石墨电极表面固定铁氰化钾的方法研究及分析应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学修饰电极(Chemically Modified Electrode)最大的特点是在电极表面进行分子水平的修饰得到功能团化的修饰层,在电催化、分离、富集、选择性响应方面得到广泛应用。目前,化学修饰电极方法与技术的发展及其与电化学发光和电化学分析等方法的联合依然是分析化学的研究热点领域之一。
     本论文由综述和研究报告两部分组成。第一部分为综述,主要介绍了化学选修饰电极的原理、方法、应用,以及层层自组装技术的原理、方法其构建的电化学传感器的分析应用;第二部分为研究报告,主要利用层层自组装技术在石墨电极表面进行铁氰化钾的固定化研究,我们分别利用静电吸引制得CTAB-Fe(CN)63--CTAB修饰的石墨电极和滴涂方式壳聚糖-聚乙烯醇复合膜固定自组装铁氰化钾,构建了Fe(CN)63--ECL传感器,研究了自组装Fe(CN)63-修饰电极电化学和电化学发光行为,发展了修饰电极的材料和固定方法。具体工作包括:
     1.自组装CTAB-Fe(CN)63--CTAB修饰石墨电极的的制备及其分析应用研究
     以临界胶束浓度存在的阳离子表面活性剂CTAB能有效的附着在经煮沸石蜡处理的石墨电极表面,此时石墨电极表面带有大量的正电荷,通过自组装技术可在石墨电极表面通过静电吸引带有负电荷的铁氰化钾阴离子形成复合膜,这样,建立了一种固定铁氰化钾阴离子的复合膜的制备方法,并通过接触角、电化学和电化学发光研究了该复合膜的特性。结果表明:CTAB的长链结构增强了与充分渗透石蜡的石墨电极表面的结合能力,大大提高了单位面积内吸附Fe(CN)63-的个数,修饰电极能够展现出很好的电催化行为、电化学发光行为,提出了一种通过自组装膜固定Fe(CN)64-/3-探针的新思路。
     2. Chitosan-PVA-Fe(CN)6-3--CTAB复合膜修饰电极的电化学和电化学发光行为及其分析应用研究
     将0.5%聚乙烯醇溶液与0.5%壳聚糖溶液混合,滴涂在自组装铁氰化钾修饰电极表面,然后将电极再浸入铁氰化钾溶液中,利用壳聚糖继续吸附铁氰化钾以提高电极表面的修饰量。在最佳的实验条件下,异烟肼浓度在1.5×104-1.5×10-6 mol/L内与发光强度呈线性关系,检出限为5×10-7 mol/L。与化学发光法测异烟肼相比,该电极能重复使用,有较好的灵敏度。
Chemically modified electrode is characterized by the largest molecular level in the electrode surface modification by functional groups of the modified layer, the electric catalysis, separation, enrichment, selective response been widely used. At present, the chemically modified electrode method and technology development and its electrochemical luminescence and electrochemical analysis of the joint is still one of the areas of chemical research focus.
     This paper by the review and study reports of two parts. the first part of review, mainly introduces chemical modify electrode of the principles, method, application, and the layers of the assembly technology of the principles, method and the electrochemical methods of analysis of the application of the sensor; The second part of the research reportt, we fixed potassium ferricyanideiron on the surface of the graphite electrode by Layers of the assembly technology and Drop-coating with the way, the Chitosan- PVA composite membrane was fixed self-assembled potassium ferricyanide modify graphite electrode, built Fe(CN)63--ECL sensors to study self-assembled Fe(CN)63- Modified Electrode and electrochemical luminescence behavior, the development of the modified electrode materials and fixation methods. Concrete work includes:
     1. Self-assembly of CTAB-Fe(CN)63"-CTAB Preparation of modified graphite electrode and its analytical application
     To the existence of critical micelle concentration of cationic surfactant CTAB can effectively handle attached to the wax by boiling the surface of graphite electrode, graphite electrode surface at this time with a large amount of positive charge, through self-assembly technology in graphite electrode surface by electrostatic attraction potassium ferricyanide with a negatively charged anion form a composite membrane, so that the establishment of a fixed Ferricyanide anion composite membrane and method, and by contact angle, electrochemical and electrochemiluminescence study of the composite film characteristics. The results show that: long-chain structure of CTAB enhanced the paraffin with graphite electrodes attached to the surface adhesion,Improve the electrode surface unit area Fe(CN)63- the amount of adsorption, Modified electrode to show good electrocatalytic behavior, electrochemical luminescence behavior, A self-assembled monolayers by a fixed Fe(CN)64-/3- probe for new ways.
     2. Electrochemistry and Electrochemiluminescence performances of Chitosan-PVA-Fe(CN)63--CTAB composite film immobilizing and its analytical application
     To 0.5% Chitosan solution,0.5% PVA solution was mixed, drops on the potassium ferricyanide self-assembled modified electrode surface, and then the electrode immersed in potassium ferricyanide solution, the use of chitosan to the adsorption of potassium ferricyanide to enhance the amount of electrode surface modification. Under the optimal experimental conditions, the detection limit was 5×10-7 mol/L for isoniazid and the linear range extended from 1.5×10-4-1.5×10-6 mol/L. Compared with chemiluminescence detection isoniazid, the modified graphite electrode can used repeatedly,had better sensitivity for the determination of. isoniazid
引文
[1]Watkins B. F., Behing J. R., Kariv E., Miller L. L., Chiral electrode[J]. J. Am. Chem. Soc.,1975,97(12):3549-3550.
    [2]Moses P. R., Wier L., Murray R. W., Chemically modified tin oxide electrode[J]. Anal. Chem.,1975,47(12):1882-1886.
    [3]Ross F. Lane., Arthur T. H., Electrochemistry of chemisorbed molecules. II. Influence of charged chemisorbed molecules on the electrode reactions of platinum complexes[J]. J. Phys. Chem.,1973,77(11):1411-1421
    [4]Brow A. P., Anson F. C., Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface[J]. Anal.chem.,1977,49(11):1589-1595
    [5]Brown A. P.,Anson F. C., Electron transfer kinetics with both reactant and product attached to the electrode surface[J]. J. Electroanal.Chem.,1978,92(2):133-145
    [6]Oyama N., Yap K. B., Anson F. C., Spontaneous coating of graphite electrodes by amino ferrocenes[J]. J. Electroanal. Chem.,1979,100(1-2):233-246
    [7]Moses P. R.,Wier L., Murray R.W., Chemically modified tin oxide electrode[J]. Anal.Chem.,1975,47(12):1882-1886
    [8]Watkins B. F., Behling J. R., Kariv E., Miller L. L., Chiral electrode[J]. J. Am. Sec., 1975,97(12):3549-3550
    [9]Kuhn H.,Mobius D., Bucher H.,Physical Methods of Chemistry (Weissberger A,Rossiter B W.Eds.).New York:Wiley,1972, Ch.7
    [10]Anzai J I.,Osa T., Selective Electrode Rew.1990,12:3
    [11]Lu Z. L., Dong S. J., Researches on chemically modified electrodes:part XXIV. preparation and characterization of nafion polymer film modified electrodes containing Fe(Ⅱ)-phen complex[J]. J. Electroanal. Chem.,1987,233(1-2):19-27
    [12]Sagiv J., Organized monolayers by adsorption.1. Formation and structure of oleophobic mixed monolayers on solid surfaces[J]. J. Am. Chem. Soc.,1980, 102(1):92-98
    [13]孙勤枢,刘柏峰,董绍俊,离子交换型聚合物AQ薄膜修饰电极及其溶出行为[J].分析化学,1992,20(2):123-127
    [14]Szentirmay M. N., Martin C. R., Ion-exchange selectivity of Nafion films on electrode surfaces[J]. Anal. Chem.,1984,56(11):1898-1902
    [15]Rubinstein I., Bard A. J., Polymer-films on electrodes.5. Electrochemistry and chemiluminescence at Nafion-coated electrodes[J]. J. Am. Chem. Soc.,1981, 130(7):5007-5013
    [16]董绍俊,田敏,刘柏峰,二茂铁-AQ修饰碳纤维微葡萄糖传感器的研究[J].分析化学,1993,21(3):255-258
    [17]Zhang L. H., Guo Z. H., Dong S. J., etal. Highly sensitive electrogenerated chemiluminescence produced at Ru(bpy)32+ in Eastman-AQ55D-carbon nanotube composite film electrode[J]. J. Electroanal. Chem.,2006,592(l):63-67
    [18]Wang J., Ziling. L., Ion-exchange voltammetry at poly(ester-sulfonic acid) film coated electrodes for trace analysis[J]. J. Electroanal. Chem.,1989,266(2):287-296
    [19]Vining W. J., Meyer T. J., A chemically modified electrode for the catalytic oxidation of chloride to chlorine[J]. J. Electroanal. Chem.,1985,195(1):183-187
    [20]Downey T. M., Nieman T. A., Chemiluminescence detection using regenerable tris(2,2'-bipyridyl)ruthenium(II) immobilized in Nafion[J]. Anal. Chem.,1992, 64(3):261-268.
    [21]Vining W. J., Meyer T. J., Redox properties of the water oxidation catalysts diaquatetrakis(2,2'-bipyridine)oxoderuthenium(4+) in thin polymeric films. Elecctrocatalytic oxidation of chloride to chlorine[J]. Inorg. Chem.,1986, 25(12):2023-2033
    [22]Martin A. F., Nieman T. A.,. Glucose quantitation using an immobilized glucose-dehydrogenase enzyme reactor and a tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence sensor[J]. Anal. Chim. Acta.,1993,281(3):475-481
    [23]H. Cui, X. Y. Zhao, Q. X. Lin. Cathodic Electrochemiluminescence of Ru(bpy)32+/Nafion Coated on Graphite Oxide Electrode in Purely Aqueous Solution[J]. Luminescence,2003,18(4):199-202
    [24]Decher G, Fuzzy nanoasemblies:Toward layered polymeric multicomposites[J]. Science,1997,277:1232-1237
    [25]Yongjun Z., Shuguang Y, Jian X., etal. Fabrication of Stable Hollow Capsules by Covalent Layer-by-Layer Self-Assembly [J]. Macromolecules,2003,36(11): 4238-4240
    [26]Zhang Y J., Yang S G, Xu J., etal. Fabrication of hollow cap sules based on hydrogen bonding[J]. Adv Mater.,2003,15(10):832-835
    [27]Lin W., Lin W., Wong G. K., Marks T. J., Supramolecular approaches to second-order nonlinear optical materials. self-assembly and microstructural characterization of intrinsically acentric [(aminophenyl)azo]pyridinium superlattices[J]. J. Am. Chem. Soc.,1996,118(34):8034-8042
    [28](a) Doron-Mor I., Cohen H., Cohen, S. R., Popovitz-biro R., Shanzer A., Vaskevich A., Rubinstein I., Layer-by-layer assembly of ordinary and composite coordination multilayers[J]. Langmuir,2004,20(24):10727-10733 (b) Hatzor A., Moav T., Cohen H., Matlis S. E., Libman J., Vaskevich A., Shanzer A., Rubinstein I., Coordination-controlled self-assembled multilayers on gold[J]. J. Am. Chem. Soc.,1998,120(51):13469-13477
    [29]Ulman A., Formation and structure of self-assembled monolayer[J]. Chemical Reviews,1996,96(4):1533-1544
    [30]Wang Z. Q., Zhang X., Shen J. C., etal. A new app roach for the fabrication of an alternating multiplayer film of poly(4-vinylpyridine)and poly(acrylic acid) based on hydrogen bonding[J] Macromol Rapid Commun,1997,18:509-514
    [31]Wang Z.Q., Zhang X., Shen J. C., et al Investigation of the covalently attached multilayer architecture based on diazo-resins and poly(4-styrene sulfonate)[J]. Macromol Chem Phys,2001,202(7):967-973
    [32]Stockton W. B., Rubner M. F., Molecular-Level Processing of Conjugated Polymers 4.Layer-by-Layer Manipulation of Polyaniline via Hydrogen-Bonding Interactions[J] Macromolecules,1997,30(9):2717-2725
    [33]Wang Z. Q., Zhang X., Shen J. C., etal A new app roach for the fabrication of an alternating multiplayer film of poly(4-vinylpyridine)and poly(acrylic acid) based on hydrogen bonding[J] Macromol Rapid Commun,1997,18:509-514
    [34](a) Decher G., Fuzzy., Nanoassemblies:toward layered polymeric multicomposites [J]. Science,1997,277(5330):1232-1237 (b) Decher G., Hong J. D., Build up of ultrathin multilayer films by a self-assembly process.1. consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces[J]. Makromol. Chem. Macromol. Symp.,1991,46:321-327 (c) Decher G., Hong J. D., Schmitt J., Buildup of ultrathin multilayer films by a self- assembly process:Ⅲ. consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces[J]. Thin Solid Films,1992, 210/211(2):831-843
    [35]Chidsey C. E. D., Bertozzi C. R., Putvinski T. M., etal. Coadsorption of ferrocene-terminated and unsubstituted alkanethiols on gold:electroactive self-assembled monolayers[J]. J. Am. Chem. Soc.,1990,112(11):4301-4306
    [36]Uosaki K., Satoy Y., Kita H.,. Electrochemical characteristics of a gold electrode modified with a self-assembled monolayer of ferrocenylalkanethiols[J] Langmuir, 1991,7(7):1510-1514
    [37]Rowe G. K., Creager S E.,Redox and ion-pairing thermodynamics in self-assembled monolayers[J].Langmuir,1991,7(10):2307-2312
    [38]Ohtani M., Kuwabata S., Yoneyama H., Electrochemical oxidation of reduced nicotinamide coenzymes at Au electrodes modified with phenothiazine derivative monolayers[J]. J. Electroanal. Chem.,1997,422(1-2):45-54
    [39]Nakano K., Ohkubo K., Taira H., etal. Synthesis of 1,4-hydroquinone-terminated alkanethiol and self-assembly on gold as characterized by interfacial electrochemistry, electrocatalysis application and abinitio calculation based on comparison with catechol-presenting analogue[J]. J. Electroanal. Chem.,2008, 623(1):49-53
    [40]Rubinstein I., Steinberg S., Tor Y, etal. Nature[J],1988,332:426
    [41]Turyan I., Mandler D., Selective Determination of Cr(VI) by a Self-Assembled Monolayer-Based Electrode[J].Anal. Chem.,1997,69(5):894-897
    [42]Henke C., Steinem C., Janshoff A., etal. Self-Assembled Monolayers of Monofunctionalized Cyclodextrins onto Gold:Amass Spectrometric Characterization and Impedance Analysis of Host-Guest Interaction[J] Anal. Chem.,1996,68(18):3158-3165
    [43]Xu G.R., Yuan Y, Kim S., etal. Surface modification of gold by quercetin monolayer for the electrochemical determination of copper(II)[J]. Electroanalysis, 2008,20:1690-1695
    [44]Sung H. K., Sun K. H., JaeHo K., etal. A self-assembled squarylium dye monolayer for the detection of metal ions by surface plasmon resonances[J]. Dyes and Pigments,2000,44:55-61
    [45]Mashhadizadeh M. H., Eskandari. K., Foroimadi A., etal. Self-assembled mercap to-compound-gold-nanoparticle-modified carbon paste electrode for potentiometric determination of cadmium (Ⅱ)[J]. Electroanalysis,2008,20:1891-1896
    [46]Ivana Cesarino, Eder Tadeu GomesCavalheiro. Thiol-Functionalized silica thin modified electrode in determination of mercury ions in natural water[J]. Electroanalysis,2008,20:2301-2309
    [47]Fang Zhen.,Liu Bin., A cationic porphyrin-based self-assembled film for mercury ion detection[J]. Tetrahedron Letters,2008,49:2311-2315
    [48]Shervedani R. K., Pourbeyram S., Zirconium immobilized on gold- mercap top rop ionic-acid self-assembled monolayer for trace determination of phosphate in blood serum by using CV, EIS, and OSWV[J]. Biosensors and Bioelectronics,2009, 24:2199-2204
    [49]Sung K. J., Wilson G. S., Polymeric Mercaptosilane-Modified Platinum Electrodes for Elimination of Interferants in Glucose Biosensors[J].Anal. Chem.,1996,68(4): 591-596.
    [50]Chuanming D., Meyerhoff M. E., Separation-Free Sandwich Enzyme Immunoassays Using Microporous Gold Electrodes and Self-Assembled Monolayer/Immobilized Capture Antibodies[J]. Anal. Chem.,1994,66 (9): 1369-1377.
    [51]Willer I., Riklin A., Shoham B et al.[J]. A dv. Mater.,1993,5:912.
    [52]Amarasinghe S., Chen T. Y., Models for mediated reactions at film modified electrodes:controlled electrode potential[J]. Anal. Chim. Acta.,1995,307:227-244.
    [53]Willner I., Riklin A., Electrical Communication between Electrodes and NAD(P)+-Dependent Enzymes Using Pyrroloquinolinequinone-Enzyme Electrodes in a Self-Assembled Monolayer Configuration:Design of a New Class of Amperometric Biosensors[J].Anal. Chem.,1994,66(9):1535-1539
    [54]Willner I., Mandler D., Enzyme-catalysed biotransformations through photochemical regeneration of nicotinamide cofactors[J].Enzyme Microb. Technol.,1989, 11(8):467-483
    [55]Schlereth D. D., Kooyman R. P H., Self-assembled monolayers with biospecific affinity for lactate dehydrogenase for the electroenzymatic oxidation of lactate[J].J. Electroanal. Chem.,1997,431(2):285-295
    [56]Schlereth D. D., Surface-modified gold electrodes with biospecific affinity for lactate dehydrogenase based on Cibacron Blue 3FG-A self-assembled monolayers [J].J. Electroanal. Chem.,1997,425(1-2):77-85.
    [57]Ruan C.M., Yang R., Chen X.h., Deng J.Q., A reagentless amperometric hydrogen peroxide biosensor based on covalently binding horseradish peroxidase and thionine using a thiol-modified gold electrode[J].J. Electroanal. Chem.,1998, 455(1-2):121-125.
    [58]Gutierrez A., Osegueda S.,Silvia G. G.,etal. Amperometric Detection and Quantification of 8-Hydroxy-2'-deoxyguanosine (8-OHdG) using dendrimermodified electrodes[J]. Electroanalysis,2008,20(21):2294-2300
    [59]Lin L. L., Zhou J. Z., Zhang Y., etal. High sensitive electrochemical detection of sequence-specific DNA using low current voltammetry[J]. Electroanalysis, 2008,20:1798-1804
    [60]Majewska U. E., Chmurski K., Biesiada K., etal. Dopamine oxidation at per(6-deoxy-6-thio)-a-cyclodextrin monolayer modified gold electrodes[J]. Electroanalysis,2006,18:1463-1470
    [61]Shervedani R. K., Bagherzadeh M., Electrochemical characterization of In situ functionalized gold cysteamine self-assembled monolayer with 4- formylphenyl boronic acid for detection of dopamine[J]. Electroanalysis,2008,20:550-557
    [62]Liu C. Y, Lu C. H., Jiang L. Y, etal. Study on the electrochemical behavior of dopamine and uric acid at a 2-amino-5-mercap to [1,3,4] triazole self-assembled monolayers electrode[J]. Electroanalysis,2006,18:291-297
    [63]Agboola B. O., Ozoemena K. I., Efficient electrocatalytic detection of epinephrine at gold electrodes modified with self-assembled metallo-octacarboxyphthalocyanine complexes[J]. Electroanalysis,2008,20:1696-1707
    [64]Sivanesan A., Swamidoss A. J., Selective electrochemical epinephrine sensor using self-assembled monomolecular film of 1,8,15,22-tetraaminophthalo cyanatonickel (Ⅱ) on gold electrode[J]. Electroanalysis,2008,20:2340-2346
    [65]Sun Y. X., Wang S. F., Zhang X. H., etal. Simultaneous determination of epinephrine and ascorbic acid at the electrochemical sensor of triazole SAM modified gold electrode[J]. Sensors and Actuators B,2006,113:156-161
    [66]Huang X., Du D., Gong X. J., etal. Composite assembly of silver nanchemical oparticles with avidin and biotinylated AChE on gold for the pesticidal electro sensing[J]. Electroanalysis,2008,20:402-409
    [67]Pedrosa V.A., Caetano J., Machado S. A. S., etal. Acetylcholinesterase immobilization on 3-mercapto propionic acid self assembled monolayer for determination of pesticides[J]. Electroanalysis,2007,19:1415-1420
    [68]邵会波,宋雅茹,王宁,童汝亭,自组装单分子膜在电化学电子转移过程中的应用[J].分析化学,2003,31(7),874-879.
    [69]Takehara K., Ide Y, An Ion-Gate Response of the Glutathione Monolayer Assembly Formed on a Gold Electrode. Part 2. The Effect of Alkaline Earth Ions. [J] Bio- electrochem. Bioenerg.,1991,29(1),113-120
    [70]Sukhorulov G.B., Donath E., Lichtenfeld H., etal. Layer-by-Layer self-assembly of polyelectrolytes on colloidal particles.[J].Colloid SurfaceA,1998,137:253-266
    [71]Donath E., Sukhorulov G B., Caruso F., etal. Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes[J].Angew Chem Int. Ed.,1998, 37(16):2201-2205
    [72]Sukhorulov G.B., Donath E., Davis S., etal. Stepwise polyelectrolyte assembly on particle surfaces:a novel approach to colloid design Polym[J]. Adv Technol.,1998, 9(10/11):759-767
    [73]Lvov Y., Ariga K., Kunitake T., etal. Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption[J].J Am Chem Soc.,1995, 117:6117-6123
    [74]Decher G., Lvov Y., Schmitt J., etal. New nanocomposite films for biosensors: layer-by-layer adsorbed films of polyelektrolytes, proteins or DNA.[J]. Biosensors Bioelectron,1994,9:677-684
    [75]Serizawa T., Takeshita H., Akashi M., Electrostatic adsorption of polystyrene nanospheres onto the surface of an ultrathin polymer film prepared by using an alternate adsorption technique.[J]. Langmuir,1998,14:4088-4094
    [76]Caruso F., Caruso M A., MEhwald H., Nanoengineering of inorganicand hybrid hollow spheres by colloidal templating[J]. Science,1998,282:1111-1114
    [77]Caruso F., Lichtenfeld H., Giersig M., etal. Assembly of Silica Nanoparticle-Polyelectrolyte Multilayer Films on Polystyrene Latices[J].J Am Chem Soc.,1998, 120:8523-8524
    [78]Caruso F., MEhwald H., Preparation and characterization of ordered nanoparticle and polymer composite multilayers on colloids[J]. Langmuir,1999,15:8276-8281
    [79]Caruso F., Caruso R. A., MEhwald H., Production of hollow microspheres from nanostructured composite particles[J]. Chem Mater,1999,11:3309-3314
    [80]黄怡,李梅,用层层自组装法制备PS/SnO2核壳微球[J].材料导报,2006,20(10):143-146
    [81]Caruso R. A., Susha A., Caruso F., Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres[J].Chem Mater,2001,13:400-409
    [82]Caruso F., Shi X. Y., Caruso R. A., etal Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core Particles. [J].Adv.Mater.,2001, 13(10):740-744
    [83]Caruso F., Susha A S., Giersig M., etal Magnetic Core-Shell Particles:Preparation of Magnetite Multilayers on Polymer Latex Microspheres.[J].Adv.Mater.,1999, 11(11):950-953
    [84]Caruso F., Spasova M., Susha A., etal. Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach[J]. Chem. Mater.,2001,13(1):109-116
    [85]Bizdoaca E. L., Spasova M., Farle M., etal. Magnetically directed self-assembly of submicron spheres with a Fe3O4 nanoparticle shell[J]. J. Magn. Mater.,2002, 240(1-3):44-46
    [86]Moya S., Donath E., Sukhorukov G. B., etal. Lipid Coating on Polyelectrolyte Surface Modified Colloidal Particles and Polyelectrolyte Capsules[J]. Macromolecules,2000,33(12):4538-4544
    [87]Dai Z. F., Voigt A., Leporatti S., etal. Layer-by-layer self-assembly of polyelectrolyte and low molecular weight species into capsules[J]. Adv.Mater, 2001,13(17):1339-1342
    [88]Radtchenko I..L., Sukhorukov G.. B., Leporatti S., etal. Assembly of Alternated Multivalent Ion/Polyelectrolyte Layers on Colloidal Particles. Stability of the Multilayers and Encapsulation of Macromolecules into Polyelectrolyte Capsules[J]. J.Colloid. Interf. Sci.,2000,230(2):272-280
    [89]Bernkop S. A., Hornof M., Guggi D., Thiolated chitosans[J]. Eur. J. Pharma. Biopharm.,2004,57(1):9-17
    [90]Kerec M., Bogataj M., Veranic P., etal. Permeability of pig urinary bladder wall: the effect of chitosan and the role of calcium[J]. Eur. J. Pharm. Sci.,2005,25(1):113-121
    [91]J essica D. S., Caroline L. S., One-Step Electrospinning of Cross-Linked Chitosan Fibers[J]. Biomacromolecules,2007,8(9):2665-2667
    [92]Luciano C., Felippe J. P., Thatyane M. N., etal. Chitosan as a Removing Agent of β-Lactoglobulin from Membrane Models[J]. Langmuir,.2008,.24(8):4150-4156
    [93]陈莉,李世庚,肖飞,等.温敏性壳聚糖共聚膜的制备与细胞吸附/脱附行为[J].高等学校化学学报,.2008,.29(5):1061-1064
    [94]Park I. K., Yang J., Jeong H., etal. Galactosylated chitosan as a synthetic ex-tracellular matrix for hepatocytes attachment[J]. Biomaterials,2003,24 (13) 2331-2337
    [95]Yeo J. H., Lee K. G., Kim H. C., etal. The Effects of Pva/Chitosan/Fibroin (PCF)-Blended Spongy Sheets on Wound Healing in Rats[J]. Biol Pharm. Bull. 2000,23(10):1220-1223
    [96]Zhou Y. S., Yang D. Z., Chen X. M., etal. Electrospun Water-Soluble Carboxyethyl Chitosan/ Poly (vinyl alcohol) Nanofibrous Membrane as Potential Wound Dressing for Skin Regeneration[J]. Biomacromolecules,2008,9(1):349-354
    [97]Kim D. J., Park I. S., Lee M. H., Tensile strength of aqueousbased alumina tapes using a PVP-PVA-gelatin cobinder[J].Ceram. Int,2005,31(4):577-581
    [98]Safavi A., Karimi M.A., Hormozi Nezhad M.R., et al Sensitive indirect spectrophotometric determination of isoniazid[J]. Spectrochim. Acta A,2004, 60(4):765-769
    [99]Acedo-Valenzuela M. I., Esp inosa-Mansilla A., Munoz De La Pena A., Canada-Canada F., Determination of antitubercular drugs by micellar electrokinetic capillary chromatography (MEKC)[J]. Anal. Bioanal. Chem.,2002,374(3): 432-444
    [100]Guermouche S., Guermouche M.H., Solid-phase Extractionand HPTLC Determination of Isoniazid and Acetylisoniazidin Serum[J]. J Chromatogr. Sci., 2004,42(5):250-253
    [101]Safavi A., Karimi M. A., Hormozi Nezhad M. R., Flow-injection determination of isoniazid using sodium dichloroisocyanurate-and trichloroisocyanuric acid-luminol chemilum inescence systems[J]. IL Farmaco,2004,59(6):481-486
    [102]Grekas N., Calokerinos A. C., Determination of thiamine by continuous flow chemiluminescence measurement[J]. Talanta,1990,37(11):1043-1048
    [103]Syropoulos A. B., Calokerinos A. C., Continuous-flow chemiluminometric determination of some tetracy-clines[J].Anal Chim. Acta.,1991,255(2):403-411

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700