半导体温差发电装置的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体温差发电器是一种通过半导体热电器件把热能转换为电能的电源装置。这种电源装置具有体积小、能量密度大、寿命长、无机械运动部件、高度可靠等优点,它能够胜任一些普通电源无法胜任的工作。根据半导体温差发电器的组成结构,本文分别对内部热源、半导体热电器件、发电器整体结构进行了研究、设计和试制。
     内部热源分为同位素热源和模拟电热源。钚(Pu)-238同位素是一种较为理想的可作为热源使用的同位素。论文以放射性同位素热源为目标,完成了热功率为1瓦量级的Pu-238同位素热源的设计计算。同时应用电热套件进行了模拟试验。
     半导体热电器件的工作原理基于半导体热电材料的赛贝克(Seebeck)效应,采用高热电优值的两种半导体热电材料可以将热能直接转换成为电能。它是半导体温差发电器的核心部件,是温差发电器设计和应用的基础,为此,本文首先应用相关理论计算分析了半导体热电器件的发电性能;然后对半导体热电器件进行了测试,研究了半导体热电器件的开路电压、伏安特性、输出功率、热电转换效率等一系列热电特性,并总结出热电器件的发电性能规律。
     绝热保温层和散热部件是为半导体热电器件提供工作温差的重要温场部件,它们是半导体热电器件正常高效工作的基础。由此,本文分别对绝热保温层和散热部件进行了理论研究和实验测试,试制出了一套适用于半导体温差发电器的温场部件。
     在完成半导体温差发电器各个部件的研究工作之后,本文根据国内外研究经验,设计并试制出了一套实验室温差发电器原理样机及一台放射性同位素温差发电器。并对它们进行了组装和性能测试,测试结果表明,实验室原理样机可以提供最高773mV的输出电压,放射性同位素温差发电器可以提供88mV的输出电压,很好的达到了设计目标。通过理论计算,分析出了大功率温差发电器的研究方面,及影响发电功率的主要因素,推导出了发电功率的表达式。温差发电装置的输出功率与器件的截面积、热电耦对数、工作温差等成正比,随热电器件的厚度成反比。
The semiconductor thermoelectric generator is a power unit, which can converts heat into electricity by the semiconductor thermoelectric device. Due to its small size, light weight, high reliability, high energy density and long life, the semiconductor thermoelectric generator it can be competent some special works which some ordinary power sources are unable to be. According to the semiconductor thermoelectric generator's structure, the internal heat unit, the semiconductor thermoelectric device and other assembled with a heat radiation out shell has researched and the trial manufactured separately in this dissertation.
     The interior heat unit divides into the Radioisotope Heat Unit (RHU) and the electric-heat unit. Plutonium-238 (Pu-238) is widely used as heat sources because of its lowγradiation, reasonable energy density and long half-life time. In this paper, radiation characteristics of Pu-238 are discussed. Then in order to design an 1 Watt Pu-238 heat unit. Simultaneously electric-heat unit has carried on the simulation test.
     The semiconductor thermoelectric device converts heat directly to the electric power without moving parts based on the Seebeck effect. It is the core part of the semiconductor thermoelectric generator, and lays the foundation for the generator’s design and manufacture. In this dissertation, the semiconductor thermoelectricity device has been analyzed by some theories, and then series of tests including open voltage, I-V curve, internal resistance, output power, coefficient of the semiconductor thermoelectric device are carried out. Conclusions about the performance of the semiconductor thermoelectric device are presented after the test and analysis.
     The heat insulation unit and the heat radiator are the important units which would provide the difference in temperature for the semiconductor thermoelectric device. It lays the foundation for improving the thermoelectric effective. In this dissertation, series of performance tests have been carried on after theoretic analysis separately.
     Based on the research work above, we come to the design and trial-manufacture of the semiconductor thermoelectric generator. Finally, a simulative thermoelectric generator and RTG have been designed and trial manufactured. After the assembling work, a series of tests is taken on the simulative thermoelectric generator. Test results show that, the output voltage of trial-generator can reach 773mV at most, resulting in a 88mV output voltage. Test result satisfies the aim of the design.
引文
[1]邓湘金,张熇,褚桂柏.国外深空探测发展历程及对我国的启示.中国宇航学会深空探测技术专业委员会第一届学术会议, 2005. 179~183
    [2]焦正宽,汪壮兵.热电材料新进展.功能材料,2002,33(2):115~119
    [3] Yang J, Aizawa T, Yamamoto A, Thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1?x prepared via bulk mechanical alloying and hot pressing .J. Alloys Comp.,2000(309):225~228
    [4]马秋花,孙亚光, Bi-Te基热电材料的研究进展[J]. 2007,26(6):7~11
    [5]张同俊,彭江英,杨君友等.热电功能材料及其在发电和制冷方面的应用前景.材料导报, 2000, 16(5): 11~13
    [6]姜洪义,王华文,任卫,SiGe热电材料的发展与展望[J].材料导报. 2007,21(7):119~123
    [7]徐亚东,徐桂英,葛昌纯, SiGe系热电材料的研究动态[J].材料导报. 2007,21(5):102~106
    [8] D D L Wijingaards, S H Kong, M Bartek, et al. Design and Fabrication of On-Chip Integrated PolySiGe and PolySi Peltier Devices. Sensors and Actuators, 2000(85): 316~323
    [9] Wilhelm Moser, Günther Friedl, Walter Haslinger Hermann Hofbauer. Small-Scale Pellet Boiler with Thermoelectric Generator. Proceedings of the 25th international conference on thermoelectrics[J]. Vienna, Austria, 2006, 54~56
    [10]蔡善钰何舜尧空间放射性同位素电池发展回顾和新世纪应用前景核科学与工程2004,24(2):97~104
    [11] Toshinori Ota, Kouichi Fujita, Susumu Tokura, Kazuo Uematsu, Development of Thermoelectric Power Generation System for Industrial Furnaces. Proceedings of the 25th international conference on thermoelectrics[J]. Vienna, Austria, 2006, 110~116
    [12] D. T. Crane and L. E. Bell , Progress Towards Maximizing the Performance of a Thermoelectric Power Generator. Proceedings of the 25th international conference on thermoelectrics[J]. Vienna, Austria, 2006, 220~227
    [13] Ryosuke O. Suzuki, Daisuke Tanaka , Mathematic Simulation on Power Generation by Roll Cake Type of Thermoelectric Cylinders. Proceedings of the 25th international conference on thermoelectrics[J]. Vienna, Austria, 2006, 188~191
    [14] Yasuhiro Iwasaki, Masatoshi Takeda, Development of flexible thermoelectric device: Improvement of device performance. Proceedings of the 25th international conference on thermoelectrics[J]. Vienna, Austria, 2006, 310~315
    [15]高艳军浅析保温隔热材料科技情报开发与经济2005, 15(8):151~152
    [16] Rinehart G.H. Design characteristics and fabrication of radioisotope heat sources for space missions[J]. Progress in Nuclear Energy, 2001(39):305~319
    [17] Ghumaty S. , Bass J.C. , Elsner N.B. Quantun well the thermoelectric devices and application. Proceedings of the 22th international conference on thermoelectrics[J]. La Grande Motte. France, 2003 .563~566
    [18]蔡善钰人造元素[M].上海:上海科学普及出版社2006:305~311
    [19] NASA. Spacecraft power for Cassini. NASA Jet Propulsion Laboratory. Pasadena. California. From the internet: http://www.jpl.nasa.gov/cassini 2006.
    [20] Deutsch, Leslie J, Salvo, et al. NASA's X2000 Program - An Institutional Approach to Enabling Smaller Spacecraft. Acta Astronautica, 2000, 46(2-6): 229~232
    [21]高敏,张景韶,Rowe DM.温差电转换及其应用[ M] .北京:兵器工业出版社, 1996 : 250~296.
    [22]黛荠祖. Po210放射性同位素电池.核技术, 1980(5): 8~13
    [23] Uemura K.I. History of thermoelectricity development in Japan[J]. Journal of Thermoelectricity, 2002(3):7~10
    [24] Ikoma K.,Munekiyo M.,Furuya K. Thermoelectric module and generator for gasoline engine vehicles, Proceedings of ICT, 1998, 464~467
    [25] Masahide M.,Michio M.,Masaru O. Thermoelectric generator utilizing automobile engine exhaust gas[J]. Thermal Science and Engineering, 2001(9):17~18
    [26] Uemura K.I. History of thermoelectricity development in Japan[J]. Journal of Thermoelectricity, 2002(3):12~16
    [27] Kish M.,Nemoto H.,Hanao T.,et al. Micro-thermoelectric modules and their application to wristwatches as an energy sources. Proceedings of the 18th international conference on thermoelectrics[J]. Baltimore, USA, 1999, 301~307
    [28]卢希庭.原子核物理.北京:原子能出版社, 2000. 22~25
    [29] R D Baybayz. At Energy Rev., 1970(8):327~328
    [30] Rowe D M, Gao M. Evaluation of thermoelectric modules for power generation, Journal of Power Sources, 1998, 73(2): 193~198
    [31] A.H. Boerdijk, Contribution to a general theory of thermocouples, J. Appl. Phys. 1959 (30) :1080~1083.
    [32]郑文波,放射性同位素温差发电器研究,硕士学位论文,清华大学,2006。
    [33] B. Sherman, R.R. Heikes, R.W. Ure Jr., Calculation of effciency of thermoelectric device, J. Appl. Phys. 1960 (31) 1~16.
    [34] Nuwayhid R Y,Moukalled F. Evolution of power and entropy in a temperature gap system with electric and thermoelectric influences. Energy ConversionManagement, 2003(44): 647~665
    [35] Lingen Chen, Effect of heat transfer on the performance of thermoelectric generators .Int. J. Therm. Sci. 2002 (41) :95~99
    [36]陈金灿,严子俊.半导体温差发电器性能的优化分析.半导体学报,1994, 15 (2) : 123~129
    [37] Yu. G Gurevich , I. M. Lashkevych , G.N.Logvinov MinimalTemperature of Thermoelectric Cooling-Adiabatic Approximation. Proceedings of the 25th international conference on thermoelectrics[J]. Vienna, Austria, 2006, 260~263
    [38] D. T. Crane and L. E. Bell Progress Towards Maximizing the Performance of a Thermoelectric Power Generator. Proceedings of the 25th international conference on thermoelectrics[J]. Vienna, Austria, 2006, 11~16
    [39] El-Genk, Mohamed S, Saber, et al. Tests results and performance comparisons of coated and un-coated skutterudite based segmented unicouples. Energy Conversion and Management, 2006, 47(2): 174~200
    [40] Shanghai Jin Wei Thermoelectricity Co. Ltd., Catalogue for thermoelectric cooling module Shanghai, China, 1996.
    [41]俞佐平,传热学,北京:教育出版社,1999.6
    [42]郑其俊,绝热材料的发展与应用[J].保温材料与建筑节能.2002(6):44~47
    [43]洪晓,太空反射绝热涂料的研制[J] .上海建材. 2004(4):14~15
    [44]李冬庆,张红,唐夕山,热管式CPU散热器试验及数值研究[J].石油化工设备2006, 35(3): 11~13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700