降胆固醇乳酸菌的筛选、鉴定及降解机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]随着生活水平的不断提高,人们对食品营养的要求也越来越高,但随之而来的负面影响却是动脉粥样硬化、冠心病、高血压等心脑血管疾病的发病率不断提高。国内外大量临床试验证实,服用乳酸菌及其相关制品具有减少人体血清胆固醇含量,降低心血管疾病发病率的功效。本文通过筛选具有降胆固醇功能的乳酸菌株,并研究了它们的体外益生特性、体外降胆固醇机制和大鼠体内降胆固醇功能疗效,为推动功能性乳酸菌-降胆固醇乳酸菌的研究和应用提供原始菌株和基础研究支撑。
     [方法]全文以中国传统食品泡菜、腊肠为材料,以碳酸钙-MRS(calcium carbonate-Man Rogosa and Sharp Medium)选择性培养基筛选乳酸菌,应用改良的胆固醇培养基筛选具有较高降胆固醇能力的乳酸菌;结合菌落形态学、接触酶反应、革兰氏染色、碳水化合物微量鉴定管及16SrRNA寡核苷酸碱基序列分析鉴定;研究其耐酸性,耐胆盐活性,生长曲线及产酸特性;采用药敏纸片法测定菌株对抗生素的敏感性,双层琼脂牛津杯法测定菌株对常见致病菌的抑制效果;比较胆盐存在与否、不同胆盐成分对菌株在培养基中降胆固醇活性的影响;研究胆固醇在体外降解后,其在细菌沉淀、胞内和胞外的分布情况,探讨菌株体外降胆固醇的机制;构建高脂血症大鼠模型,测定灌胃菌株前后大鼠血清主要指标的含量变化,研究降胆固醇乳酸菌在体内的降胆固醇活性。
     [结果]筛选得到的两个菌株LpTl和LpT2其降解率分别达到49.11%和50.03%,经鉴定为植物乳杆菌;同时,植物乳杆菌LpTl和LpT2都呈现了较强的耐酸性耐胆盐活性,在pH 3.0条件下存活率都比较高,在含0.3%胆盐的培养基中两株菌的生长都受到了一定抑制;其中植物乳杆菌LpTl在pH3.0培养基中能至少存活8 h,在含0.1%胆盐的培养基中能存活至少8 h;植物乳杆菌LpT2在pH2.0的培养基中至少能存活6 h,在含0.1%胆盐的培养基中都能存活至少8h;植物乳杆菌LpT1在第14小时开始进入对数生长期,在第22小时进入生长稳定期,生长30 h后最低pH值4.2左右;植物乳杆菌LpT2在第12小时进入对数生长曲线,第20小时进入稳定期,生长30 h后者最低pH值在4.0左右;植物乳杆菌LpTl和LpT2对18种抗生素都比较敏感,抑菌圈基本都在20 mm以上;它们的发酵上清液对沙门氏菌、铜绿假单孢菌、金黄色葡萄球菌、大肠杆菌、金黄色葡萄球菌的抑制效果都比较明显。
     植物乳杆菌LpTl和LpT2在含有结合型胆盐牛磺胆酸钠培养基中的降解胆固醇的活性与未含有牛磺胆酸钠培养基中的降胆固醇活性没有显著差异;植物乳杆菌LpT2在含有牛胆盐与未含有牛胆盐培养基中降胆固醇的活性存在显著差异,而植物乳杆菌LpTl没有显著差异;饲喂高脂饲料7 d后,成功构建出高脂血症大鼠模型;灌胃菌株LpT1 4周后,大鼠血清中总胆固醇含量下降极显著(p<0.01),甘油三脂下降显著(p<0.05),高密度脂蛋白胆固醇几乎没有变化,低密度脂蛋白胆固醇含量下降比较显著(p<0.05),动脉硬化指数明显下降,HDL-C/TC的比值明显升高;灌胃植物乳杆菌LpT2 4 w后,大鼠血清中总胆固醇的含量明显下降(p<0.05),低密度脂蛋白胆固醇也下降比较显著(p<0.05),甘油三脂出现下降但不显著,高密度脂蛋白胆固醇出现下降;灌胃植物乳杆菌和阳性药物的大鼠体重增加率明显低于灌胃蒸馏水的大鼠体重增加率。
     [结论]筛选得到的植物乳杆菌LpT1和LpT2在体外具有较高的降胆固醇活性,在体内对高脂血症大鼠也具有一定的疗效,同时能减缓大鼠对高脂饲料的利用率,缓解体重的增加率;另外,菌体在体外降胆固醇的活性和胆盐的存在没有明显的相关性,胆盐的组成能影响降胆固醇的活性,除共沉淀和同化作用等非代谢途径之外,还存在着复杂的代谢降解机制;菌体在大鼠肠道定植后,能产生特定的代谢产物或酶系,直接的或间接的作用于肝脏,调节肝脏代谢脂类物质朝着正常化趋势发展。体外、体内的综合实验表明筛选得到的两株植物乳杆菌具有潜在的生产应用价值。
[Objective]Nowadays, with the perceptible improvement of living standard, people's demand for food nutrition is increasing. At the same time, some negative effects are accompanied, such as atherosclerosis, coronary heart disease, high blood pressure and other cardiovascular or cerebrovascular diseases. Many clinical trials confirmed that orally taking Lactic Acid Bacteria (LAB) and their related products could not only reduce the serum cholesterol concentration but also reduce the risk of suffering from cardiovascular disease. This study was going to screen several cholesterol-lowering lactic acid bacteria strains and investigate their probiotic properties. Cholesterol-lowering mechanism in vitro and vivo would also be examed. The cholesterol-lowering strains and research papers can promote the devepment of functional lactic acid bacteria and supply an application research support.
     [Methods]Original LAB strains were screened based on the calcium carbonate-MRS medium (calcium carbonate-Man Rogosa and Sharp Medium) from Chinese tradition pickles and sausage. The cholesterol-lowering strains were confirmed by screening with in vitro cholesterol levels. They were identified by morphologic observation, catalase reaction, carbohydrate reaction and 16SrRNA sequencing. Their acid resistances, bile salts resistance activity, growth curve, acid producing properties, sensitivity to antibiotics, inhibitory effect on common pathogenic bacteria, degradation of cholesterol and co-precipitation of cholesterol action in vitro had been systemic studied. Hyperlipidemia rats were introduced by being fed of fat-rich diet and then be fed of strain everyday, and we traced the change in serum to access their cholesterol-lowering activity in vivo.
     [Results]Two strains LpT1 and LpT2 were obtained and identified as Lactobacillus plantarum, their cholesterol degradation ratio were 49.11% and 50.03%, respectively. Lactobacillus plantarum LpT1 and LpT2 showed high acid resistance and bile salt tolerance. Lactobacillus plantarum LpT1 could survive at least for 8 hours under pH 3.0 and for 8 hours in the medium containing 0.3% bile salt, while Lactobacillus plantarum LpT2 could survive for 6 hours and 8 hours under the same condition. LpTl reached the logarithm phase of growth and stationary phase of growth at 14th hour and 22th hour after been cultivated, while LpT2 at 12th hour and 20th hour after been cultivated. The final pH values were 4.2 and 4.0 after cultivated for 30 hours. Both of them were sensitive to the 18 kinds of antibiotics and their diameters of inhibition zone were more than 20 mm. The fermentation supernatant could significantly inhibit Salmonella, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli.
     There was no significant difference in cholesterol-reducing activity of Lactobacillus plantarum LpT1 and LpT2 whether the culture medium contained coalescent bile salt sodium taurocholate or not. There was a significant difference in cholesterol-lowering activity when Lactobacillus plantarum LpT2 liveed in the medium with bovine bile salt or without (p<0.05). Hyperlipidemic rat model was built successfully through being fed fat-rich diet for 7 days; After being fed strain LpT1 for 4 weeks, the total cholesterol of rats serum decreased great significantly (p<0.01), triglyceride decreased significantly (p<0.05), high-density lipoprotein cholesterol almost no change in relatively, low-density lipoprotein cholesterol decreased significantly (p<0.05), arteriosclerosis index decreased significantly and HDL-C/TC value increased obviously. After being fed strain LpT2 for 4 weeks, the total cholesterol of rats serum decreased significantly (p<0.05), low-density lipoprotein cholesterol decreased significantly (p<0.05), triglycerides declined indistinctively. The results showed that after being fed Lactobacillus plantarum and lovastatin, rats'weight gain rate was lower significantly than those being fed with distilled water.
     [Conclusion]The results showed that both Lactobacillus plantarum LpT1 and LpT2 had a high cholesterol-lowering activity in vitro and a positive effect on hyperlipidemic rats in vivo. The strains also could slow down the utilization of fat-rich diet to alleviate the weight gain simultaneously. In addition, there was no obvious correlation between cholesterol-lowering activity and the existence of bile salts in medium or not. However, composition of bile salts could affect cholesterol-lowering activity. In case to co-precipitation and assimilation, there was some complicated metabolic degradation mechanism. After bacterial colonized in rats gut, it could produce specific metabolites or enzymes to act on liver through direct or indirect ways. In conclusion these two strains showed a potential applied value.
引文
[1]王镜岩,主编.生物化学(上册)[M].北京:高等教育出版社,2002:114-116.
    [2]牛天贵.食品中胆固醇微生物转化机理与应用研究[D].北京:中国农业大学博士学位论文,2000.
    [3]肖琳琳.乳酸菌降胆固醇作用及机理研究[D].南京:南京农业大学硕士学位论文,2003.
    [4]任邦哲,主编.生物化学与临床医学[M].长沙:湖南科学技术出版社,1992:202-206.
    [5]杨大军,吴剑波.微生物来源的脂酰辅酶A:胆固醇脂酰转移酶抑制剂的研究进展[J].外医药抗生素分册,1997,18(3):211.
    [6]TOMODA H, TABATA N, YANG DJ. Pyirpyropenes, novel ACAT inhibitors produced by Aspergillus fumigatus [J]. Journal of Antibiotics,1996,49 (3):292.
    [7]郭文.胆汁酸代谢的进展[J].国外医学生理、病理科学与临床分册,1996,16(1):18-20.
    [8]吴莺,姚惠源.米糠半纤维素降胆固醇机理的研究[J].粮食与油脂,2001,1:33-35.
    [9]任邦哲,主编.生物化学与临床医学[M].长沙:湖南科学技术出版社,1992:210-220.
    [10]洪智勇,毛宁.红曲霉降胆固醇有效成分的研究[J].海峡药学,2002,14(1):33-35.
    [11]鲁红军.食品中胆固醇的微胶囊脱除技术[J].食品科学,1997,6:47-48.
    [12]张佳程,骆承痒.生物方法降低胆固醇的研究趋势[J].食品科学,1997,18(11):50-53.
    [13]凌代文,主编.乳酸菌分类鉴定及实验方法[M].北京:中国轻工业出版社,1999:9-35.
    [14]杨洁彬,郭兴华,张篪,编著.乳酸菌-生物学基础及应用[M].北京:中国轻工业出版社,1996:203.
    [15]SHAPER A G, JONES K W, JONES W, et al. Serum lipids in three nomadic tribe of Northern Kenya [J]. American Journal of Clinical Nutrition,1963,9:135-146.
    [16]MANN G V, SPOERRY A. Study of surfactant and cholesteremia in the Masai[J]. American Journalof Clinical Nutrition,1974,27:464-468.
    [17]MANN G V. A factor in yogurt which lowers cholesterolemia in man[J]. Artherosclerosis, 1977,26:335-340.
    [18]H EYSSEN, G PARMENTIER. Biohydrogenation of sterols and fatty acids by the intestinal microflor [J]. American Journal of Clinica and Nutrition,1974,27 (11):1329-1340.
    [19]EYSSEN H. Role of gut microflora in metabolism of lipids and sterols [J]. Proceedings of The Nutrition Society,1973,32:59-63.
    [20]GILLILAND S E, SPECK M L. Deconjugation of bile acids by intestinal Lactobaciliu[J]. Applied and Environmental Microbiology,1977,15-18.
    [21]GILLILAND S E, CRNELSON, C MAXWELL. Assimilation of cholesterol by Lactobacillus acidophilust[J]. Applied and Environmental Microbiology,1985,49 (2): 377-381.
    [22]RASICJL, VUJICICLF, SKRINGERM. Assimilation of cholesterol by some culture of lactic acid bacteria and bifidobacteria [J]. Biotechnology Letters,1992,14:39-44.
    [23]SHUN Y LIN, JAMES W, AYRESWW, et al. Lactobacillus effects on cholesterol: in vitro and in vivo results [J]. Journal of Dairy Science,1989,72:2885-2899.
    [24]张佳程,骆承祥.乳酸菌对食品中胆固醇脱除作用的研究[J].食品科学,1998,19(3):20-22.
    [25]王成涛,牛天贵.构建高效降解胆固醇的融合乳酸菌的研究-融合子的鉴定及其在食品中的应用[J].食品科学,2002,23(3):27-30.
    [26]肖琳琳,董明盛.西藏干酪乳酸菌降胆固醇特性研究[J].食品科学,2003,24(10):142-145.
    [27]王一鸣.从人体肠道筛选能去除胆固醇的菌株及其去除机理研究[D].上海:上海交通大学,2006.
    [28]张旻.降胆固醇功能乳杆菌的筛选及降解机理研究[D].上海:上海交通大学,2007.
    [29]蒋丹丹.降解胆固醇菌株的筛选及其在食品中的应用[D].北京:中国农业大学,2007.
    [30]刘娟.植物乳杆菌ST-Ⅲ菌株降胆固醇机理的研究[D].上海:上海海洋大学,2008.
    [31]GILLILAND S E, NELSON C R, MAXWELL C. Assimilation of cholesterol by Lactobacillus acidophilust[J]. Applied and Environmental Microbiology,1985,49(2): 377-381.
    [32]GRILL J P, CAYUELA C, ANTOINE J M, et al. Effects of Lactobacillus amylovorus and Bifidobacterium breve on cholesterol [J]. Letters in Applied Microbiology,1990,31: 154-156.
    [33]DON D O, KIMS H, GILLILAND S E. Incorporation of cholesterol into the cell membrance of Lactobacillus acidophilus ATCC 43121 [J]. Journal of Dairy Science,1997, 80:3107-3113.
    [34]KLAVERFAK, VANDERMEERR. The assumed assimilation of cholesterol by Lactobacilli and Bifidobacterium bifidum is due to their bile salt deconjugation activity[J]. Applied and Environmental Microbiology,1993,59:1120-1124.
    [35]BUCK L M, GILLILAND S E. Comparisons of freshly isolated strans of Lactobacillus acidophilus of human intestinal origin for ability to assimilate cholesterol during growth[J]. Journal Diary science,1994,77:2925-2933.
    [36]MOTT G E. Lowering of serum cholesterol by intestinal bacteria in cholesterol-fed pig[J]. Letters in Lipids,1993,8:428.
    [37]TARANTO M P, F SESMA A, PESCE DE RUIZHOLGADO, et al. Bile salts hydrolase plays a key role on cholesterol removal by Lactobacillus reuteri[J]. Biotechnology Letters, 1997,19 (9):845-847.
    [38]DEKKER R, R VAN DER MEER, OLIEMAN C. Sensitive pulsed amperometric detection of free and conjugated bile acids in combination with gradient reversed-phase HPLC[J]. Chromatographia,1991,11:549-553.
    [39]FUKUSHIMA M, YAMADA A, ENDO T, et al. Effects of a mixture of organisms, Lactobacillus acidophilus or Streptococcus faecalis on delta6-desaturase activity in the livers of rats fed a fat-and cholesterol-enriched diet [J]. British Journal of Nutrition,1996, 76:857-867.
    [40]MARTEAU P, GERHARDT M F. Metabolism of bile salt by alimentary bacteria during transit in the human small intestine [J]. Microbial Ecology in Health and Disease,1995, 8:151-157.
    [41]DAMBEKODIPC, GILLILAND S E. Incorporation of cholesterol into the cellular membrane of Bifidobacterium longum [J]. Journal Diary science,1998,81:1818-1824.
    [42]UWAJIMA T T, YABI H, TERADA O. Properties of crystaline 3-hydroxisteroid oxidase of Brevibacterium sterolicum [J]. Agricultural Biology and Chemistry,1974,37: 2345-2350.
    [43]AIHARA H, WATANABE K, NAKAMURA R. Degradation of cholesterol in egg yolk by Rhodococcus equi No.23 [J]. Journal of Food Science,2006,53 (2):659-660.
    [44]江正强.用胆固醇氧化酶脱除猪油中的胆固醇[J].中国农业大学学报,1996,1(2):100-101.
    [45]那淑敏,贾士芳,陈秀珠,等.嗜酸乳杆菌发酵代谢产物的分析[J].中国微生态杂志,1999,11(2):266-268.
    [46]PEREIRA D I, GIBSON G R. Effects of consumption of probiotics and prebiotics on serum lipid level in humans [J]. Critical Reviews in Biochemistry and Molecular Biology,2002, 37 (4):259-281.
    [47]朱军莉,韩剑众,励建荣.纤维素分解菌BSX5的分离、鉴定及产酶条件[J].食品与生物技术学报(Journal of Food Science and Biotechnology),2006,25 (3):15-19.
    [48]RAZIN S, SKUTNER, HEFRATI, et al. Phospholipid and cholesterol uptake by mycoplasma cells and membranes [J]. Biochimica et Biophysica Acta,1980,598: 628-640.
    [49]RUDEL L L, MORRIS M D. Determination of cholesterol using o-phthalaldehyde [J]. Journal of Lipid Research,1973,14:364-366.
    [50]东秀珠,蔡妙英.常用细菌系统鉴定手册[D].北京:科学出版社,2001:267-295.
    [51]MARMUR J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms [J]. Journal of Molecular Biology,1961,3:208-218.
    [52]蒋丹丹.降解胆固醇菌株的筛选及其在食品中的应用[D].北京:中国农业大学, 2007.
    [53]GOPALA, NPSHAH, ROGINSKIH. Bile tolerance, taurocholate deconjugation and cholesterol removal by Lactobacillus acidophilus and Bifidobacterium spp. Milchwissenshaft,1996,51:619-623.
    [54]KUMAR R, DAHIYAJS, SINGH D, et al. Biotransformation of cholesterol using Lactobacillus bulgaricus in a glucose-controlled bioreactor [J]. Bioresource Technology, 2001,78:209-211.
    [55]居华,刘书亮,敖灵,等.降胆固醇乳酸菌的筛选、鉴定及生长特性[J].中国乳品工业,2007,35(8):7-10.
    [56]PARVEZ1 S, HONG YEOUL KIM. Bile salt hydrolase and cholesterol removal effect by Bifidobacterium bifidum NRRL 1976 [J]. World Journal of Microbiology and Biotechnology,2006,22:455-459.
    [57]CARDOAN M E, MIDTVEDT T, NORIN, et al. Probiotics in gnotobtic mice[J]. Microbiol Ecology in Health and Disease,2000,12:219-224.
    [58]BUCKLM, SEGILLILAND. Comparisons of freshly isolated strains of Lactobacillus acidophilus of human intestinal origin for ability to assimilate cholesterol during growth[J]. Journal Dairy Science,1994,77:2925-2933.
    [59]肖琳琳.乳酸菌降胆固醇作用及机理研究[D].南京:南京农业大学,2003.
    [60]郑坚.乳酸菌对血脂的影响[J].黄冈师范学院学报,2002,22(3):37-38.
    [61]杨宝兰,徐进.益生菌的安全性[J].中国食品卫生杂志,2004,16(3):262-265.
    [62]FUKUSHIMAM, YAMADAA, ENDOT, et al. Effects of a mixture of organisms, Lactobacillus acidophilus or Streptococcus faecalis on delta6-desaturase activity in the livers of rats fed a fat-and cholesterol-enriched diet[J]. Nutrition,1999,15 (5):373-378.
    [63]DON DO, SHKIM, SEGILLILAND. Incorporation of cholesterol into the cell membrance of Lactobacillus acidophilus ATCC43121 [J]. Journal Dairy Science,1997, 80:3107-3113.
    [64]USMAN, AHOSONO. Bile tolerance, taurocholate deconjugation, and binding of cholesterol by Lactobacillus gasseri strains[J]. Journal Dairy Science,1999,82:243-248.
    [65]KLAVERFAK, VANDERMEERR. The assumed assimilation of cholesterol by Lactobacilli and Bifidobacterium bifidum is due to their bile salt deconjugation activity[J]. Applied and Environmental Microbiology,1993,59:1120-1124.
    [66]肖琳琳.乳酸菌降胆固醇作用及机理研究[D].南京:南京农业大学,2003.
    [67]张旻.降胆固醇功能乳杆菌的筛选及降解机理研究[D].上海:上海交通大学,2007.
    [68]LIONGMT, SHAH N P. Acid and bile tolerance and cholesterol removal ability of Lactobacilli Strains [J]. Journal Dairy Science,2005,88:55-66.
    [69]NOHDO, KIMSH, GILLILANDSE. Incorporation of cholesterol into the cellular membrane of Lactobacillus acidophilus ATCC 43121 [J]. Journal Dairy Science,1997, 80:3107-3113.
    [70]HYEONGJUNLIM, SO YOUNG KIM, WAN KYU LEE. Isolation of cholesterol-lowering lactic acid bacteria from human intestine for probiotic use[J]. Journal of veterinary science,2004,5(4):391-395.
    [71]CESARERSIRTORI, REMO FUMAGALLI. LDL-cholesterol lowering or HDL-cholesterol raising for cardiovascular prevention-a lesson from cholesterol turnover studies and others [J]. Atherosclerosis,2006,186:1-11.
    [72]SATOSHIHIGURASHI, YUKIKO KUNIEDA, HIROAKI MATSUYAMA, et al. Effect of cheese consumption on the accumulation of abdominal adipose and decrease in serum adiponectin levels in rats fed a calorie dense diet [J]. International Dairy Journal,2007 (17):1224-1231.
    [73]TDTNGUYEN, JHKANG, MS LEE. Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects [J]. International Journal of Food Microbiology,2007 (113):358-361.
    [74]LEON A SIMONS, SARAHGAMANSEC, PATRICIA CONWAY. Effect of Lactobacillus fermentum on serum lipids in subjects with elevated serum cholesterol [J]. Nutrition, Metabolism And Cardiovascular Diseases,2006(16):531-535.
    [75]CHIU HSIA CHIU, TZU YU LU, YUN YU TSENG. The effects of Lactobacillus-fermented milk on lipid metabolism in hamsters fed on high-cholesterol diet[J]. Applied Microbiology and Biotechnol,2006,71:238-245.
    [76]DO KYUNG LEE, SEOK JANG, EUN HYE BAEK, et al. Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content [J]. Lipids in Health and Disease,2009,8:21-29.
    [77]BEENA A, PRASAD V. Effect of yogurt and bifidus yogurt fortified with skim milk powder, condensed whey and lactose-hydrolysed condensed whey on serum cholesterol and triacylglycerol levels in rats [J]. Journal of Dairy Research,1997,64 (3):453-457.
    [78]SUZUKI Y, KAIZUH, YAMAUCHIY. Effect of cultured milk on serum cholesterol concentrations in rats which fed highcholesterol diets [J]. Animal Feed Science and Technology,1991,62:565-571.
    [79]GRUNEWALD K K. Serum cholesterol levels in rats fed skim milk fermented by Lactobacillus acidophilus [J]. Journal of Food Science,1982,47:2078-2079.
    [80]SRIDEVIN, PRADNYAVISHWE, ASMITA PRABHUNE. Hypocholesteremic effect of bile salt hydrolase from Lactobacillus buchneri ATCC 4005 [J]. Food Research International,2009,42:516-520.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700