Cheng, F.W. Harris. Organo-soluble polyimides:Synthesis and polymerization of 2,2'-bis (trifluoromethyl)-4,4',5,5'-biphenyltetracarboxylic dianhydride. Macromolecules 1998,31,2080.
    78. S. Ando, T. Matsuura, S. Sasaki. Coloration of aromatic polyimides and electronic properties of their source materials Polym. J.,1997,29,69.
    79. T. Takekoshi, Adv, Polym. Chem.,1990,94,1.
    80. K. Horie, Q.H. Li, S.A. Lee, R. Yokota. Proc. Of 2nd China-Japan,1998.
    81. R.Reuter, H.Franke, C. Feger, Evaluating polyimides as lightguide materials Appl. Opt.1988,27,4565.
    82. Y.Y. Maruo, S. Sasaki, T. Tamamura. Embedded channel polyimide waveguide fabrication by direct electron beam writing method J. Vav. Sci. Technol. A.1995, 13,2758.
    83. M. Yoshida, M.Lal, N.D. Kumar, P.N. Prasad. TiO2 nano-particle-dispersed polyimide composite optical waveguide materials through reverse J. Mat. Sci., 1997,32,4047.
    84. T. Oguchi, J. Noda, H. Hanafusa, S. Nishi. Dielectric multilayered interference filters deposited on polyimide films Electron. Lett.,1991,27,706.
    85. M. Kawachi. Silica waveguides on silicon and their application to integrated-optic componentsOptical Quantum Electronics,1990,22,391.
    86. S. Ando, T. Sawada, Y. Inoue. Thin, flexible waveplate of fluorinated polyimide Electron. Lett.,1993,23,2143.
    88. Y.Inoue, H.Takahashi, S. Ando, T. Sawada, A. Himeno, M. Kawachi. Elimination of polarization sensitivity in silica-based wavelength division multiplexer using a polyimide half waveplate J.Lightwave Technol,1997,15,1947.
    89. T. Sawada, S. Ando, S. Sasaki. Optical anisotropy of uniaxially drawn and silver-dispersed polyimide films App.Phys.Lett.,1999,74,938.
    90. K. Furuya, B.I. Miller, L.A. Coldren, R.E. Howard. Novel deposit/spin waveguide interconnection (DSWI) technique for semiconductor integrated optics Electro. Lett.,1982,18,204.
    91. T.C.Kowalczyk, T.Z. Kosc, K.D. Singer, A.J. Beuhler, D.A. Wargowski, P.A. Cahill, C.H.Seager, M.B. Meinhardt. Crosslinked polyimide electro-optic materials Nonlinear Optics,1995,14,185.
    92. C.T.Sullivan:in Optoelectronic Materials, Devices, Packaging and Interconnects, II, G.M.McWright, H.J.Wojtunik, eds, Proc. SPIE,1998,994,92.
    93. T. Matsuura, S. Ando, S.Sasaki, F. Yamamoto. Heat-r esistant singlemode optical waveguides using fluorinated polyimides Electron, Lett.1993,29,2107.
    94. J.H. Kim, E.J. Kim, H.C. Choi, C.W. Kim, J.H. Cho, Y.W. Lee, B.G, You, S.Y. Yi, H.J. Lee, K. Han, W. H.. Jiang, T.H. Rhee, J.W. Lee, S.J. Peaton. Evaluation of fluorinated polyimide etching processes for optical waveguide fabrication Thin Solid Filsm.1999,341,192.
    95. K.Han, W.Jang, T.H. Rhee. Synthesis of fluorinated polyimides and their application to passive optical waveguides J.Appl. Polym. Sci.2000,77,2172.
    96. K.Han, H. Lee, T.H. Rhee. Low-loss passive polymer waveguides by using chlorofluorinated polyimidesJ. Appl. Polym. Sci.1999,74,107
    97. A.J. Beuhler, D.A. Wargoski, K.D.Singer, T.Kowalczy. Fabrication of low loss polyimide optical waveguides using thin-film multichip module process technology IEEE Transaction on Components Packaging & Manufacturing Technology Part B-Advanced Packing.1995,18,232.
    98. Y.Y. Maruo, S.Sasaki, T.Tamamura. Embedded channel polyimide waveguide fabrication by direct electron beam writing method J.Lightwave Technol.1995, 13,1718.
    99. T.Maruno, T.Sakata, T.Ishii, Y.Y.Maruo, S.Sasaki, T.Tamamura. Polyimide optical waveguides fabricated by direct electron beam writing Organic Thin Films for Photonics Applications,21, OSAThchnical Digest Series,1995, p.10.
    100.S.Koike, F.Shimokawa, T.Matsuura, H.Takahara. New optical and electrical hybrid packaging techniques using optical waveguides for optoelectronic multichip modules IEEE,1996,19,124.
    101.S.Z.D. Cheng, S.K. Lee, J.S. Barley, S.L.C. Hsu, F.W. Harris. Gel/sol and liquid-crystalline transitions in solution of a rigid-rod polyimide Macromolecules, 1991,24,1883.
    102.L.J. Markoski, J.S. Moore, I. Sendijarevic, A.J. McHugh. Effect of linear sequence length on the properties of branched aromatic etherimide copolymers Macromolecules,2001,34,2695.
    103.J. Hao, M. Jikei, M. Kakimoto, Synthesis and comparison of hyperbranched aromatic polyimides having the same repeating unit by AB2 self-polymerization and A2+B3 polymerization Macromolecules.2003,36,3519.
    104.G. Xue, Y. Wang, S. Liu, Concentration dependence of crystalline poly (vinylidene fluoride) prepared by freeze-extracting solutions Macromolecules, 1995,28,3476.
    105.G, Ji, H. Ni, C. Wang, G. Xue, Concentration dependence of crystalline poly (ethylene terephthalate) prepared by freeze-extracting solutions Macromolecules, 1996,29,2691.
    106.J. Chen, G. Xue, Y. Li, L. Wang, G. Tain, Conformation and structural relaxation of partially disentangled poly (vinyl chloride) prepared by freeze-extracting dilute solutions Macromolecules,2001,34,1297.
    107.T. Suzuki, Y. Yamada, Y.Tsujita, Gas transport properties of 6FDA-TAPOB hyperbranched polyimide membrane Polymer,2004,45,7167.
    108.J.H. Fang, H. Kita, K. Okamoto Hyperbranched polyimides for gas separation applications.1. Synthesis and characterization Macromolecules 2000,33,4639.
    109.T. Suzukia, Y. Yamadaa, Y. Tsujitab, Polymer,2004,45,7167.
    110.K. Yamanaka, M. Jikei, M. Kakimoto Preparation of hyperbranched aromatic polyimide without linear units by end-capping reaction Macromolecules 2001,34, 3910.
    111.Y. Zhang, L.Wang, T. Wada, H. Sasabe, One-pot synthesis of a new hyperbranched polyester containing acceptor substituted carbazole chromophores for nonlinear optics Macromol Chem Phys 1996,197,667.
    112.A. Tajbakhsh, S.C.Moratti, A. Koch, M. Warner, Hyperbranched architectures for NLO polymers Mol Cryst Liq Cryst 2001,356,175.
    113.C.Pitois, D. Wiesmann, M. Lindgren, A. Hult. Functionalized fluorinated hyperbranched polymers for optical waveguide applications Adv Mater 2001,13, 1483.
    114.J. H. Lee, K.S. Lee, Mol Cryst Liq Cryst 2001,371,341.
    115.Nguyen, C.; Hawker, C. J.; Miller, R. D.; Huang, E.; Hedrick, J. L.; Gauderon, R.; Hilborn, J. G. Hyperbranched polyesters as nanoporosity templating agents for organosilicates Macromolecules 2000,33,4281-4284.
    116.Q. H. Sun, J.W.Y. Lam, K.T. Xu, H.Y. Xu, J.A.K. Cha, P.C.L. Wong, G.H. Wen, X.X. Zhang, X.B. Jing, F.S. Wang, B.Z. Tang, Nanocluster-containing mesoporous magnetoceramics from hyperbranched organometallic polymer precursors Chem Mater 2000,12,2617.
    117.J. Fang, H. Kita, K. Okamoto, Macromolecules 2000,33,4639-4646.
    118.Q.H. Sun, K.T. Xu, J.W.Y. Lam, J.A.K. Cha, X.X. Zhang, B.Z. Tang, Mater Sci EngC-BioS2001,16,107.
    119.B. Voit, M. Eigner, K. Estel, C. Wenzel, J.W. Bartha. Labile hyperbranched polymers used as nanopore-forming agents in polymeric dielectrica Macromol Symp2002,177,147.
    120.F.L. Bai, M. Zheng, T. Lin, J.L. Yang, Q.G. He, Y.L. Li, D.B. Zhu, Synth Met 2001,119,179.
    121.L.M. Dai, B. Winkler, L.M. Dong, L. Tong, A.W.H. Mau, Full Text via CrossRef View Record in Scopus| Cited By in Scopus Adv Mater 2001,13,915.
    122.L. Duan, Y. Qiu, Q.G. He, F.L. Bai, L.D. Wang, X.Y. Hong, A novel hyperbranched conjugated polymer for electroluminescence application Synth Met 2001,124,373.
    123.Q.G. He, F.L. Bai, J.L. Yang, H.Z. Lin, H.M. Huang, G. Yu, Y.F. Li, Synthesis and properties of high efficiency light emitting hyperbranched conjugated polymers Thin Solid Films 2002,417,183.
    124.Tomalia, D. A.; Naylor, A. M.; Goddard, W. A., Ⅲ. Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter Angew. Chem., Int. Ed. Engl.1990,29, 138-175.
    125.Voit, B. I. Dendritic polymers:from aesthetic macromolecules to commercially interesting materials Acta Polym.1995,46,87.
    126.Malmostrom, E.; A. J. Hult, J. Macromol; Dendritic Molecules Sci.sRev. Macromol. Chem. Phys.1997, C37,555.
    127.Voit, B. New developments in hyperbranched polymers J. Polym. Sci., Part A: Polym. Chem.2000,38,2505-2525.
    128.Zhang, Y.; Wang, L.; Wada, T.; Sasabe, H. One-pot synthesis of a new hyperbranched polyester containing 3,6-di-acceptor-substituted carbazole chromophores for nonlinear optics Macromol Chem Phys 1996,197,667.
    129.Tajbakhsh, A.; Moratti, S. C.; Koch, A.; Warner, M. Hyperbranched architectures for NLO polymers Mol Cryst Liq Cryst2001,356,175-183.
    130.Pitois, C.; Wiesmann, D.; Lindgren, M.; Hult, A. Functionalized fluorinated hyperbranched polymers for optical waveguide applicationsAdv Mater 2001,13, 1483-1484.
    121.Lee, J. H.; Lee, K. S. Mol Cryst Liq Cryst 2001,371,341-344.
    132.Sun, Q. H.; Lam, J. W. Y.; Xu, K. T.; Xu, H. Y.; Cha, J. A. K.; Wong, P. C. L.; Wen, G. H.; Zhang, X. X.; Jing, X. B.; Wang, F. S.; Tang, B. Z. Nanocluster-containing mesoporous magnetoceramics from hyperbranched organometallic polymer precursors Chem Mater 2000,12,2617-2624.
    133.Hyung-Jong Lee, Eun-mi Lee, Myung-Hyun Lee, et al. Crosslinkable Fluorinated Poly(arylene ethers) Bearing Phenyl Ethynyl Moiety for Low-Loss Polymer Optical Waveguide Devices. Journal of Polymer Science:Part A:Polymer Chemistry,1998,36,2881.
    134.Hyung-Jong Lee, Myung-Hyun Lee, Min-Cheoi Oh, et al. Crosslinkable Polymers for Optical Waveguide Devices. Ⅱ. Fluorinated Ether Ketone Oligomers Bearing Ethynyl Group at the Chain End. Journal of Polymer Science:Part A: Polymer Chemistry,1999,37,2355.
    135.Voit, B.; Eigner, M.; Estel, K.; Wenzel, C.; Bartha, J. W. Labile hyperbranched polymers used as nanopore-forming agents in polymeric dielectrica Macromol Symp 2002,177,147-154.
    136.T.A.C.Flipsen, A.J.Pennings, G.Hadziioannou, Journal of Applied Polymer Science,1998,67,2223.
    137.Eunkyoung Kim, Song Yun Cho, Dong-Min Yeu, et al., Low Optical Loss Perfluorinated Methacrylates for a Single-Mode Polymer Waveguide. Chem. Mater.,2005,17,962.
    138.Duan, L.; Qiu, Y.; He, Q. G.; Bai, F. L.; Wang, L. D.; Hong, X. Y. A novel hyperbranched conjugated polymer for electroluminescence application Synth Met 2001,124,373-377.
    139.He, Q. G.; Bai, F. L.; Yang, J. L.; Lin, H. Z.; Huang, H. M.; Yu, G.; Li, Y. F. Synthesis and properties of high efficiency light emitting hyperbranched conjugated polymers Thin Solid Films 2002,417,183-187.
    140-Chen, H; Yin, J. Synthesis of autophotosensitive hyperbranched polyimides based on 3,3',4,4'-benzophenonetetracarboxylic dianhydride and 1,3,5-tris (4-aminophenoxy) benzene via end capping of the terminal anhydride groups by ortho-alkyl aniline. Journal of Polymer Science:Part A:Polymer Chemistry,2003, 41,2026-2035.
    141.Souzy, R.; Ameduri, B. Functional fluoropolymers for fuel cell membranes. Prog. Polym. Sci.2005,30,644-687.
    142.Hickner, M. A.; Ghassemi, H.; Kim, Y. S.; Einsla, B. R.; McGrath, J. E. Alternative polymer systems for proton exchange membranes (PEMs) Chem. Rev. 2004,104,4587-4612.
    143.Hudliky, M. Chemistry of Organic Flourine Compounds,2nd ed.; Ellis Horwood: Chichester,1992; pp 531-557.
    144.Goodwin, A. A.; Mercer, F. W.; McKenzie, M. T. Thermal behavior of fluorinated aromatic polyethers and poly (ether ketone) s Macromolecules 1997, 30,2767-2774.
    145.Fishbeck, G.; Moosburger, R.; Kostrzewa, C.; Achen, A.; Petermann, K. Singlemode optical waveguides using a high temperature stable polymer with low losses in the 1.55 μm range Electron. Lett.1997,33,518.
    146.Wilson, D.; Stenzenberger, H.D.; Hergenrother, P.M. editors. Polyimides. New York: Chapman and Hall,1990.
    147.Ghosh, M.K.; Mittal, K.L. Editors. Polyimides fundamentals and applications. New York, Marcel Decker,1996.
    148.Chuang, K.C.; Kinder, J.D.; Hull, D.L.; McConville, D.B.; Youngs, W.J. Rigid-rod polyimides based on noncoplanar 4,4'-biphenyldiamines:A review of polymer properties vs configuration of diamines Macromolecules 1997,30, 7183-7190.
    149.Lin, S.H.; Li, F.; Cheng, S.Z.D.; Harris, F.W. Organo-soluble polyimides: Synthesis and polymerization of 2,2'-bis (trifluoromethyl)-4,4',5, 5'-biphenyltetracarboxylic dianhydride Macromolecules 1998,31,2080-2086.
    150.Matsuura, T.; Ando, S.; Sasaki, S.; Yamamoto, F. Heat-resistant singlemode optical waveguides using fluorinated polyimidesElectron Lett 1993,29, 2107-2109.
    151.Liu, Y.; Zhang, Y.H.; Guan, S.W.;ng, H.B.; Yue, X.G.; Jiang, Z.H. Synthesis of novel fluorinated hyperbranched polyimides with excellent optical properties J Polym Sci Part A:Polym Chem 2009,47,6269-6279.
    152.Xie, K.; Liu, J.G.; Zhou, H.W.; Zhang, S.Y.; He, M.H.; Yang, S.Y. Soluble fluoro-polyimides derived from 1,3-bis (4-amino-2-trifluoromethyl-phenoxy) benzene and dianhydrides Polymer 2001,42,7276-7274.
    153.Hasegawa, M.; Horie, K. Prog Polym Sci,2001,26,259-335.
    154.Hergenrother PM, Havens SJ. Polyimides containing quinoxaline and benzimidazole units Macromolecules 1994,27,4659-4664.
    155.Chern, Y.T. Low dielectric constant polyimides derived from novel 1,6-bis [4-(4-aminophenoxy) phenyl] diamantane Macromolecules 1998,31,5837-5844.
    156.Hasio, S.H, Yang, C.P. Synthesis and properties of polyimides, polyamides and poly (amide-imide) s from ether diamine having the spirobichroman structure J Polym Sci Part A Polym Chem 1997,35,1487-1497.
    157.Chung, C.L, Hsiao, S.H. Novel organosoluble fluorinated polyimides derived from 1,6-bis (4-amino-2-trifluoromethylphenoxy) naphthalene and aromatic dianhydrides Polymer 2008,49,2476-2485.
    158.George, R.; Newkome, Carol D. Shreiner. Poly (amidoamine), polypropylenimine, and related dendrimers and dendrons possessing different branching motifs:An overview of the divergent procedures Polymer 2008,49,1-173.
    159.Eastmond, G.C.; Paprotny J. The synthesis of a catechol-based bis (ether anhydride) and poly (ether imide) s derived therefrom Polymer 1994,35, 5148-5150.
    160.Liu, Y; Zhang, YH; Guan, SW; Jiang ZH. Synthesis and properties of soluble fluorinated poly (ether imide) s with different pendant groups Polymer 2008,49, 5439-5445.
    161.Hougham, G.;Tesoro, G..; Viehbeck, A.; Chapple-Sokol, J. D. Polarization effects of fluorine on the relative permittivity in polyimides Macromolecules 1994,27,5964-5971.
    162.Boses, D.; Lee, H.; Yoon, D. Y.; Swallen, J. D.; Rabolt, J. F. Chain orientation and anisotropies in optical and dielectric properties in thin films of stiff polyimidesJ Polym Sci Part B:Polym Phys1992,30,1321-1327.
    163.Matsumoto, T. Nonaromatic Polyimides Derived from Cycloaliphatic Monomers 1 Macromolecules 1999,32,4933-4939.
    164.Watanabe, Y.; Shibasaki, Y.; Ando, S.; Ueda, M. Synthesis of semiaromatic polyimides from aromatic diamines containing adamantyl units and alicyclic dianhydrides J Polym Sci Part A:Polym Chem 2004,42,144-150.
    165.Maier, G. Low dielectric constant polymers for microelectronics Prog Polym Sci 2001,26,3-65.
    166.Banerjee, S.; Madhra, M. K.; Kute, V. Polyimides 6:Synthesis, characterization, and comparison of properties of novel fluorinated poly (ether imides) J Appl Polym Sci 2004,93,821-832.
    167.Ando, S.; Matsuura, T.; Sasaki, S. Coloration of aromatic polyimides and electronic properties of their source materials Polym. J.1997,29,69-76.
    168.Yen, C. T.; Chen, W. C. Effects of molecular structures on the near-infrared optical properties of polyimide derivatives and their corresponding optical waveguides Macromolecules 2003,36,3315-3319.
    169.Matsuura, T.; Ando, S.; Sasaki, S.; Yamamoto, F. Polyimides derived from 2, 2'-bis (trifluoromethyl)-4,4'-diaminobiphenyl.4. Optical properties of fluorinated polyimides for optoelectronic components Macromolecules 1994,27,6665-6670.
    170.Ma, H.; Jen, A. K.-Y.; Dalton, L. R. Adv. Mater.2002,14,1339-1365.
    171.Kaino, T. Preparation of plastic optical fibers for near-IR region transmission J. Polym. Sci., Part A:Polym. Chem.1987,25,37-46.
    172.Kim, Y. M.; Lim, E.; Kang, I.-N.; Jung, B.-J.; Lee, J.; Koo, B. W.; Do, L.-M.; Shim, H.-K. Solution-processable field-effect transistor using a fluorene-and selenophene-based copolymer as an Macromolecules 2006,39,4081-4085.
    173.Newkome, G. R.; Moorefield, C. N.; Baker, G. R.; Johnson, A. L.; Behera, R. K. Alkane cascade polymers possessing micellar topology: micellanoic acid derivatives Angew. Chem., Int. Ed. Engl.1991,30,1176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700