水稻(Oryza sativa L.)直立卷叶突变体比较蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻(Oryza sativa L.)是世界上重要的粮食作物,而叶片是水稻进行光合作用和呼吸作用的主要器官。直立卷叶的水稻由于其在种植时通风良好,光合作用充分,还可以减少病虫害的发生,但目前并没有直立叶片的水稻品种得到大面积种植。为了研究该突变体发生突变的分子机理,我们利用高通量的蛋白质组学技术平台分析了野生型水稻T65和直立卷叶突变体1317幼苗期叶,分蘖期叶枕、叶脉和叶片。对于双向电泳得到的差异蛋白点进行CapLC-ESI-Q-TOF MS/MS鉴定,得到了16个差异蛋白质点。其中,幼苗期水稻经分析比对无差异蛋白点,可能是由于该阶段卷叶表型尚未出现,还没有差异表达蛋白质。通过生物信息学分析及保守功能域的分析表明,16个差异点代表13个不同的蛋白质。这些差异蛋白质中有一些是参与糖和能量代谢过程,如葡糖磷酸变位酶和磷酸葡糖异构酶等;另外一些主要参与蛋白质的合成和加工、胁迫响应等过程,如HSP70、蛋白二硫键异构酶。在T65和1317中鉴定出的这些差异蛋白质点,为更好地理解植物中叶片直立的机制提供了新的分子基础。
Rice (Oryza sativa L.) is an important stable food crop in the world and its leaf is the main organ that carries out photosynthesis and respiration. Rice with erect leaf facilitates sufficient ventilation, efficient photosynthesis and to reduce the incidence of pests and diseases. Therefore, it is theoretical and practical guidance to research the molecular mechanism on the erect leaf mutant in rice. Using high-throughput proteomics technology, the different proteins between of the T65 and 1317 were analyzed from their seedling leaves, tiller leaves, leaf cushions and leaf vein, respectively. Using CapLC-ESI-Q-TOF MS/MS mass spectrometry, a total of 16 proteins were identified. These proteins were categorized into classes related to energy and proteins metabolism such as phosphoglucomutase and phosphoglucose isomerase; regulatory proteins such as HSP70, protein disulfide isomerase, which are mainly involved in protein synthesis and processing, stress response and other processes. Thees differentially expressed proteins between the T65 and 1317 provides new insights for further understanding the molecular mechanisms of erect leaf in plants.
引文
[1]Wasinger VC, Cordwell SJ, Poljak CA, et al.Progress with gene-product mapping of the mollicutes:Mycoplasma genitalium [J]. Elecotrophoresis,1995,16(1):1090~1094
    [2]Wilkins MR, Sanchez JC, Gooley AA, et al. Progress with proteome projects:Why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev, 1996,13(1):19~50
    [3]Graves PR, Timothy A J. Haystead [J]. Microbiol Mol Biol Rev,2002,66(1):39~63
    [4]Abbott A. Structures by numbers [J]. Nature,2000,408(6809):130~132
    [5]Jung E, Heller M, Sanchez JC, et al. Proteomics meets cell biology:the establishment of subcellular proteomes [J]. Electrophoresis,2000,21(6):3369~3377
    [6]张群业,陈竺.差异表达蛋白质组学中的常用技术[J].国外医学遗传学分册,2004,27(2):64-67
    [7]梁宇,荆玉祥,沈世华.植物蛋白质组学研究进展.植物生态学报[J],2004,28(1):114-125
    [8]Lesley S A. High-throughput proteomics:protein expression and purification in the postgenomic world. Protein Expression and Purification,2001,22(2):159~164
    [9]Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science,2001, 291(5507):1304~1351
    [10]Quadrroni M, James P. Proteomies and automation [J]. Electrophoresis,1999,20(4~5): 664~677
    [11]Blackstock WP, Weir MP. Proteomics:quantitative and physical mapping of cellular proteins. Trends Biotechnol,1999,17(3):121~127
    [12]Rabilloud T. Solubilization of proteins for electrophoretic analyses. Electrophoresis,1996,17(5): 813~829
    [13]Damerval C, Zivy M, Granier F, et al. Two-dimensional electrophoresis in plant biology. Advances in Electrophoresis.1988,2:263~340
    [14]Danise JI, Robrt H, Robert V. Proteomics in plant biotechnology and secondary metabolism research. Phytochemical Analysis,2000,11(5):277~287
    [15]Granier F. Extraction of plant proteins for two-dimensional electrophoresis. Electrophoresis, 1988,9(11):712~718.
    [16]Cellar NA, Kuppannan K, Langhorst ML, Ni W, Xu P, Young SA. Cross species applicability of abundant protein depletion columns for ribulose-1,5-bisphosphate carboxylase/oxygenase. J Chromatogr B Analyt Technol Biomed Life Sci,2008,861,29~39.
    [17]Kim ST, Cho KS, Jang YS, et al. Two-dimensional electrophoretic analysis of rice proteins by polyethylene glycol fractionation for protein arrays. Electrophoresis,2001,22(10):2103~2109
    [18]O'Farrell PH. High resolution two-dimensional electrophoresis of proteins [J]. J Biol Chem, 1975,250:4007~4021
    [19]夏书华,王明荣,蔡有余.蛋白质组学中的双向电泳技术[J].国外医学遗传学分册,2001,24(6):331-336
    [20]杨何义,应万涛,钱小红.蛋白质组技术的研究进展[J].自然科学进展,2002,12(1):13-17
    [21]于靖,王方.蛋白质组学研究技术及其联合应用.J Med Mol Biol,2007,4 (4):371~374
    [22]Cristea IM, Gaskell SJ, Whetton AD. Proteomics techniques and their application to hematology [J].Blood,2004,103(10):3624~3634
    [23]Steen H, Mann M. The ABC's(and XYZ's) of peptide sequencing[J]. Nat Rev Mol Cell Biol, 2004,5:699~711
    [24]Zhu H. Protein arrays and microarrays [J]. Current Opinion in Chemical Biology,2001,5(1): 40~45
    [25]李明,周宗灿.蛋白质芯片[J].生命的化学,2001,21(2):156-157
    [26]Graves PR, Timothy A J Haystead. Molecular biologist's guide to proteomic [J]. Microbiology and Molecular Biology Reviews,2002,66(1):39~63
    [27]Scobioala S, Klocke R, Mihcel G. Proteomics:state of the art and its application in cardiovascular research [J]. Curr Med Chem,2004,11(24):3203~3218
    [28]Yu J, Hu S, Wang J, Wong GK, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science,2002,296:79~92
    [29]Goff SA, Ricke D, Lan TH, Presting G, et al. A draft sequence of rice genome (Oryza sativa L. ssp. japonica). Science,2002,296:92~100
    [30]Komatsu S, Yang G, Unno K, et al. Characterization of a membrane-associated phosphoprotein in rice (Oryza sativa L.) seedling treated by gibberellin. J Plant Physiol,2002,159(2):121~128
    [31]Tsugita A, Kawakami T, Uchiyama Y, et al. Electrophoresis,1994,15:708~720
    [32]Koller A, Washburn M P, Lange MB, et al. Proteomic survey of metabolic pathways in rice. Proc Natl Acad Sci USA,2002,99(18):11969~11974
    [33]Zhong B, Karibe H, Komatsu S, et al. Screening of rice genes from a cDNA catalog based on the sequence data-file of proteins seperated by two-dimensional electrophoresis. Breed Sci,1997, 47(3):245~251
    [34]Shen S, Matsubae M, Takao T, et al. A proteomic analysis of leaf sheaths from rice. J Biochem, 2002,132:613-620
    [35]Dai S, Li L, Chen T, et al. Proteomic analyses of Oryza sativa mature pollen reveal novel proteins associated potentially with pollen germination and tube growth. Proteomics,2006,6(8): 2504~2529
    [36]Komatsu S, Muhammad A, Rakwal R. Separation and characterization of proteins from green and etiolated of rice (Oryza sativa L.):towards a rice proteome[J]. Electrophoresis,1999,20: 630~636
    [37]王玉忠,邵继荣,刘永胜,等.温敏失绿突变体水稻1103S在失绿过程中全叶蛋白的变化[J].植物学报,1999,41(5):519-523.
    [38]谢锦云,李小兰,陈平,等.温敏核不育水稻花药蛋白质组初步分析[J].中国生物化学与分子生物学报,2003,19(2):215-221
    [39]Komatsu S, Yang S, Hayashi N, et al. Alterations by a defect in a rice G protein alpha subunit in probenazole and pathogen-induced responses. Plant Cell Env,2004,27(7):947~957
    [40]Tanaka N, Matsuoka M, Kitano H, et al. Gidl, a gibberellin-insensitive dwarf mutant, shows altered regulation of probenazole-inducible protein (PBZI) in response to cold stress and pathogen attack. Plant Cell Environ,2006,29(4):619~631
    [41]Takahashi A, Kawasaki T, Wong H L, et al. Hyperphosphorylation of a mitochondrial protein, prohibitin, is induced by calyculin A in a rice lesion-mimic mutant cdrl. Plant Physiol,2003, 132(4):1861~1869
    [42]Tsunezuka H, Fujiwara M, Kawasaki T, et al. Proteome analysis of programmed cell death and defense signaling using the rice lesion mimic mutant cdr2. Mol.Plant Microbe Interact, 2005,18(1):52~59
    [43]Horton P. Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture. J Exp Bot,2000,51:475~485
    [44]Morinaka Y, Sakamoto T, Inukai Y, et al. Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiol,2006,141: 924~931
    [45]Sinclair TR, Sheehy JE. Erect leaves and photosynthesis in rice. Science,2006,283:1456~1457
    [46]Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, et al. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nature Biotechn,2006,24: 105~109
    [47]Yuan LP. Hybrid rice breeding for super yield. Hybrid Rice,1997,12:1~7
    [48]Yamamuro C, Ihara Y, Wu X, et al. Loss of function of a rice brassinosteroid insensitivel homolog prevents internode elongation and bending of the lamina joint. Plant Cell,2000,12: 1591-1605
    [49]Hong Z, Tanaka UM, Umemura K, et al. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell,2003,15: 2900~2910
    [50]Mitchell JW, Mandava NB, Worley JF, et al. Brassins:A new family of plant hormones from rape pollen. Nature,1970,225:1065~1066
    [51]Wang Z Y, Wang Q, Chong K, et al. The brassinosteroid signal transduction pathway. Cell Res,2006,16:427~434
    [52]Jeong DH, Lee S, Kim SL, et al. Regulation of brassinosteroid responses by phytochrome B in rice. Plant Cell Environ,2007,30:590~599
    [53]储昭庆,李李,宋丽,薛红卫.油菜素内酯生物合成与功能的研究进展.植物学通报,2006,23:543-555
    [54]Kinoshita T, Delgado A, Seto H, et al. Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature,2005,433:167~171
    [55]Bai MY, Zhang LY, Gampala SS, et al. Functions of OsBZRl and 14-3-3 proteins in brassinosteroid signaling in rice. PNAS,2007,104:13839~13844
    [56]Hong Z, Tanaka U, Fujioka S, Takatsuto S, et al. The rice brassinosteroid deficient dwarf2 mutant, defective in the rice ortholog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell,2005,17:2243~2254
    [57]Tanabe S, Ashikari M, Fujioka S, et al. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarfl1, with reduced seed length. Plant Cell,2005,17:776~790
    [58]Qin G, Gu H, Zhao Y, Ma Z, et al. An indole-3-acetic acid carboxyl methyltransferase regulates Arabidopsis leaf development. Plant Cell,2005,17:2693~2704
    [59]Li X, Qin G, Chen ZL, et al. A gain-of-function mutation of transcriptional factor PTL results in curly leaves, dwarfism and male sterility by affecting auxin homeostasis. Plant Mol Biol, 2008,66:315~327
    [60]Harper RM, Evans SE, Luesse DR, et al. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell,2000, 12:757~770
    [61]Hamann T, Benkova E, Baurle I, et al. The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Gene Dev,2002,16: 1610~1615
    [62]Cheng Y, Dai X, Zhao Y. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Gene Dev.2006,20: 1790~1799
    [63]Shi Z, Wang J, Wan X, et al. Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit. Planta.2007,226:99~108
    [64]曹宛虹,王永健.植物中的葡糖磷酸变位酶.生物工程进展.2000,20(5):32-35
    [65]王林玲,周泽扬.昆虫耐热机制的研究进展.安徽农业科学.2008,36(16):6783,6842
    [66]杜静,赵秋,谷华,滕晓丽,覃华,刘南植.缺氧条件下YC-1对人胰腺癌细胞VEGF和 GPI基因的抑制效应.中华肿瘤杂志.2006,28(7):486-489
    [67]Ding Y, Ma Q H. Characterization of a cytosolic malate dehydrogenase cDNA which encodes an isozyme toward oxaloacetate reduction in wheat. Biochimie.2004,86(8):509~518
    [68]汪新颖,王波,侯松涛,朱国萍.苹果酸脱氢酶的结构及功能.生物学杂志.2009,26(4):69-72
    [69]Jaindl M, Popp M. Cyclitols protect glutamine synthetase and malate dehydrogenase against heat induced deactivation and thermal denaturation. Biochem Biophys Res Commun.2006, 345(2):761~765
    [70]王晓云,毕玉芬.植物苹果酸脱氢酶研究进展.生物技术通报.2006,4:44-50
    [71]王建义,慈忠玲.热激蛋白的研究进展.山西林业科技.2008,1:27-32
    [72]Bukau B, Horwich A L. The Hsp70 and Hsp60 chaperone machines. Cell,1998,92(3): 351~366
    [73]Wilkinson B, Gilbert H F. Protein disulfide isomerase. Biochim Biophys Acta.2004,1699(1~2): 35~44
    [74]王志强,周智敏,郭占云.蛋白质二硫键异构
    [75]酶家族的结构与功能,生命科学研究.2009,13(6):548-553

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700