盐碱胁迫下星星草根Ca~(2+)与Ca~(2+)-ATP酶超微细胞化学定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
星星草(Puccinellia tenuiflora)属禾本科碱茅属多年生草本植物,具有很强的耐盐碱能力,可在pH10以上的碱斑地上生长。为了能够在亚细胞、细胞、组织,以及个体水平揭示星星草抗盐碱的离子平衡和渗透调节作用,我们采用4种胁迫(Na2CO3、NaHC03、NaCl和PEG)10种处理方法(①0.4%Na2C03、0.277%NaCl和9.82%PEG的低浓度等渗溶液;②1.0%Na2C03、0.781%NaCl和19.721%PEG的高浓度等渗溶液;③0.4%Na2C03、0.184%NaCl和0.448%NaHCO3的低浓度等离子溶液;④1.0% Na2C03、0.395% NaCl和1.054%NaHCO3高浓度等离子溶液),将碱性盐这—复合胁迫分解为单一胁迫,这将有利于研究星星草耐胁迫的生理生态学机制。
     在生理水平,我们测定了各种胁迫条件下的星星草根渗透势、电解质外渗率、根表面Na、K元素含量及根内Na+、K+浓度。结果表明,与对照比,等离子及等渗低浓度胁迫下,星星草根表面Na、K元素含量,以及根内的Na+、K+浓度的变化趋势表现一致。渗透势都降低,但幅度不大,电解质外渗率升高,但不显著。这说明低浓度等离子与等渗溶液胁迫下星星草可以利用其自身调控机制调节胞内的离子平衡,抵抗盐碱胁迫。在高浓度等离子及等渗溶液胁迫下星星草根表面Na、K元素含量及根内的Na+、K+浓度变化趋势则不一致,渗透势大幅度降低,电解质外渗率大幅度升高。这表明高浓度盐碱胁迫条件下,pH胁迫发挥主要的作用,渗透胁迫与离子胁迫次之。
     同时,我们利用焦锑酸盐沉淀技术和磷酸铅沉淀技术分别对盐碱胁迫条件下星星草根Ca2+与Ca2+-ATPase进行超微细胞化学定位研究,旨在进一步探讨Ca2+在盐碱胁迫诱导胞内信号转导过程中的作用,以及Ca2+-ATPase活性定位变化与盐碱胁迫下星星草抗盐碱能力的关系。结果表明,在正常状态下,根毛区细胞质内Ca2+较少,Ca2+主要位于质膜附近和液泡中,Ca2+-ATPase主要定位于质膜和液泡膜上,有一定活性。在低浓度等离子与等渗溶液胁迫下,根毛区细胞质中Ca2+增多,液泡中Ca2+减少,且主要集中于液泡膜附近,质膜和液泡膜Ca2+-ATPase活性明显升高。高浓度等离子与等渗溶液胁迫下,细胞质中分布的Ca2+增多,而液泡中Ca2+极少,Ca2+-ATPase活性也降低。由此说明,Ca2+亚细胞定位与Ca2+-ATPase活性变化在星星草响应盐碱胁迫的信号传递过程中具有重要作用。
Being a species of Puccinellia, Puccinellia tenuiflora is gramineous, perennial, and herbaceous. It can grow in the soil of pH10 owing to its salt-resistant ability.In order to reveal the function of ion balance and osmotic regulation in Rtenuiflora at sub-cellular, cellular, tissue and individual level, four stress (Na2CO3,NaHCO3,NaCl, PEG) with ten concentrations were carried out to seedlings of P.tenuiflora,respectively. The detailed treatment method were as follows:(1)the low-concentration iso osmotic solutions of 0.4%Na2CO3,0.277%NaCl, and 9.82%PEG; (2) the high-concentration iso osmotic solutions of 1.0% Na2CO3,0.781% NaCl, and 19.721%PEG with the equal osmotic pressure;(3)the low-concentration iso-natrium ionic solutions of 0.4%Na2CO3,0.184%NaCl, and 0.448%NaHCO3;(4) the high-concentration iso-natrium ionic solutions of 1.0% Na2CO3,0.395% NaCl, and 1.054%NaHCO3.Thus, the complexed saline-alkali stress was divided into various single factors, and it is better to analyze the ecophysiological mechisms in Puccinellia tenuiflora to cope with stress.
     At the physiological level, we determined the osmotic potential, electrolyte leakage rate, the content of Na, and K at the surface of root, and the concentration of Na+ and K+ within the root of P. tenuiflora under various stress conditions. The results showed that, compared with the control,under the low-concentration iso-natrium ionic and iso-osmotic stress,the content of Na, K on the surface of root, and the concent of Na+, K+ appeared the similar changes. Osmotic potential decreased not obviously, and electrolyte leakage rate increased not significantly. This showed that P. tenuiflora can use its own control mechanism regulating the intracellular ion balance of at the lower concentration saline-alkali stress.However, the changes of the content of Na, K on the surface of root and the concents of Na+, K+are inconsistent. The osmotic potential significantly reduced, and electrolyte leakage rate increased under the high concentration of saline-alkali stress.This noted that under the high concentration of alkali-salt stress, pH stress is more primary than osmotic and ion stress.
     Furthermore, to investigate the relationships between the localization of calcium and Ca2+-ATPase, and the capacity of P.tenuiflora resistance to saline-alkali stress, an experiment for ultracytochemical localization of calcium and Ca2+-ATPase in the root of P. tenuiflora under the stress of saline-alkali stress were carried out using a potassium pyroantimonate precipitation and a lead phosphate precipitation technique, respectively.Our results showed that, in normal condition, the deposits of calcium antimonite was less precipitation in the cytoplasm, and it is mainly concentrated within the plasma membrane and vacuoles in the zone of root hair. Ca2+-ATPase had a certain activity and mainly localized in the plasma membrane and tonoplast. Moreover, under the low concentrations stress of iso-natrium ionic and iso- osmotic, the distribution of Ca2+ precipitation particles increased in the cytoplasm, decrease in the vacuole, and mainly concentrated in the vicinity of tonoplast. Meanwhile, the activity of Ca2+ -ATPase was significantly increased in plasma membrane and tonoplast.Furthermore, under the high stress of iso-natrium ionic and iso-osmotic, the distribution of Ca2+ precipitation particles was continued to increase in the cytoplasm, but absent in the vacuole.The activity of Ca2+-ATPase also reduced. All these results highlight that the changes of Ca2+ localization and Ca2+-ATPase activity plays important roles in P. tenuiflora resistance to saline-alkali stress.
引文
[1]中国科学院南京土壤研究所.中国土壤系统分类.北京:科学出版社,1991:22-23
    [2]FAO. Extent and Causes of Salt-affected Soils in Participating Countries.2005,Available in:http://www.fao.org/ag/AGL/agll/spush/topic-htm
    [3]王遵亲.中国盐渍土[M].北京:科学出版社,1993:1-6
    [4]Qadir M, Ghafoor A, Murtaza G.Amelioration Strategies for Saline Soils. Land Degradation and Development,2000,11:501-521
    [5]俞仁培,陈德明.我国盐渍土资源及其开发利用.土壤通报,1999,30(4):158-159
    [6]丁海荣,洪立州,王茂文,杨智青.星星草耐盐生理机制及改良盐碱土壤研究进展.安徽农学通报,2007,13(16):58-59
    [7]赵可夫.植物的抗盐性和抗盐机理.曲阜师范学院学报植物抗盐生理专刊,1984:35-44
    [8]Greeenway H, Munns R. Mechanisms of Salt Tolerance in Non-halophytes. Plant Physiol, 1980,131(1):149-190
    [9]Munns R, Termaat A. Whole Plant Responses to Salinity. Plant Physiol,1986, 13(1):143-160
    [10]杨富裕,周禾.草坪草抗盐性研究进展.草原与草坪,2001,1:10-13
    [11]Dudeck AE, Peacock CH, Sheehan TJ.An Evaluation of Germination Media for Turfgrass Salinity Studies.Amer Soc Hort Sci,1986,111(2):170-173
    [12]Greenway H, Munns R. Mechanism of Salt Tolerance in Nonhalophytes.Ann Rev Plant Physiol,1980,31:149-190
    [13]徐颖.盐分胁迫下植物的渗透调节.山东电大学报,2000,9:34-36
    [14]利容千,王建波.植物逆境细胞及生理学.武汉:武汉大学出版社,2002:217
    [15]刘友良,汪良驹.植物生理与分子生物学.北京:科学出版社,1997:763-769
    [16]李加宏,俞仁培.水-土壤-植物系统中盐分的迁移和植物耐盐性研究进展.土壤学进展,1995,23(6):9-17
    [17]翟凤林.植物耐盐性及其改良.北京:农业出版社,1989:20-23
    [18]翁森红,王承斌.植物的耐盐性.中国草地,1995,4:70-72
    [19]朱兴运,王锁民,阎顺国,沈禹颖,赵银.碱茅属植物抗盐性与抗盐机制的研究进展.草业学报,1994,3(3):9-15
    [20]Gorham J, WynJones RG, McDonnell E. Some Mechanisms of Salt Tolerance in Crop Plants.Plant and Soil,1985,89:1-3,15-40
    [21]Ladyman JAR, Ditz KM, Grumet R, Hanson AD. Genotypic Variation for Glycine Betaine Accumulation by Cultivated and Wild Barley in Relation to Water Stress.Crop Sci,1983,23:465-468
    [22]Hare PD, Cress WA, Staden VJ.Dissecting the Roles of Osmolyte Accumulation During Stress.Plant Cell Environ,1998,21:535-553
    [23]McNeil SD, Nuccio ML, Hanson AD.Betaines and Related Osmoprotectants:Targets for Metabolic Engineering of Stress Resistance. Plant Physiol,1999,120:945-949
    [24]陈洁,林栖凤.植物耐盐生理及耐盐机理研究进展.海南大学学报自然科学版,2003,21(2):176-182
    [25]应天玉,刘国生,姜中珠.植物耐盐的分子机理.东北林业大学学报,2003,31(1):31-33
    [26]张福锁.环境胁迫与植物育种[M].北京:农业出版社,1993:330-335
    [27]黄萍,张富春,王瑜,李金耀.跨膜离子转运蛋白与植物耐盐的分子生物学.生物技术通报,2007,2:1-5
    [28]王宝山,邹琦.质膜转运蛋白及其与植物耐盐性关系研究进展.植物学通报,2000,17(1):17-26
    [29]Leigh RA, Tinker B.Advances in Plant Nutrition. London:Praeger,1986:249-250
    [30]Blumwald E, Aharon GS,Apse MP.Sodium Transport in Plant Cells.Biochimicaet Biophysica Acta,2000,1465:140-151
    [31]王宝山,邹琦.NaCl胁迫对高粱根、叶鞘和叶片液泡膜ATP酶和焦磷酸酶活性的影响.植物生理学报,2000,26:181-188
    [32]Bush DS.Calcium Regulation in Plant Cells and Its Role in Signaling. Annu Rev Plant Physiol Plant Mol Biol,1995,46:95-112
    [33]Minorsky PV. Temperature Sensing by Plants:a Review and Hypothesis.Plants Cell Environ,1989,12:119-135
    [34]Poovaiah BW. Biochemical and Molecular Aspects of Calcium Action. Acta Horticulture, 1993,326:139-146
    [35]McAinsh MR, Brownlee AM, Hetherington AM. Calcium Ions as Second Messengers in Guard Cell Signal Transduction. Physiol Plant,1997,100:16-29
    [36]Muir SR, Bewell MA, Sanders D, Allen GJ.Ligand-gated Ca2+ Channels and Ca2+ Signaling in Higher Plants. Exp Bot,1997,48:589-597
    [37]韩宁,綦翠华,丁同楼,王宝山.植物膜Ca2+运输系统与逆境应答.植物生理学通讯,2005,41(5):577-582
    [38]Hetherington AM, Brownlee C. The Generation of Ca2+ Signals in Plants. Annu Rev Plant Biol,2004,55:401-427
    [39]Bothwell JHF, Ng CKY.The Evolution of Ca2+ Signaling in Photosynthetic Eukaryotes. New Phytol,2005,166:21-38
    [40]张和臣,尹伟伦,夏新莉.非生物逆境胁迫下植物钙信号转导的分子机制.植物学通 报,2007,24:114-122
    [41]Chin D, Means AR. Calmodulin, a Prototypical Calcium Sensor. Trends Cell Biol,2000, 10:322-328
    [42]刘曼,毛国红,孙大业.植物的钙调素亚型.植物生理学通讯,2005,41:1-6
    [43]Sathyanarayanan PV, Poovaiah BW. Decoding Ca2+ Signals in Plants.Crit Rev Plant Sci, 2004,23:1-11
    [44]Ludwig AA, Romeis T, Jones JDG. CDPK-mediated Signaling Pathways, Specificity and Cross-talk. Exp Bot,2004,55:181-188
    [45]Lee J, Rudd JJ.Calcium-dependent Protein Kinases, Versatile Plant Signaling Components Necessary for Pathogen Defence. Trends Plant Sci,2002,7:97-98
    [46]Cheng SH, Willmann MR, Chen HC, Sheen J. Calcium Signaling Through Protein Kinases. The Arabidopsis Calcium Dependent Protein Kinase Gene Family. Plant Physiol, 2002,129:469-485
    [47]Kolukisaoglu U, Weinl S,Blazevic D, Batistic O, Kudla J.Calcium Sensors and their Interacting Protein Kinases, Genomics of the Arabidopsis and Rice CBL-CIPK Signaling Networks. Plant Physiol,2004,134:43-58
    [48]Mahajan S, Pandey GK, Tuteja N. Calcium-and Salt-stress Signaling in Plants:Shedding Light on SOS Pathway. Archives of Biochemistry and Biophysics,2008,471:146-158
    [49]Qui Q, Guo Y, Dietrich M, Schumaker KS,Zhu JK. Regulation of SOS1,a Plasma Membrane NaR/HR Exchanger in Arabidopsis Thaliana, by SOS2 and SOS3.Proc Natl Acad Sci USA,2003,99:8436-8441
    [50]Quintero FJ, Ohta M, Shi H, Zhu JK, Pardo JM. Reconstitution in Yeast of the Arabidopsis SOS Signaling Pathway for Na+ Homeostasis. Proc Natl Acad Sci USA,2002, 99:9061,9066
    [51]Knight H, Brand S,Knight MR. A History of Stress Alters Drought Calcium Signaling Pathways in Arabidopsis. Plant J,1998,16:251-264
    [52]White PJ, Broadley MR. Calcium in Plants. Ann Bot,2003,92:487-511
    [53]Axelsen KB,Palmgren MG. Inventory of the Superfamily of P-type Ion Pumps in Arabidopsis.Plant Physiol,2001,126:696-706
    [54]Sze H, Liang F, Hwang I, Curran AC, Harper JF.Diversity and Regulation of Plant Ca2+ Pumps, Insights from Expression in Yeast. Ann Rev Plant Physiol Plant Mol Bio,2000, 51:433-462
    [55]Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG,Gribskov M, Harper JF, Axelsen KB.Genomic Comparison of P-Type ATPase Ion Pumps in Arabidopsis and Rice. Plant Physiol,2003,132:618-628
    [56]何龙飞,王爱勤,沈振国,刘友良.高等植物细胞的Ca2+-ATP酶.广西农业生物科学, 2000,19(1):64-67
    [57]Navarro-Avino JP, Hentzen AE, Bennett AB.Alternative Transcription Initiation Sites Generate two LCAl Ca2+-ATPase mRNA Transcripts in Tomato Roots.Plant Mol Biol, 1999,40:133-140
    [58]Chen X, Chang M, Wang B, Wu B.Cloning of a Ca2+-ATPase Gene and the Role of Cytosolic Ca2+in the Gibberellindependent Signaling Pathway in Aleurone Cells. Plant J, 1997,11:363-371
    [59]Harper JF, Hong B,Hwang I, Guo HQ, Stoddard R, Huang JF, Palmgreni MG, Sze H.A Novel Calmodulin-regulated Ca2+-ATPase (ACA2) from Arabidopsis with an N Terminal Autoinhibitory Domain. Biol Chem,1998,273:1099-1106
    [60]Wimmers LE, Ewing NN, Bennett AB.Higher plant Ca2+-ATPase, Primary Structure and Regulation of mRNA abundance by Salt. Vroc Natl Acad Sci USA,1992,89:9205-9209
    [61]Perez-Prat E, Narasimhan ML, Binzel ML, Botella MA, Chen Z, Valpuesta V, Bressan RA, HasegawaPM. Induction of a Putative Ca2+-ATPase mRNA in NaCl adapted Cells. Plant Physiology,1992,100:1471-1478
    [62]林建军,魏幼璋.植物细胞Ca2+的微调系统——Ca2+ATPase.植物学通报,2001,18:190-196
    [63]Liang F, Sez H.A high-affinity Ca2+ Pumps, ECA1,from the Endoplasmic Reticulum is Inhibited by Cyclopiazonic Acid but not by Thapsigargin. Plant Physiol,1998,118: 817-825
    [64]Chardonnens AN, Koevoets PL, Zanten AV, Schat H, Vorkleij Jos AC. Properties of Enhanced Tonoplast Zinc Transport in Naturally Selected Zinc-tolerant Silene Vulgaris. Plant Physiol,1999,120:779-785
    [65]阎秀峰,孙国荣.星星草的生理生态学研究.北京:科学出版社.2000:13-17
    [66]唐超世,方伋,王守礼,李留根,孙连生,李文明.星星草栽培驯化的研究.中国草地学报,1980,4:13-18
    [67]李景信,马义,傅喜林.种植星星草改良碱斑地的研究.中国草原,1985,2:53-55
    [68]韦存虚,张军,王建军,孙国荣.星星草营养器官适应盐胁迫的结构特征.植物资源与环境学报,2006,15(1):51-56
    [69]陆静梅,李建东,景德章,杨凤清,张洪芹.星星草解剖研究.东北师大学报自然科学版,1994,1:63-66
    [70]韦存虚,王建波,陈义芳,周卫东,孙国荣.耐盐植物星星草叶表皮具有泌盐功能的蜡质层.生态学报,2004,24:2451-2456
    [71]Sun Guorong, Peng Yongzhen, Shao Hongbo, Chu Liye, Min Haiyan, Cao Wenzhong, Wei Cunxu. Do Puccinelia tenuiflora have the Ability of Salt Exudation?Colloids and Surfaces B:Biointerfaces,2005,46(4):197-203
    [72]阎秀峰,肖玮,孙国荣.盐胁迫下星星草幼苗的生理反应.Ⅰ.盐胁迫对星星草幼苗透性的影响.黑龙江畜牧兽医,1994,(3):1-3
    [73]孙国荣,关肠,阎秀峰.盐胁迫对星星草幼苗保护酶系统的影响.草地学报,2001,9(1):34-38
    [74]孙国荣,阎秀峰.盐胁迫对星星草幼苗光合特性的影响.植物研究,1996,16(3):346-350
    [75]肖玮,孙国荣,阎秀峰.盐胁迫下星星草幼苗地上部无机离子的累积.哈尔滨师范大学自然科学学报,1995,11(2):82-85
    [76]高红明,吴晓霞,张彪,张毅,徐平,孙国荣.Na2CO3胁迫下星星草幼苗活性氧及保护酶活性变化.植物研究,2006,26(3):308-312
    [77]刘桂丰,褚延广,王玉成,杨传平,侯英杰.cDNA微阵列技术研究NaHCO3胁迫下星星草基因表达谱.西北植物学报,2005,25:887-892
    [78]王玉成,杨传平,刘桂丰,姜静.差异显示技术研究了NaHCO3胁迫下星星草基因表达.植物学通报,2005,22:307-312
    [79]程玉祥.星星草质膜型Na+/H+逆向转运蛋白基因的克隆和特征分析.植物生理学通讯,2008,44(1):59-64
    [80]石德成,殷立娟.盐(NaCl)与碱(Na2CO3)对星星草胁迫作用的差异.植物学报,1993,35(2):144-149
    [81]石德成,赵可夫.NaCl、Na2C03胁迫下星星草根际K+、Na+、Ca2+的生理行为.应用与环境生物学报,1997,3:112-118
    [82]孙国荣,陈月艳,关旸,阎秀峰.盐碱胁迫下星星草种子萌发过程中有机物、呼吸作用及其几种酶活性的变化.植物研究,1999,19:445-451
    [83]孙国荣,关旸,阎秀峰.Na2C03胁迫对星星草幼苗游离氨基酸含量的影响.植物研究,2000.20:69-72
    [84]William Hamilton E. A Scott Heckathorn Mitochondrial Adaptations to NaCl.Plant Physiology,2001,126:1266-1274
    [85]王建波,孙国荣,陈刚,曹文钟,梁建生,余政哲,陆兆华.Na2CO3胁迫下星星草幼苗叶片PS Ⅱ光能利用和耗散与培养基质渗透势的关系.生态学报,2006,26(1):115-121
    [86]Maribel L, Dionisio-Sese ML, Tobita S.Antioxidant Response of Rice Seedings to Salinity Stress. Plant Science,1998,135:1-9
    [87]Tian HQ, Russell SD.Calcium distribution in Fertilized and Unfertilized Ovules and Embryo Sacs of Nicotiana Tabacum L. Planta,1997,202:93-105
    [88]田国伟,申家恒.小麦胚珠在受精过程中ATP酶的超微细胞化学定位.植物学报,1993,35:329-336
    [89]Spickett CM, Smirnoff N, Ratdiffe RG Metabolic Responses of Maize Roots to Hyperosmotic Abock. Plant Physiol,1992,99:856-863
    [90]Niu X, Kbressan R, Hasegawa P,Mkpardo JM. Ion homeo Stasis in NaCl Stress Environments.Plant Physiol,1995,109(3):735-742
    [91]潘瑞炽,董愚得.植物生理学(第三版)[M].北京:高等教育出版社.2000:29-30
    [92]Zhu J, Liu J,Xiong L. Genetic analysis of Salt to Lerance in Arabidopsis Pevidence for a Critical Role of Potassium Nutrition. Plant Cell,1998,10(7):1181-1192
    [93]Blumwal DE. Sodium Transport and Salt to Lerance in plants.Current Opinion in Cell Biology,2000,12:431-434
    [94]许祥明,叶和春,李国凤.植物抗盐机理的研究进展.应用与环境生物学报,2000,6:379-387
    [95]毛桂莲,许兴,徐兆桢.植物盐耐生理生化研究进展.中国生态农业学报,2004,29(1):43-46
    [96]林栖风,李冠一.植物耐盐性的研究进展.生物工程进展,2000,20(2):20-25
    [97]Levitt J. Responses of Plant to Environmental Stress.2nd ed. New York:Academic Press, 1980,365-488
    [98]尹尚军,石德成,颜宏.碱胁迫下星星草的主要胁变反应.草业学报,2003,12:51-57
    [99]陆静梅,张常钟,张洪芹,杨凤清.单子叶植物耐盐碱的形态解剖特征与生理适应的相关性研究.东北师大学报(自然科学版),1994,(2):79-821
    [100]王洪春.植物抗性生理.植物生理学通讯,1981,(6):72-81
    [101]Thomson LJ, Xing T, Hall JL, Williams LE. Investigation of the Calcium Transporting ATPase at the Endoplasmic Reticulum and Plasma membrane of Red Beet (Beta vulgaris). Plant Physiol,1993,102:553-564
    [102]Demidchik V, Bowen HC, Maathuis FJM, Shabala SN, Tester MA, White PJ, Davies JM. Arabidopsis thaliana Root non-selective Cation Channels Mediate Calcium uptake and are Involved in Growth. Plant J,2002,32:799-808
    [103]Very AA, Davis JM. Hyperpolarization-activated Calcium Channels at the Tip of Arabidopsis Root Hairs. Proc Natl Acad Sci USA,2000,97:9801-9806
    [104]Liu J, Zhu J.A Calcium Sensor Homolog Required for Plant Salt to Lerance. Science,1998,280:1943-1945
    [105]张新生,周卫,河萍,林葆.Ca2+和CaM对苹果果实Ca2+-ATPase, SOD和PEA活性的影响.植物营养与肥料学报,2001,7:441-446
    [106]陈立松,刘星辉.水分胁迫对荔枝叶片呼吸代谢有关酶活性的影响.林业科学,2003,39(2):39-43
    [107]张宗申.导管分子程序化死亡过程中钙离子的时空变化.科学通报,2001,46:1098-1100
    [108]李平华,张慧,王宝山.盐胁迫下植物细胞离子稳态重建机制.西北植物学报,2003, 23(10):1810-1817
    [109]Bush DR, Sze H.Calcium Transport in Tonoplast and Endoplasmic Reticulum Vesicles isolated from Cultured Carrot Cells.Plant Physiol,1986,80:549-555
    [110]Carnelli AD,De Michelis MI,Rasi-Caldogno F. Plasma Membrane Ca2+-ATPase of Radish Seedlings. I.Biochemical characteris-tics using ITP as a Substrate. Plant Physiol,1991,98:1196-1201
    [111]刘友良,汪良驹.植物对盐胁迫的反应和耐盐性.见:余叔文,汤章诚.植物生理与分子生物学[M].北京:科学出版社,1998:752-767
    [112]郝鲁宁,余叔文.大麦根细胞质膜Ca2+-ATPase酶和Ca2+转运系统的特性,植物生理学报,1993,19:172-180

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700