锂离子电池正极材料LiMn_2O_4合成与改进研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,人们对锂离子二次电池正极材料进行了大量的研究。LiCOO2材料由于高电压、高容量和循环性能优异,目前是商业应用的主要材料。LiNiO2也被作为一种有潜力的正极材料被广泛研究。锂离子蓄电池具有比能量高、自放电率低、工作电压高、对环境友好及无记忆效应等优点,具有十分广阔的应用前景。正极材料的研究是锂离子二次电池的核心技术之一。尖晶石型LiMn2O4正极材料由于其资源丰富,价格便宜,对环境友好,合成工艺简单,安全性好,被公认为是新一代锂离子电池最有希望的正极材料之一,但是该材料目前还存在初始容量较低、容量衰减快等问题。本文概述了锂离子电池正极材料的研究和发展现状,对尖晶石型LiMn2O4正极材料的衰减机理做了详细说明,总结了现有的几种改进方法,还对该材料的各种制备方法做了简单介绍。
     本文首先研究了焙烧温度对溶胶—凝胶法合成尖晶石锰酸锂正极材料结构和性能的影响,得到如下结论:在我们的实验条件下,焙烧时分三段(150℃焙烧8小时→300℃焙烧12小时→750℃焙烧12小时)进行即得到纯相的、性能较好的尖晶石锰酸锂。通过XRD、SEM对材料的性能进行了表征,并用所制备的材料制作成电池,通过充放电测试,进一步研究了材料的电化学性能。在750℃下,LiMn2O4的首次放电比容量为127.9 mAh/g,循环35次后其放电比容量仍保持在114.8 mAh/g,容量保持率为89.8%。
     对尖晶石锰酸锂进行体相阴阳离子掺杂是本文的研究重点。通过Ni2+、F-阴阳离子复合掺杂制备了掺杂改性尖晶石LiNixMn2-xO4-yFy(x=0.03、0.05、0.1;y=0、0.05、0.1),考察了温度和掺杂量的影响,通过XRD、SEM对材料的性能进行了表征,并用所制备的材料制作成电池,进一步研究了材料的电化学性能。研究认为Ni2+掺杂都能改善尖晶石锰酸锂正极材料的循环性能,F-能够提高初始放电比容量,综合考虑稳定放电比容量与循环性能,750℃时烧结12 h得到的LiNi0.1Mn1.9O3.95F0.05粉体具有较好的电化学性能,首次放电比容量达106.1 mAh/g,循环35次后,其放电比容量保持在102.4 mAh/g,容量保持率为96.5%。
     通过Cr3+、F-进行掺杂改性合成了LiCrxMn2-xO4-yFy(x=0.03、0.05、0.1;y=0、0.05、0.1),考察了不同的温度和掺杂量的影响,通过XRD、SEM对材料的性能进行了表征,并用所制备的材料制作成电池,进一步研究了材料的电化学性能,通过本实验测试,获得了最佳合成条件:温度为750℃,x=0.1,y=0.05,此物质为LiCr0.1Mn1.9O3.95F0.05,初次放电比容量为110.9 mAh/g,循环35次后,其放电比容量保持在108.5 mAh/g,容量保持率为97.9%。
     总体上来讲,阳离子掺杂虽然在一定程度上降低了材料的比容量,但都能够明显提高材料的循环性能,而阴离子掺杂会提高材料的比容量,但是会使材料的循环性能变差,选择理想的阴阳离子掺杂和最佳配比是今后提高尖晶石锰酸锂电化学性能的研究方向。
During these years, many investigations have been made on the cathode materials of lithium-ion rechargeable bateries. LiCoO2 has been commercialized for its high potential, high capacity and excellent recharge ability. LiNiO2 has also been developed as the substitutive cathode. However, cobalt and nickel compounds have economic and environmental problems, and the preparation of stoichiometric LiNiO2 is extremely difficult.Lithium-ion batteries have a good prospect in application for its favorable advantages of high voltage, high specific capacity, long cycling life and non-pollution.Cathode is the key of the development of lithium-ion batteries. LiMn2O4 spinel is believed to be the most promising cathode material for lithium-ion batteries.because.of its abundant resources, low cost, simple synthesis processing environmental friendly nature. However, the low initial capacity and poor cyclability prevent LiMn2O4 spinel from wide application. Several mechanism about the attenuation of LiMn2O4 spinel and some ways to improve the performance of this cathode material has been illuminated in the paper.
     In the present work, LiMn2O4 spinel compound was synthesized by means of the so called sol-gel process. The effects of the calcination process on the structure and properties of the LiMn2O4 spinel materials were discussed.The experimental results show that pure spinel phase of LiMn2O4 cathode was obtained under the experimental conditions of 750℃. Heating process was divided into 3 stages, i.e.150℃8 h—650℃12 h—750℃12 h. Their structure and electrochemical properties were characterized by means of XRD, SEM techniques. The initial discharge specific capacity of LiMn2O4 is 127.9 mAh/g, The LiMn2O4 spinel compound has a high capacity retention of 89.8% after 35 cycles.
     The important investigation points in the present thesis was modification of LiMn2O4 by ions-doping. Ni2+andF--doping spinels (LiNixMn2-xO4-yFy (x=0.03,0.05,0.1;y=0,0.05,0.1)) were prepared.The effects of sintering temperature and dopant content were studied. Their structure and electrochemical properties were characterized by means of XRD,SEM techniques. The LiNi0.1Mn1.9O3.95F0.05 powder with high discharge capacity and cycling performance is prepared at sintering temperature of 750℃. The initial discharge specific capacity of LiNi0.1Mn1.9O3.95F0.05 is 106.1 mAh/g,The powder has a high capacity retention of 96.5% after 35 cycles.
     Cr2+and F-doping spinels (LiCrixMn1.97O4-yFy (x=0.03,0.05,0.1 ; y=0,0.05,0.1)) were prepared. The effects of sintering temperature and dopant content were discussed. Their structure and electrochemical properties were characterized by means of XRD,SEM techniques. The LiCr0.1Mn1.9O3.95F0.05 powder with high discharge capacity and cycling performance is prepared at sintering temperature of 750℃. The initial discharge specific capacity of LiCr0.1Mn1.9O3.95F0.05 is 110.9 mAh/g, The powder has a high capacity retention of 97.9% after 35 cycles.
     Generally speaking, the cycling performance of spinel LiMn2O4 was evidently improved through cation doping even though the specific capacity of materials were reduced to some extent. Howere, the specific capacity of spinel LiMn2O4 was evidently improved through anion doping even though the cycling performance of materials were reduced to some extent. In order to improve electrochemical properties of spinel LiMn2O4, we will look for the ideal doping ions and gain the best ratio in the future.
引文
1. GuohuaL, IkutaH, Uchida, et al. The spinel phases LiMyMn2-yO4(M=Co,Cr,Ni) as the cathode for rechargeable lithium batteries[J]. J.Electrochem Soc, 1996, 143(2): 178-182.
    2. Gui-MingSong, Yu-JinWang, YuZhou. Synthesis and electrochemical performance of LiCrxMn2-xO4 powers by mechanical activation and rotary heating[J].J.Power Sources, 2004, 128(2): 270-277.
    3. XianglanW, SeungB K. Improvement of electrochemical properties of LiNi0.5Mn1.5O4、LiCo0.5Mn1.5O4 spinel[J]. J.Power Sources, 2002, 109(1): 53-57
    4.李智敏,仇卫华,曹全喜,等. LiMn2O4正极材料高温电化学性能的研究[J].硅酸盐学报,2004, 32(1): 71-73.
    5.卫敏,路艳罗,杨文胜,等.锂离子二次电池锰系正极材料[J].化学通报,2002, 8: 516-526
    6. M .Yo shio, H .Tanaka, K.Tominaya, et al . Synthesis of LiCoO2 from cobalt—organic acid complexes and its electrode behaviour in a lithium secondary battery[J]. J.Power Sources, 1992, 40: 347-353.
    7. Mizushima K., JonesP.C,Wiseman P.J, et al. LixCOO2(0rial for battery of high energy density[J]. Master.Rs.Bull.,1980,15(6):783-787.
    8.吴国良,杨新河,等.锂离子电池及其电极材料的研制[J].电池,1998,28 (6):258-262.
    9.杨遇春,郑有国.锂离子电池材料新进展[J].电池, 1998(4): 181-183
    10. YazamiR. High performance LiCOO2 positive electrode material[J]. J.Power Sources,1995, 54 (2): 389-392 .
    11. Delmas C,Saadoune L,RougierA. The cycling properties of the LixNiyCo1-yO2 eletrode [J]. J.Power Sources,1993, 43: 595-602.
    12. BrouusselyM, PertonF, LabatJ, et al. Li/LixNiO2 and Li/LixCoO2 rechargeable systems: comparative study and peformance of practical cells. [J]. J.Power Sources,1993,43: 209-216.
    13. Tanka, OhtaK,AraiN. Year 2000R&Dstatus of large-scale lithium ion secondary batteries in the national project of Japan[J]. J.Power Sources, 2001, (97-98): 2-6.
    14. Demlasc,Peres J.P,et al. On the behavior of the LixNiO2 system: an electrochemical and structural overview[J]. J.Power Sources, 1997, 68: 120-128.
    15. WLi,JCCurie[J]. J.Electrochem.Soc, 1997, 144: 2773-2780.
    16. ERossen,C D W.Jones, et al. Structure and electrochemistry of LixMnyNi1?yO2[J]. SolidState Ionics,1992,57: 311-319.
    17. Amriou T, Sayede A, Khelifa B, Mathieu C, Aourag H. Effect of Al-doping on lithium nickel oxides[J]. J.Power Sources, 2004, 130: 213-220.
    18. MyoungYoupsong RyongLee, et al. Synthesis by sol–gel method and electrochemical properties of LiNi1?yAlyO2 cathode materials for lithium secondary battery[J]. Solid State Ionics, 2003, 156: 319-328.
    19. HJKweon, SSKim, etal. Syntheses of LiMn2O4, LiCoO2 and LiNi0.8Co0.2O2 by the PVA-precursor method and their use as a cathode in the lithium-ion rechargeable battery [J]. J.Mater.Sci Lett, 1998, 17: 1697-1702.
    20. HanC J, YoonJ H, ChoWI, JangH. Electrochemical properties of LiNi0.8Co0.2?xAlxO2 prepared by a sol–gel method[J]. J. Power Sources, 2004, 136: 132-138.
    21. Fey G T K, Chen J G, et al. Preparation and electrochemical properties of Zn-doped LiNi0.8Co0.2O2. [J]. J.Power Sources, 2002, 112: 384-394.
    22. PeterPC,HuangDL,et al. Solid-state 7Li NMR studies of inverse spinel LiNixCo1?xVO4 cathode materials[J]. J.Power Sources, 2000, 90: 95-102.
    23. PouillerieC,PertonF,et al. Effect of magnesium substitution on the cycling behavior of lithium nickel cobalt oxide[J]. J.Power Sources, 200l,96: 293-302.
    24. Madhavi S,Subba RGV, et al. Effect of aluminium doping on cathodic behaviour of LiNi0.7Co0.3O2[J]. J.Power Sources,2001, 93: 156-162.
    25. ChowdariBVR, SubbaRGV,et al. Cathodic behavior of (Co, Ti, Mg)-doped LiNiO2[J]. Solid State Ionics, 200l, 140: 55-62.
    26.郭景坤.高性能陶瓷论文集[M].北京:人民交通出版社,1998,5.
    27. Capitaine F,GravereauP,DelmasC. A new variety of LiMnO2 with a layered structure. [J]. Solid State Ionics, 1996, 89: 197-203.
    28. Davidsonl.J,McMillanR.S, MurrayJ.J,et al. Lithium-ion cell based on orthorhombic LiMnO2[J]. J.Power Sources, 1995, 54: 232-238.
    29. CroguenecL,DeniardPRbrec,et al. Electrochemical behavior of orthorhombic LiMnO2: influence of the grain size and cationic disorder[J]. Solid State Ionics,1996,89: 127-134.
    30. Young-ⅡJang, BiyingHuang, Yet-Ming Chiang, et al[J]. Electrochem.Solid-State Lett,. 1998, 1(1): 13-20.
    31. Ravet N , Chouinard Y, Magnan J F , et al. Electroactivity of natural and synthetic triphylite[J ]. J.Power Sources , 2001 , 97-98 :503-507.
    32. Yamada A , Chung S C , Hinokuma K. Optimized LiFePO4 for lithium battery cathodes[ J ]. J. Electrochem Soc , 2001 , 148 ( 3) : A224-A229.
    33. ZhanhuiC,DahnJR. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density[J].J.Electrochem.Soc, 2002, 149(9): All84-All89.
    34. KokabangR, BarkerJ, ShiH, et al. Cathode materials for 1ithium rocking chair batteries [J]. Solid State Ionics, 1996, 84: 1-21.
    35. ObrovacMN, MaoO, Dahn JR. Structure and electrochemical characterization of LiMO2 (M=Ti,Mn,Fe,Co,Ni) Prepared by mechanochemical synthesis[J].Solid State Ionics, 1998, 112: 9-19.
    36. Manev V,Momchilov A,Nassalevska A, et al. New approach to the improvement of Li1+XV3O8 performance in rechargeable lithium bateries[J]. J.Power Sources,1995,54(2): 501-507.
    37. Kawakita J,Majlma M S,Takashi M,et al . Preparation and lithium insertion behavior of oxygen-deficient Li1+XV3O8[J]. J.Power Sources, 1997, 66: l35-139.
    38. YamasaA,ChungSC. Crystal chemistry of the olivlne-Type Li(MnyFe1-y)O4 and (MnyFe1-y) PO4 as possible 4 Vcathode materials for lithium batteries[J]. J.Electrochem Soc, 2001,148(8): A960-A967.
    39. Amine K,Yasuda K,YamachiM[J]. Electmchem Solid -State Lett,2000,3(4):178-179.
    40.森北孝志,山本隆一.聚合物二次电池用导电性高分子的合成与改性(正极材料)[J]工业材料,1999,47(2): 35-39.
    41. PaneroS,SpliaE,SpliaB,et al. A new type of a rocking-chair battery familily based on a graphite and a polymer cathode[J].J.Electrochem.Soc,1996,143: L29–30.
    42.郑子山,唐子龙,张中太,等.锂离子电池正极材料LiMn2O4的研究进展[J].无机材料学报,2003 , 18 (2): 257-263.
    43.张仁刚.掺杂-包覆对提高LiMn2O4正极材料性能的研究[D].武汉:武汉理工大学, 2002.
    44.吴宇平,戴晓兵,马军旗,等.锂离子电池应用与实践[M].北京:化学工业出版社.2004.
    45.夏君磊,赵世玺,张仁刚,等.锂离子电池正极材料LiMn2O4研究进展[J].硅酸盐通报,2003 (4): 54-57.
    46. GummowRJ, KockAD, ThackerayMM. Improved capacity retention in rechargeable 4V Lithium /Lithium manganese oxides (spinel) cell[J].Solid State Ionic, 1994, 69(l): 59 -60.
    47. YongYao Xia, Yunhong Zhou, Masaki Yoshio. Capacity fading on cycling of 4VC/LiMn2O4 cells[J]. Electrochem Soc, 1997, 144(8): 2593-2600.
    48. JangDH, Oh SM.. Electrolyte effects on spinel dissolution and carhodic capacity losses in 4 V Li/ LixMn2O4 rechargeble cells[J]. J. Electrochem Soc, 1997, 144(10): 3342-3348.
    49. Jang D H, OhSM. Effects of carbon additives on spinel dissolution and carhodic capacity losses in 4V Li/LixMn2O4 rechargeble cells[J]. Electrochem Acta, 1998, 43(9): 1023-1029.
    50. PistoiaG, AntoniniA, Rosati R, et al. Storage characteristics of cathodes for Li-ion batteries[J]. Electrochem Acta, 1996, 41(17): 2683-2689.
    51. KimJ, ManthiramA. Nanocomposite manganese oxides for rechargeable lithium batteries. [J].Electrochem Solid-State Lett, 1999, 1(5): 207.
    52. Bylr A, Sigala C, Amatucci G,et al. Self-discharge of C/LiMn2O4 Li-ion batteries in their discharged state[J].J.Electrochem Soc, 1998, 145(1): 194--209.
    53. YongYao Xia, Tetsuo Sakai, Takuya Fujieda, et al. Correlating capacity fading and structural changes in Li1+yMn2-yO4-δspinel cathode materials: A systematic study on the effects ofLi/Mn ratio and oxygen deficiency[J]. J.Electrochem.Soc, 2001, 148(7): 723-729.
    54.胡晓宏,扬汉西,艾新平. LiMn2O4正极材料在高温下性能衰减现象的研究[J].电化学,1999, 5(3): 224-274.
    55.戴忠旭,詹晖,周运鸿,等.尖晶石锂锰氧化物中氧缺陷对材料电化学性能的影响[J].武汉大学学报(理学版),2003, 49 (3): 345-349.
    56.王要武,蔡砚,何向明,等.尖晶石LiMn2O4作为锂离子正极材料的研究与开发[J].无机材料学报, 2004, 19(1): 1-8.
    57.陈彦彬,刘庆国.高温下LiMn2O4的容量衰减及对策[J].电池,2001, 31(4): 198-200.
    58.康慨,戴受惠.固相配位化学反应法合成LiMn2O4的研究[J].功能材料,2000, 31(3): 283-286.
    59. Toshimi Takada, Hiroshi Hayakawa, Hirotoshi Enoki et al. Structure and electrochemical characterization of Li1+xMn2-xO4 for rechargeable lithium batteries[J]. J.Power Sources, 1999, (81-82): 505-504.
    60.李琪,乔庆东. Li1+xMn2O4的溶胶凝胶法合成及其电化学性能[J].应用化学,2003, 20(12 ): 1171-1175.
    61.郑子山,唐子龙,张中太,等.锂离子电池正极材料Lil+xMn2O4的合成及性能研究[J].无机材料学报,2001, 16(6): 1182-1188
    62.黄吉儿,周盈科,申承民,等.溶胶-凝胶制备纳米级锂离子电池正极材料LiMn2-xCrxO4[J].兰州大学学报(自然科学版), 2002, 38(5): 38-43.
    63. Youngjoon Shin and Arumugam Manthiram. Factors influencing the capacity fade of spinel lithium manganese oxides[J]. J. Electrochem.Soc, 2004, l51(2): A 204-A208.
    64. G.X.wang, D.H.Bradhurst, et al. Improvment of electrochemical properties of the spinel LiMn2O4 using a Cr dopant effect[J]. Solid State Ionics, 1999, 120: 95-101.
    65. I.J.Davidson, R.S.McMillan, etal. Electrochemisty and structure of Li2-xCryMn2-yO4 phases[J]. J.Power Sources, 1999, (81-82): 406-411.
    66.傅强,陈彬,黄小文,等.锂离子电池正极材料Li2-xCryMn2-yO4电化学性能的研究[J]高等学校化学学报,2004, 25(1): 128-130
    67. Chuan Wu,Feng Wu,et al. X-ray diffraction and X-ray photoelectron spectroscopy analysis of Cr-doped spinel LiMn2O4 for lithium-ion batteries[J]. Solid State Ionics, 2002, (152-153): 335-339.
    68.毕渭滨,高海春,孙长敏,等. LiMn2-xMxO4(M=Cr, Al)尖晶石相阴极材料研究[J].盐湖研究,2001, 9(3): 38-42.
    69.郑子山,唐子龙,张中太,等.掺铬锂电池正极材料Li1+xCryMn2-y-xO4的合成及其结构性能的研究[J].硅酸盐学报,2001, 29(6): 554-558.
    70.雷铁刚,李朝晖,苏光耀,等.锂离子电池阴极材料LiCo2-xMn2O4的研究[J].化学世界,2003(10): 514-516.
    71. ZhiXing Wang, Hiromasa Ikuta,Yoshlharu Uchimoto. Preparation and electrochemical properties of stoichiometric and nonstoichimetric LiCoxMn2-xO4[J]. J.Electrochem Soc, 2003, 150(9): A1250-Al254.
    72. Kyung Yoon Chung, Won-Sub Yoon, Kwang-Bum Kim, et al. Suppression of structural fatigue by doping in spinel electrode probed by in situ bending beam method[J]. J.Electrochem Soc, 2004, 151(3): A484-A492.
    73. A.D. Robertson, S.H. Lu, W.F.Howard. M3+ modified LiMn2O4 spinel intercalation cathodes, Al metal effects on morphology and electrochemical performance[J]. J.Electrochem Soc, 1997, 144(10): 3500-3505.
    74. A.dekock, E.Ferg, R.J.Gummow. The effect of multivalent cation dopanstion lithium Manganese spinel cathodes[J]. J.Power Sources, 1998, 70: 247-252.
    75. Jyh-Fu Lee, Yin-Wen Tsai, Raman Santhanam, et al. Local structure transformation of nano-sized LiMn2O4 sintered at different temperature[J]. J.Power Sources, 2003, (119-121): 721-726.
    76.宫杰,杨景海,T.JM,等. Al掺杂对尖晶石型Li[Mn(Al)2O4结构的影响[J].高等学校化学学报,2002, 23(12): 2322-2324.
    77.杨书廷,贾俊华,郑立庆,等.稀土掺杂对锂离子电池正极材料LiMn2O4结构及电化学性能的影响[J].中国稀土学报,2003, 21(4): 413-416.
    78.万传云,努丽燕娜,江志裕.掺稀土的LiM0.02Mn1.98O4锂离子电池正极材料[J].高等学校化学学报,2002, 23 (1): 126-128.
    79. Yun-Sung Lee, Naoki Kumada, Masaki Yoshio. Synthesis and characterization of lithium aluminum-doped spinel (LiAlMn2-xO4) for lithium secondary battery[J]. J.Power Sources, 2001, 96: 376-384.
    80. KingoAriyoshi,Yasunobu lwakoshi, Noriaki Nakayama. Topotactic two-phase reaction of Li[Nil/2Mn3/2]O4 in nonaqueous lithium cells[J]. J.Electrochem Soc, 2004, 151(2): A296-A303.
    81.夏君磊,赵世玺,刘韩星,等. F掺杂影响LiMn2O4性能的机理研究[J].功能材料,2004, 35(1): 74-76.
    82.佟健,胡国荣.掺钴复合材料LiMn2-xCoxO4的制备与性能[J].电源技术. 2003, 27 (1): 20-23.
    83. P.Strobel, M.Anne, Y Chabre, et al. Characteristics of the 4 V plateau in LiMn2O4-xFx studied by bin situ synchrotron X-ray diffraction[J]. J.Power sources, 1999, 81-82: 458-462.
    84.唐致远,冯季军,徐国祥.尖晶石LiMn2O4的多元掺杂改性研究[J].化学学报,2003, 61 (8): 1316-1318.
    85.刘兴泉,钟辉,唐毅,等.锂离子蓄电池正极材料LiMn2-x-yTlxAlyMzO4 (M=Co, Cr, Ni的合成及电化学性能研究[J].无机化学学报,2003, 19(5): 467-472.
    86. Yoshio Masaki, Xia Yongyao, Kumada Naoki, et al. Storage and cycling performance of Cr-modified spinel at elevated temperatures[J]. J.Power sources, 2001, 101: 79-85.
    87.陈召勇,刘兴泉,贺益,等.高容量的Li1.1Mn2O3.95F0.05锂离子二次电池正极材料[J].化学学报. 2001, 59 (9): 1380-1383.
    88.李文,苏光姗.李朝晖,等. LiCoxNi0.5-xMn1.5O3.95F0.055 V锂离子电池正极材料[J].电池,2004, 34(1): 35-37.
    89.夏君磊,赵世玺,刘韩星,等. S-Co复合掺杂LiMn2O4的合成与性能[J].无机材料学报,2003, 18 (4): 942-946.
    90.陈敬波,胡国荣,禹筱元,等.锂离子蓄电池正极材料LiMn2O4-包覆LiCoO2对LiMn2O4循环性能的影响[J].电源技术,2003, 27(3): 284-286.
    91. ChoJ, KimG B , LimH S , et al. Improvement of structural ability of LiMn2O4 cathodematerial on 55 cycling by Sol-Gel coating of LiCoO2[J]. Electroehem Solid-State Lett, 1999, 2(12).
    92.张国军,姜长印,万春荣,等.控制结晶法合成表面富含钴的尖晶石LiMn2-xCoO4[J].电源技术, 2003, 27(1): 17-19.
    93. Y-K.Sun, K-J.Hong and Jai Prakash. The effect of ZnO coating on electrochemical cycling behavior of spinel LiMn2O4 cathode materials at elevated temperature[J]. J.Electrochem Soc, 2003, 150(7): A 970-A972.
    94. Y-K Sun, Y-S. Lee, M. Yoshio, et al. Synthesis and electrochemical properties of ZnO- Coated LiNi0.5Mnl.5O4 spinel as 5 V cathode material for lithium secondary batteries[J]. Electrochem Solid-State Lett, 2002, 5(5): A99-A102.
    95. HunterJ. Preparation of a new crystal form of manganese dioxide:λ-MnO2[J]. J.Solid State Chem, 1981, 39: 142-147.
    96.赵铭妹,翟玉春,田彦文.固相分段法制备锂离子电池正极材料的实验[J].过程工程学报,2001, 1(4): 402-407.
    97. Siapkasdi,Mitsascl,Samarsi,et al. Synthesis and characterization of LiMn2O4 for use in Li-ion batteries. [J]. J.Power Sources, 1998, 72(1): 22-26.
    98. Guyomard D,TarasconJM. The carbon/Li1+xMn2O4 system[J]. Solid State Ionics, 1994,69: 222-237.
    99. Tarascon JM,WangE,ShokoohiFK, et al.. The spinel phase of LiMn2O4 as a cathode in secondary lithium cells[J]. J.Electrochem Soc, 1991, 138: 2859.
    100. Tarascon JM, Mckinnon WR, CoowarF, et al. Synthesis conditions and oxygen stiometry effects on li insertion into the spinel LiMn2O4[J]. J.Electrochem Soc, 1994, 141: 1421.
    101. YamadaA, Kmiura, HinokumaK. Synthesis and structural aspects of LiMn2O4 as a cathode for rechargeable lithium batteries[J]. J.Electrochem Soc, 1995, 142: 2419.
    102. LiG, BkutaH,UchidaT,et al. The spinel phase LiMn2-yMyO4(M=Co,Ni,Cr)as the cathode for rechargeable lithium batteries[J]. J.Electrochem Soc, 1996, 143: 178.
    103.刘韩星,周振平,赵世玺. LiMn2O4体系电极材料的微波合成[J].物理化学学报, 2001, 17(8): 702-707.
    104.杨书廷,张焰峰,吕庆章,等.微波高分子网络法制备可充电锂离子电池正极材料LiMn2O4 (M=La, Nd, Y)[J].功能材料, 2001, 32(4): 399-401.
    105.卢集政,赖琼钰.锂嵌脱化合物LiMn2O4的微波烧结研究[J].化学研究与应用,1998, 10(6): 620-623.
    106. YoshioM, InoueS, HyakutakeM,et al. New lithium-manganese composite oxide for thecathode of rechargeable lithium batteries[J]. J.Power Sources, 1991, 34: 147-153.
    107. YoshioM,NoguchiH,MiyashitaT,et al. Three V or 4 V Li-Mn composite as cathode in Li batteries prepared by LiNO3 method as Li source.[J]. J.Power Sources,1995, 54: 483-489.
    108. XiaY.Y,HidefumiT,Hideyake, et al. Studies on an Li-Mn-O spinel system (obtained by melt-impregnation) as a cathode for 4 V lithium batteries part1. Synthesis and electrochemical behaviour of LixMn2O4[J] . J.Power Sources, 1995, 56: 61-67.
    109.康慨,戴受惠,万玉平.固相配位化学反应法合成LiMn2O4的研究[J].功能材料, 2000,3l(3): 283 -286.
    110.陈立宝,贺跃辉,汤义武.采用固相配位反应法制备超细LiMn2O4正极材料[J].中南大学学报(自然科学版), 2005, 36(3): 390-395.
    111. LiuW,FaringtonGC,ChaputF,et al. Synthesis and electrochemical studies of spinel phase LiMn2O4 cathode materials prepared by the Pechini process [J]. J.Electrochem Soc, 1996, 143: 879-884.
    112.刘培松,刘兴泉,陈召勇,等.柠檬酸络合法合成锂离子电池正极材料Li1+xMn2O4 [J].应用化学, 2000, 17(1): 60-62.
    113.杨文胜,刘庆国,仇卫华,等. [J].电源技术,1993,23(3): 49-52.
    114. Sun YK,KimDW,ChioYM. Synthesis and characterization of spinel LiMn2?xNixO4 for lithium/polymer battery applications[J]. J.Power Sources, 1999, 79(2): 231-237.
    115. SunYK. Ohhi, KimKY,Synthesis of spinel LiMn2O4 by the sol-gel method for a cathode active material in lithium secondary batteries et al. [J]. J.Ind Eng Chem Res, 1997, 36: 4839-4846.
    116. RThirunakaran,Ki-TaeKim,Yong-MookKang,et al. Adipic acid assisted sol-gel route for synthesis of LiCrxMn2-xO4 cathode material[J]. J.Power Sources, 2004, 137: l00-104.
    117. HwangKT,Umws,LeeHS,et al. Powder synthesis and electrochemical properties of LiMn2O4 prepared by an emulsion-drying method[J]. J.Power Sources, 1998, 74(2): 169-174.
    118. Myungst,KomabaS,KumaqaiN. Nano-crystalline LiNi0.5Mn1.5O4 synthesized by emulsion drying method[J].Electrochem Acta,2002,47(15):2543-2549 .
    119.李嵩,程杰锋,季世军,等.溶胶-凝胶法合成尖晶石型Lil+xMn2-xO4的工艺优化[J].中国有色金属学报, 2002, 12 (4 ): 729-732.
    120.赵胜利,文九巴,李洛利,等.溶胶-凝胶法制备LiMn2O4薄膜及影响因素[J].无机盐工业, 2005, 37(7): 7-10.
    121. ParkYJ, KimJG, KimMK, et al. Preparation of LiMn2O4 thin films by a sol-gel method [J].Solid State Ionics, 2000, 130(3-4): 203.
    122. DaeHoon Park,SeungTaeLim,Seong.-JuHwang,et al. Influence of nickel content on the chemical bonding character of LiMn2-xNixO4 spinel oxides[J]. J.Power Sources , 2006, 159(2): 1346-1352.
    123. XiaY ,YoshioM. [J]. J.Electrochem Soc, 1996, 143: 825-833.
    124. Tsai Y W ,Santhanam R,Hwang B J,et a1. Structure stabilization of LiMn2O4 cathode material by bimetal dopan[J]. J.Power Sources, 2003, (119-121): 701-705.
    125.林志鹏,李荣华,沈春枝,等. LiCoxNixMn2-2xO4-xFx(x=0.05、0.10)的合成与性能研究[J].功能材料, 2005, 36(8): 1220-1222.
    126. Park D H, Lim S T,Hwang S J, et al. Influence of nickel content on the chemical bonding character of LiMn2-xNixO4 spinel oxides[J].J.Power Sources, 2006, 159(2): 1346-1352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700