潜射导弹水下发射及出水过程三维数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
潜射导弹的发射技术越来越受到各军事强国的关注,特别是由于潜艇在我国国防军事中的地位而使潜射导弹的发展更受重视。出水过程是潜射导弹能否成功发射的关键,各国均有因出水过程的干扰而导致发射失败的先例。出水阶段涉及两相交界,弹体会受海流、波浪和风速的综合影响,而气、水对导弹的作用特性差异很大,导弹受力会发生突变,其力学环境非常复杂。
     本文基于Fluent软件提供的物理数学模型,对潜射导弹的水下运动及出水过程进行了数值仿真。运用动网格技术实现导弹运动后计算域变形网格重构的计算,运用VOF(Volume of Fluid)模型模拟气、水交界面在导弹出水过程中的变形情况。基于三维的六自由度的模拟实现了流体力学和导弹刚体力学的耦合计算。本文对非结构化动网格划分进行了改进,采用了非结构化动网格和结构化静网格的综合求解,在精度相同的前提下,明显缩短了计算周期。探讨了三维计算和二维计算的区别,揭示了三维计算的优越性和合理性。在三维计算的基础上,对无动力潜射导弹水下运动和出水过程进行了系列仿真,探讨水深、潜艇速度、弹射速度对导弹水下和出水过程中运动学特性和动力学特性的影响。同时,对波浪的三维数值模拟进行了研究,得到了与理论相符的仿真结果。在以上计算的基础上,研究了波浪载荷对潜射导弹出水过程中姿态的影响。
     结果表明潜射导弹在不同水深相同的其它发射条件下其运动学参数和动力学参数的变化呈一定的模式化,变化规律基本相同,水深对导弹的影响主要体现在弹体应力方面;潜艇速度会明显改变导弹水下及出水后的姿态角,且其影响会随着水深的加大而放大。潜艇速度使弹道发生弯曲,弹体周围的漩涡结构明显不对称;弹射速度使导弹头部的高压和肩部的低压更加明显,肩部是易产生空泡的区域;同时,不管有无弹射速度,导弹水下运动阶段其轴向速度都会趋于一个平衡值;波浪对导弹的影响受波向、波高、出水速度、出水相位、出水姿态等因素的影响,有一定的随机性,本文研究的出水相位在波谷段,导弹出水后发生了明显与波向相反的偏移。最后本文对弹射方案与实验进行了对比,结果与实验相符,表明这种计算方法具有较高精度,可对水弹道和出水弹道预测提供指导意义。
During the last decades, increasing attention has been paid on the launch technology of submarine-based missile in great-military-power countries, particularly for the important part of national defense and military affairs, remarkable emphases have been laid on it in Chinese as well. As the crux of this technology, water-exit course which involves in two-phase boundary used to result in precedent failure in certain countries. In this course, missile body is comprehensively impacted by such factors as ocean current, wave, wind and so forth. Moreover, the effects differ with each other significantly between gas and water. Consequently, the stressed condition varies to more complicated.
     The submarine movement and water-exit course are simulated with the model implemented in Fluent. The dynamic mesh is used to compute the change of the corresponding flow field boundary after the missile moving. VOF model is adapted to simulate the distortion of the free surface during the missile exit water. The simulation coupled the hydrodynamics and rigid body dynamics based on the 3D compute in 6 degree. The paper improves the mesh strategy by the combination of dynamic unstructured mesh and static structured mesh, shortens the periods. The study of the distinguish of the 2D and 3D revealed the 3D simulation is rational. Base on the 3D simulation, series of submarine-based powerless missile underwater launching processes are simulated to investigate the effects of the water depth, submarine speed, and launching speed on the movement and kinematic property. At the same time, the 3D wave is simulated, the result is in accord with theory. Based on the above study, the effect of the wave loads on the water-exit pose angles is investigated.
     The simulating results show that the kinematics and dynamic parameters change in the same model when the other launching conditions are the same in different water depth of the submarine, the water depth affect the stress of the missile body. The submarine speed will impact the water-exit pose angles, and the deeper of the depth, the worse of the water-exit pose angles. Moreover, the submarine speed curves the trajectory, and the evolution of the vorticity structure around the missile is unsymmetrical. Launching speed features the high pressure region on the top and the low pressure region on the shoulder of the missile, the shoulder of the missile is the location where the cavitation origins. Meanwhile, the axis velocity will tend towards balance velocity, whether consider the launching speed or not. The effect of the wave is random, and in this paper, the missile exit water from the trough of the wave, the missile has a excursion opposite the direction of the wave transmit. At last, the paper compared simulational results with practical experiments, the two results are consistency. As a result, the study by the method of the computational fluid dynamics and the technology of dynamic mesh during the process of missile launching is very accurate and can be applied into underwater trajectory and exit-water trajectory prediction and can be regards as references and gist.
引文
1邢天安.潜艇水下发射反舰导弹的若干问题探讨.飞航导弹.1997, (3):2~3
    2刘宝镛.全尺寸模型弹水下发射试验的有关问题.导弹与航天运载技术.2000, (4):1~4
    3冯振兴.潜地导弹水下发射环境分析.导弹与航天运载技术.1996, (5):44
    4王刚,邓学蓥,王延奎,陈学锐.亚临界雷诺数细长体绕流流态随迎角的变化和分区.流体力学实验与测量.2003, (6):19~25
    5倪火才.潜载导弹水下发射技术的发展趋势分析.舰载武器.2001, (1):8~12
    6宗瑞良,陈连平,蒋小奎.火箭航行器水中运动数学模型.西北工业大学学报.2000, 18(2):254~257
    7仲维国,张嘉钟.潜射航行器的水下弹道模拟.弹道学报.2005, 17(1):8~12
    8李国辉,邓学蓥,马宇.定常对称背涡流态下细长体绕流结构的演变.北京航空航天大学学报.2005, 31(2):167~171
    9刘庆茂.复杂结构水下模态试验研究.导弹与航天运载技术.1997, (4):23~29
    10李体方,张志峰.海浪作用下的水下弹道数学模型.弹道学报.1999, 11(3):47~51
    11刘曜,马震宇.导弹水下垂直发射的弹道研究.战术导弹技术.2006, (2):21~25
    12刘曜,马震宇.潜载导弹垂直发射水弹道和分离弹道研究.船舶工程.2005, 27(3):6~9
    13刘曜,张永,胡德斌.潜射导弹运载器的水弹道控制及近水面航行的稳定性分析.弹箭与制导学报.2005, 25(4):190~191
    14胡影影,朱克勤,席葆树.半无限长柱体出水数值模拟.清华大学学报.2002, 42(2):235~238
    15张军,李英浩,金朋寿.垂直及斜出水流场的二维及三维TR-PIV试验.船舶力学.2005, 9(2):9~17
    16傅德彬,刘琦,陈建伟,姜毅.导弹发射过程数值模拟.弹道学报.2004, 16(3):11~15
    17殷崇一.潜射导弹发射与出水载荷研究.西北工业大学硕士论文.2004.2
    18袁绪龙,张宇文,殷崇一,刘乐华.无动力潜射导弹运载器出水弹道建模与实验验证.弹箭与制导学报.2003, 23(4):187~189
    19袁绪龙,张宇文.运载器垂直出水弹道姿态角奇异性问题研究.弹箭与制导学报.2005, 25(2):83~87
    20 Kam W. Ng. Overview and Future Research Directions of Undersea Weapon Design & Optimization.9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization.2002:12~14
    21 D.M.Halsmer, D. L. Mingofi. Nutational Stability and Passive Control of Spinning Rockets with Internal Mass Motion. Journal of Guidance, Control and Dynamics.1995, 18(5):2~4
    22 Y.Yam, D.L.Mingon. Stability of a Spinning Axisymmetric Rocket with Dissipative Intern al Mass Motion. Journal of Guidance, Control and Dynamics.1997, 20(2):6~9
    23 LI. Benxia, Yu. Xiping. A 2-D Numerical Irregular Wave Tank and Its Verification. Journal of hydrodynamics. 2005, 17(2):222~227
    24 Lan Yamei. Liu Hua. Xue Leiping. Chen Gang. An Experimental Study on Vertical Hydrodynamic Force on A Circular Slab Near Free Surface by Water Waves. Journal of hydrodynamics. 2006, 18(2):184~191
    25 Zong Zhi. Dong Guohai. A Second Order Volume of Fluid (VOF) Scheme For Numerical Simulation of 2-D Breaking Waves. Journal of Marine Science and Application. 2007, 6(2):1~5
    26 Qi Peng. Hou Yijun. Numerical Wave Flume Study on Wave Motion Around Submerged Plates. China Ocean Engineering. 2003, 17(3): 397~406
    27 Lian Lian. Gu Yunguan. Wave Influence on Underwater Lauch and Recovery System. China Ocean Engineering. 1997, 11(1): 61~68
    28 Ito. K. Katshi.H. Mochizukim, Isobe. M. Non-reflected Multidirectional Wave Maker Theory and Experiments of Verification. Proceedings of 25th Conference on Coastal Engineering. 1996: 443~456
    29 Troch P. and Rouck J. D. Development of Two-dimensional Numerical Wave Flume for Wave Interaction with Rubble Mound Breakwaters. Proceedings of 26th Conference on Coastal Engineering. 1998: 1638~1649
    30 Brorsen M. and Larsen J. Source Generation of Nonlinear Gravity Waves with Boundary Integral Eqution Method. Coastal Engineering. 1987, 11: 93~113
    31 Ohyama T. Development of ANumerical Wave Tank for Analysis of Nonlinear and Irregular Wave Field. Fluid Dynamics Research. 1991, 8: 231~251
    32 Iwata K. , Kawasaki K. and Kim D. Breaking Limit, Breaking and Post-breaking Wave Deformation Due to Submerged Structures. Proceedings of 25th Conference on Coastal Engineering.1996, 36:271~299
    33 Yu Yuxiu. Random Waves and Its Application for Engineering. Dalian University of Technology Press. 2000, 221~227
    34 Chan E. S. Melville W. K. Deep Water Plunging Wave Pressures on A VerticalPlane Wall. Proc R. Soc Lond. 1988, A417: 95~131
    35 Bradford S. F. Numerical Simulation of Surf Zone Dynamics. Journal of Waterway Port Coastal and Ocean Engineering-ASCE. 2000, 126(1): 1~13
    36 Gebara J. Kolan D. Pawsey S. et al. Assessment of Offshore Platforms under Subsidence-PartⅠ, Approach. ASME J. OMAE. 2000, 122: 260~266
    37 Jha a. K. , Kiciman O. K. ,Gebara J. et al. Assessment of Offshore Platforms Under Subsidence-PartⅡ, Analysis and Results. ASME J. OMAE. 2000, 122: 267~273
    38 Zhou Yiren, Chen Guoping, Wang Dengtin. Experimental study on Total Uplift Force of Waves on Horizontal Plates. Journal of Hydrodynamics, Ser. B. 2004, 16(2): 220~226
    39 Lin P. , Liu P. L. F. ANumerical Study of Breaking Waves in The Surf Zone. J. Fluid Mech. 1998, 359: 239~264
    40 Shih, T.H., Zhu, J. and Lumley, J. L. Calculation of Wall-bounded Complex Flows and Free Shear Flows. Intl. J. Numer. Meth. Fluids. 1996, 23: 1133~1144
    41何海伦,宋金宝,李爽.改进的二维数值波浪水槽在波浪破碎中的应用.地球物理学报. 2008, 51(3):727~734
    42徐言民,马国勤.大幅波浪中船舶非线性运动与波浪载荷仿真.系统仿真学报. 2008, 20(9):2458~2461
    43李绍武,卢明.数值波浪水槽在半圆堤波浪力计算中的应用.港工技术. 2007, 6:1~4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700