利尿酸和柳氮磺吡啶与Ang Ⅱ阻滞抗肿瘤机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以激素非依赖性PC-3、激素依赖性LNCaP及胶质瘤C6细胞为研究对象,检测利尿酸(EA)与柳氮磺吡啶(SAS)、血管紧张素转换酶抑制剂(ACEI)、血管紧张素II受体拮抗剂(ARB)及联合用药对细胞存活率的影响,观察细胞增殖的抑制作用。通过检测LDH,GSH水平的变化;免疫组化方法观察前列腺组织AT1和VEGF的表达;RT-PCR检测CDK6、CyD1和P21、P27的表达;Western Blotting检测Bcl-2、Bax、P38、P65/P50、COX-2的蛋白表达,研究探讨其抗肿瘤的作用机制。
     本实验结果显示EA和SAS抑制PC-3细胞的增殖,EA和SAS单独及联合应用均能耗竭细胞内GSH。二者诱导细胞死亡可能是通过P38和NF-κB途径下调CyD1、CDK6,上调p21、p27基因的转录来实现的。EA和或ACEI和ARB(坎地沙坦)抑制PC-3、LNCaP及C6细胞的增殖,表明EA、ACEI和坎地沙坦的作用与细胞激素依赖性的关系不大。单独应用ACEI和坎地沙坦并不影响细胞内GSH的含量。EA分别和ACEI及坎地沙坦联合应用抑制PC-3细胞增殖的机制与EA和SAS不同,主要是通过P38途径调控细胞周期相关蛋白的表达而发挥其抑制作用。
     前列腺组织标本免疫组化染色证明腺上皮来源癌细胞不表达AT1、VEGF;通过对比观察EA和坎地沙坦对分别表达和不表达AT1、AT2的C6细胞和PC-3细胞的作用,发现坎地沙坦能抑制C6和PC-3细胞的增殖;坎地沙坦和EA共同作用于C6和PC-3细胞,Bax和P38蛋白表达增加,只有PC-3细胞P65蛋白表达下降。因此,本文认为坎地沙坦抑制细胞增殖可能与前列腺癌细胞AT1和AT2的表达无关,而是通过其他途径诱导细胞死亡的。
     综上所述,本实验结果表明EA和SAS、EA和ACEI/ABR对肿瘤细胞抑制作用机制不同,能否改变细胞内GSH可能是其主要原因之一。
The prostate cancer is a serious disease of male reproductive system. The morbility of the prostate cancer is relatively low in china, but it is raising more and more consciousness recently. Radical surgery is the main method of curing the early stage prostate cancer, however, most patients can not be cured due to delayed diagnosis. The androgen withdraw can diminish the tumor size and down-regulate the level of prostate specific antigen (PSA), but can’t prevent the conversion from hormone sensitive-prostate cancer to hormone refractory prostate cancer. There is no effective therapy for the hormone refractory prostate cancer.
     In many types of human tumor tissues, the intracellular GSH level can primarily or secondarily increased, and it is associated with the drugs resistance of tumor cells to the aldyl agents, adriamycin and platinum. EA is an electrophilic loop diuretics, it can bind with GSH, and decrease the intracellular GSH and it can also inhibite GSTs activity. The studies in vitro and in vivo have suggested that the decrease of intracellular GSH can prevent the drug resistance of chemotheropeutics.Sulfasalazine (SAS) can inhibite cystine uptake of Xc- of tumor cell, then decrease the synthesis of GSH, exhausts GSH, and results in the apoptosis.
     Angiotension can promote the proliferation of both normal and tumor cells. In some studies, angiotensin(Ang II) can promote the tumor cell proliferation and angiogenesis and can also inhibit the tumor cell differentiation Studies in vitro and in vivo have shown that ACE inhibitor (ACEI) angiotensin II receptor block (ARB)can inhibit the growth of tumor cell. But, whether it can reach to the effective dosage and their side effect need to discuss.
     In this study, Androgen dependent and indendent prostatic cancer cell was exposed to EA, SAS, captopril, lisinopril and candesartan, the proliferation rate of cell and tumor related gene and proteins was determined, the mechanisms of drug-induced proliferation inhibition of cells was discussed.
     Methods:
     Immunohistochemical staining was used to detect AT1 and VEGF expression in normal prostate, benign prostatic hyperplasia and prostatic cancer tissues. Prostatic cancer cell PC-3 (androgen dependent), LNCaP (androgen indendent) and glioma C6 was exposed to EA, SAS, captopril, lisinopril and candesartan, then it was analyzed that the proliferation rate of cell, the level of LDH and GSH. CDK6, CyD1, p21 and p27 mRNA expression was determined with RT-PCR method, Bcl-2, Bax, p38, p65, p50 and COX-2 exprission was detected using Western blotting analysis.
     Results:
     The cell viability and GSH level decreased, LDH release rate increased after exposure to EA or SAS, and coadministration of EA plus SAS resulted in the significan change of cell viability, GSH level and LDH release rate. EA or SAS exposure or coadministration of them did not change COX-2 exprission. EA and EA plus SAS results in the decreased expression of CDK6 and CyD1 and the increased expression of p21, p27 and p38, but SAS only inhibited CDK6 expression. p65 decreased and p50 did not change in tumor cells treated with EA, SAS alone or both drugs.The cell viability decreased after PC-3, LNCaP, C6 cells exposed to candesartan, captopril, lisinopril alone or plus EA. EA promoted LDH release and GSH exhaust, and candesartan, captopril, lisinopril intensified the LDH release of tumor cells induced by EA, but had no effect on the GSH exhaust. candesartan, captopril, lisinopril alone or coadministered with EA resulted in the downregulation of CDK6 and Bcl-2 of tumor cells. Increased p21, p38, bax and decreased p65 expression was found in PC-3 cells treated with EA plus candesartan. AT1 and AT2 expressed in C6 cells but not in PC-3 cells, and there was no distribution of angiotensinogen and ACE in both kinds of cells. EA upregulated AT1 and AT2 expression and downregulated Bcl-2 expression in C6 cells, candesartan intensified the AT2 but not AT1 expression. The results of immunohistochemical staining showed that AT1 and VEGF only expressed in the stroma but not in glandular epithelium of normal prostate, BPH and prostatic cancer tissues.
     Discussion:
     This study proven that cell death induced by EA and SAS is involved in the downregulation of cyclinD1 and CDK6, upregulation of p21 and p27 mediated by p38 and NF-κB but not COX-2.Proliferation inhibition of PC-3, LNCaP and C6 exposed to EA, ACEI and candesartan indicates that cell death is not related with the androgen dependent growth. GSH level is constant when cells exposed to candesartan, captopril, lisinopril alone, compared with the results of coadministration of EA and SAS, this indicates that proliferation inhibition or death of PC-3 cells is mainly involved in the expression of cyclin controlled by p38 signal pathway. Candesartan inhibite the proliferation of C6 and PC-3 cells with AT1 and AT2 and without respectively, bax and p38 increase and p65decrease in C6 and PC-3 cells after it exposed to candesartan. And all of these indicate that proliferation inhibition of tumor cells induced by candesartan is not mediated by AT1 or AT2.
     According to above, this study investigats that EA and SAS、EA and ACEI/ABR exert inhibiting mechanisms on tumor cells, which whether change intracellular GSH or not is possibly one of the main causes. It can be concluded that p38MAPK signal pathway is strongly involved in the proliferation inhibition of prostatic cancer cells when compared with NF-κB signal pathway.
引文
[1]Yoon SO, Yun CH, Chung AS. Dose effect of oxidative stress on signal transduction in aging. Mech Ageing Dev. 2002, 123 ( 12) : 1597 – 1604.
    [2]Garcia-Ruiz C, Colell A, Morales A,: Role of oxidative stress generated from the mitochondrial electron transport chain and mitochondrial glutathione status in loss of mitochondrial function studies with isolated mitochondria and rat hepatocytes. Mol Pharmacol 48:825–834, 1995.
    [3]Wall GC, Bigner D, Craig S: Ethacrynic acid and the sulfa-sensitive patient.Arch Intern Med 163:116–117, 2003.
    [4]Langmuir ME, Yang J-R, LeCompte KA, Durand RE: New thiol active fluorophores for intracellular thiols and glutathione measurement. In Slavik J (ed.).Fluorescence Microscopy and Fluorescent Probes. New York: Plenum Press,1996:229–234.
    [5]Zhang K, Chew M, Yang EB, Wong KP, Mack P: Modulation of cisplatin cytotoxicity and cisplatin-induced DNA cross-links in HepG2 cells by regulation of glutathione-related mechanisms. Mol Pharmacol 59:837–843, 2001.
    [6]Rizzardini M, Lupi M, Bernasconi S, Mangolini A, Cantoni L: Mitochondrial dysfunction and death in motor neurons exposed to the glutathione-depleting agent ethacrynic acid. J Neurol Sci 207:51–58, 2003.
    [7]Roychowdhury S, Wolf G, Keilhoff G, Horn TF: Cytosolic and mitochondrial glutathione in microglial cells are differentially affected by oxidative/nitrosative stress. Nitric Oxide 8:39–47, 2003.
    [8]Klifford S, Ookawa K, Kudo T, Asano J, Hayakari M, Tsuchida S: Characterization of cell death induced by ethacrynic acid in a human colon cancer cell line DLD-1 and suppression by N-acetyl-L-cysteine. Cancer Sci 94:886–893, 2003.
    [9]Kobo CS, Cowan KH Glutathione S-transferases and drug resistance. Cancer Cells 2(1):15–22 ,1990.
    [10]Armstrong DK, Gordon GB, Hilton J, Streeper RT, ColvinOM, Davidson NE Hepsulfam sensitivity in human breast cancer cell lines: the role of glutathione and glutathione S-transferase in resistance. Cancer Res 52(6):1416–1421,1992.
    [11]Coles B, Ketterer BThe role of glutathione and glutathionetransferases in chemical carcinogenesis. Crit Rev BiochemMol Biol 25(1):47–70,1990.
    [12]Hayes JD, McLellan LI Glutathione and glutathionedependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res 31(4):273–300, 1999.
    [13]Ji B, Ito K, Sekine S, Tajima A, Horie T Ethacrynic-acid induced glutathione depletion and oxidative stress in normal and Mrp2-deWcient rat liver. Free Radic Biol Med 37(11):1718–1729, 2004.
    [14]Keen JH, Jakoby WBGlutathione transferases. Catalysis of nucleophilic reactions of glutathione. J Biol Chem 253(16):5654–5657,1978.
    [15]Kuzmich S, Vanderveer LA, Walsh ES, LaCreta FP, Tew KD Increased levels of glutathione S-transferase transcript as a mechanism of resistance to ethacrynic acid. Biochem J 281(Pt1):219–224,1992.
    [16]Ploemen JH, Van OB, van Bladeren PJ Inhibition of rat and human glutathione S-transferase isoenzymes by ethacrynic acid and its glutathione conjugate. Biochem Pharmacol 40(7):1631–1635,1990.
    [17]Wahl C, Liptay S, Adler G, et.al. Sulfasalazine: a potent and specific inhibitor of nuclear factor kappa B. J Clin Invest.,101(5) : 1163 – 1174, 1998.
    [18]Liptay S, Fulda S, Schanbacher M, et al. Molecular mechanisms of sulfasalazine-induced T-cell apoptosis. Br J Pharmacol. 137(5) : 608 – 620,2002
    [19]Horton ND, Biswal SS, Corrigan LL, Bratta J, Kehrer JP: Acrolein causes inhibitor kappaB-independent decreases in nuclear factor kappaB activation inhuman lung adenocarcinoma (A549) cells. J Biol Chem 274:9200–9206, 1999.
    [20]Akahoshi T, Namai R, Sekiyama N, et al. Rapid induction of neutrophil apoptosis by sulfasalazine: implications of reactive oxygen species in the apoptotic process. J Leukoc Biol. 62(6) : 817 – 826 , 1997.
    [21]Leaper DJ,French B,Bennett A.Reduction by flurbiprofen of primary tumor growth and local metastasis formation in mice.Adv Prostaglandin Thromboxane Res 1980;6:591-593
    [22]ThunMJ ,N amboodiriMM , Calle EE, et al. Aspirin use and risk of fatal cancer. Cancer Res, 1993, 53: 1322
    [23]Peleg II,M aibach HT,Brown SH, et al. Asprin and nonsteroidal anti-inflammatory drug use and the risk of subsequent colorectal cancer. Arch Intern Med, 1994, 154: 394
    [24]Waddell WR, Loughry RW. Sulindac for polyposis of the colon. J Surg Oncol, 1983; 24: 83-87
    [25]Vane JR. Inh ibition of prostaglandin synthesis as a mechanism of action of the aspirin like drugs. Nature New Biol, 1971,231: 232
    [26]Weideman RA , Kelly KC ,Kellev CL ,Crver B. COX-2-specific inhibitors : prescribing patterns in a large managed cave health system and strategies to minimize costs. Am J Manag Care , 2002 ,8( 10) :869-877.
    [27]Masferrer JL ,Leahy KM , Koki AT ,et al.Antiangiogenic and ntitumoractivities of cyclooxygenase2 inhibitors. Cancer Res ,2000 ,60 :1306-1311.
    [28]Ogeawara A ,Arakawa T , Kaneda T ,et al.Fluid shear induced cyclooxygenase-2 expression is mediated by C/ EBP camp response element binding protein , and Apl in Osteoblastic MC3T3 E1 cells. J Bio Chem ,2001 ,276 :7048-7054.
    [29]Sheng HM , Shao TY, Dubois RN. KRasmediated in crease in cyclooxygenase-2 mRNA stability involves activation of theprotein kinase B. Cancer Res , 2001 , 61 : 2670-2675.
    [30]MajimaM, Hayshi I , Muramatsu M , et al. Cyclooxygenase-2 enhances basic fibro blastgrowth fact or induced angiogenesis throughinduction of vascular endothelial growth factor in rat sponge implants. Br J harmacol ,2000 ,130 :641-649.
    [31]GhoshAK, Hirasawa N , Niki H , et al. Cyclooxygenase-2 mediated angiogenesis incarrageen in induced granulation tissue inrats. J Pharmacol Exp Ther , 2000 , 295 :802-809.
    [32]Murakami M ,Naraba H , Tanioka T ,et al.Regulation of prostalg and in E2 biosynthesis by inducible memberane associatedprostagl and inE2 synthasetha tacts in concert with cyclooxygenase-2. J Bio Chem ,2000 ,275 :2783-2792.
    [33]Tomozawa S , Tsuno NH , Sunaml E , et al.Cyelooxygenase-2 over expression correlates with tumor recurrence especially hematogenous metastasis of colorectal cancer. Br JCancer ,2000 ,61 :324-328.
    [34]Prescott SM , Fitzpatrick FA. Cyclooxygenase 2 and carcinogenesis. Biochimicaet Biophsica Acta ,2000 ,1470 :69-78.
    [35]Masferrer JL ,Leahy KM ,Koki AT ,et al.Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res ,2000 ,60 :1306-1311.
    [36]Sheng H , Shao J , Morrow JD , et al. Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells.Cancer Res , 1998 ,58 (2) :362-366.
    [37]Jones MK, Wang H , Peskar BM , et al. Inhibition of angiogenesis by nonsteroidal antiinflammatory drugs : insight into mechanisms and implications for cancer growth and ulcer healing. Nat Med ,1999 ,5 (12) :1418-1423.
    [38]Sheng GG, Shao J , Sheng H , et al. A selective cyclooxygenase-2 inhibitor suppresses the growth of H-ras transformed rat intestinal epithelial cells. Gastroenterology , 1997 ,113 (6) :1883-1891.
    [39]Gilhooly EM , Rose DP. The association between a mutated ras gene and cyclooxygenase-2 expression in human breast cancer cell lines. Int J Oncol , 1999 ,15 (2) :267-270.
    [40] Rice PL , Washington M , Schleman S , et al. Sulindac sulfide inhibits epidermal growth factor2induced phosphorylation of extracellular regulated kinase 1P2 and Bad in human colon cancer cells.Cancer Res , 2003 ,63 (3) :616-620.
    [41]Camandola S , Mattson MP. Pro2apoptotic action of PAR-4 involves inhibition of NF2kappaB activity and suppression of BCL-2 expression. J Neurosci Res , 2000 ,61 (2) :134-139.
    [42]Hsu AL, Ching TT, Wang DS, Song X, Rangnekar VM, Chen CS (2000). The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2. J Biol Chem 275:11397–11403.
    [43]Zhang Z , DuBois RN. Par-4 , a proapoptotic gene , is regulated by NSAIDs in human colon carcinoma cells. Gastroenterology , 2000 ,118 (6) :1012-1017.
    [44]McGinty A , Chang YW, Sorokin A , et al. Cyclooxygenase-2 expression inhibits trophic withdrawal apoptosis in nerve growth factor differentiated PC12 cells. J Biol Chem , 2000 ,275 (16) :12095-12101.
    [45] Wikstrom K, J uhas M , Sjolander A. The antiapoptotic effect of leukotriene D4 involves the prevention of caspase 8 activation and Bid cleavage. Biochem J , 2003 ,371 ( Pt 1) :115-124.
    [46]Enari M , Sakahira H , Yokoyama H , et al. A caspase activated DNase that degrades DNA during apoptosis , and it sinhibitor ICAD. Nature , 1998 , 391 : 43-50.
    [47] Hu Y, Benedict MA , Ding L , et al. Role of cytochromec and dATP/ ATP hydrolysis in Apaf-1 mediated caspase-9 activation and apoptosis. EMBO J , 1999 , 18 (13) : 3586-3595.
    [48]Hatai T , Matsuzawa A , Inoshita S , et al. Execution of apoptosis signal regulating kinase 1 (ASK1) induced apoptosis by the mitochondria dependent caspase activation. J Biol Chem , 2000 , 275 (34) : 26576-26581.
    [49]Chandra D , Liu JW , Tang DG. Early mitochondrial activation andcytochromec upregulation during apoptosis. J Biol Chem , 2002 , 277 (52) : 50842-50854.
    [50]Eskes R , Desagher S , Antonsson B , et al. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol , 2000 , 20 ( 3) : 929-935.
    [51]Pawlowski J , Kraf t AS. Bax induced apoptotic cell death.Proc Natl Acad Sci USA , 2000 , 97 (2) : 529-531.
    [52]Barros MH , Netto L E , Kowaltowski AJ . H(2) O(2) generation in Saccharomyces cerevisiae respiratory pet mutant s : effect of cytochrome c. Free Radic Biol Med , 2003 ,35 (2) : 179-188.
    [53]Susin SA , Daugas E , Ravagnan L , et al. Two distinct pathways leading to nuclear apoptosis. J Exp Med , 2000 ,192 (4) : 571-580.
    [54]Perfettini JL , Reed JC , Israel N , et al. Role of Bcl22 fami2ly members in caspase2independent apoptosis during Chlamydia infection. Infect Immun , 2002 , 70 (1) : 55-61.
    [55]Adams JM , Cory S. Life or death decisions by the Bcl-2 protein family. Trends Biochem Sci , 2001 , 26 (1) : 61-66.
    [56]Panaretakis T , Pokrovskaja K, Shoshan MC , et al. Interferon alpha induced apoptosis in U-66 cells is associated with activation of the proapoptotic Bcl-2 family members Bak and Bax. Oncogene , 2003 , 22 (29) : 4543-4556.
    [57]Cheng EH , Sheiko TV , Fisher J K, et al. VDAC2 inhibits BA K activation and mitochondrial apoptosis. Science ,2003 , 301 (5632) : 513-517.
    [58]Soh JW, Mao YH , Kim MG, et al. Cyclic GMP meditates apoptosis induced by Sulindac derivatives via activation of cJ un NH-Terminal kinase1. Clin Cancer Res , 2000 , 6 (10) :4136-4144.
    [59]Zhang L , Yu J , Park BH , et al. Role of BAX in the apoptotic response to anticancer agents. Science , 2000 ,290 (5493) :989-992.
    [60]Sanchez-Alcazar JA , Bradbury DA , Pang L , et al. Cyclooxygenase (COX) inhibitors induce apoptosis in non small cell lung cancer throughcyclooxygenase independent pathways. Lung Cancer ,2003 ,40 (1) :33-44.
    [61]Wu GD. A nuclear receptor to prevent colon cancer. N Engl JMed , 2000 ,342 (9) :651-653.
    [62]He TC , Chan TA , Vogelstein B , et al. PPARdelta is an APC2 regulated target of nonsteroidal anti-inflammatory drugs. Cell , 1999 ,99 (3) :335-345.
    [63]Badawi AF , Badr MZ. Expression of cyclooxygenase-2 and peroxisome proliferators activated receptor gamma and levels of prostaglandin E2 and 15deoxy delta 12 ,14-prostaglandin J in human breast cancer and metastasis. Int J Cancer , 2003 ,103 (1) :84-90.
    [64]Wick M , Hurteau G, Dessev C. Peroxisome proliferators activate dreceptor gamma is a target of non-steroidal anti-inflammatory drugs mediating cyclooxygenase2 independent inhibtion of lung cancer cell growth. Mol Pharmacol , 2002 ,62 (5) : 1207-1214.
    [65]Chorg H, Vikis HG, Guan KL. Mechanisms of trgulating the Raf kinase family. Cell Signal, 2003, 15(5): 463~ 469
    [66]Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev, 2001, 81(2): 807~869
    [67]Stoneley M, Chappell SA, Jopling CL, et al.c-Myc protein synthesis is initiated from the internal ribosome entry segment during apoptosis. Mol Cell Biol, 2000, 20(4):1162~9
    [68]章必成, 李青, 叶菁, 等. P38MAPK 在介导TNF-α诱导大鼠胶质瘤细胞凋亡中的作用.中国癌症杂志, 2003,13(3):215~228
    [69]Lee EJ, Park IIG, Kang HS. Sudium salicylate induces apoptosis in HCT116 colorectal cancer cells through activation of P38MAPK. Int J Oncol, 2003, 23(2): 503~508
    [70]Suller AP, Maaser K, Barthel B, et al. Ligands of the peripheral benzodiazepine receptor induce apoptosis and cell cycle arrest in oesophagealcancer cells: involvement of the P38MAPK signaling pathway. Br J Cancer, 2003, 89(3):564~572
    [71]Elerjtoba-Johnson KS, Jenson SD, Abboa RT, et al.Involvement of multiple signaling pathyways in follicular lymphoma transformation: P38-mitogen-activated proter kinase as a target for therapy. Natl Acad Sci U S A, 2003,100(12): 7259~7264
    [72]Whitaccre CM, Feyes DK, Satoh T, et al. Photodynamic therapy with the phthalocyanine photosensitizer PC of SW480 human colon cancer xenografts in athymic mice.Clin Cancer Res, 2000, 6(5): 2021~2027
    [73]Hernandez M, Bayon Y, Sanchez Crespo M, et al.Signaling mechanisms involved in the activation of arachidonic acid metabolism in human astrocytoma cells by tumor necrosis factor-alpha: phosphrylition of cytosolic phospholipasse Aand transactivator of cyclooxygenase-2. J Neurochem, 1999, 73(4): 1641~1649
    [74]Kommann M, Ishiwata T, Kleeff J, et al.Fas and Fas-ligand expression in human pancreatic cancer. Ann Surg, 2000,231(3): 368~379
    [75]Kardosh A, Blumenthal M, Wang WJ, Chen TC, Schonthal AH. Differential effects of selective COX-2 inhibitors on cell cycle regulation and proliferation of glioblastoma cell lines. Cancer Biol Ther 2004 ; 3 :55 – 62.
    [76]Narayanan BA, Condon MS, Bosland MC, Narayanan NK, Reddy BS. Suppression of N-methyl-N-nitrosourea/testosterone-induced rat prostate cancer growth by celecoxib: effects on cyclooxygenase-2, cell cycle regulation,and apoptosis mechanism(s). Clin Cancer Res 2003 ; 9 : 3503 – 3513.
    [77]Grosch S, Tegeder I, Niederberger E, Brautigam L, Geisslinger G. COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib. FASEB J 2001 ; 15 :2742 – 4.
    [78]Maier TJ, Schilling K, Schmidt R, Geisslinger G, Grosch S. Cyclooxygenase-2 (COX-2)-dependent and independent anticarcinogenic effectsof celecoxib in human colon carcinoma cells. Biochem Pharmacol 2004 ; 67 : 1469 – 78.
    [79]DuBois RN , Shao J , Tsujii M , et al. G1 delay in cells overexpressing prostaglandin endoperoxide synthase-2. Cancer Res , 1996 ,56(4) :733-737.
    [80]Smith ML , Hawcroft G, Hull MA. The effect of nonsteroidal anti-inflammatory drugs on human colorectal cancer cells : evidence of different mechanisms of action. Eur J Cancer , 2000 , 36 (5) :664-674.
    [81]Qiao L , Shiff SJ , Rigas B. Sulindac sulfide alters the expression of cyclin proteins in HT-29 colon adenocarcinoma cells. Int J Cancer , 1998 ,76 (1) :99-104.
    [82]Lindberg H , Nielsen D , J ensen BV , et al . Angiotensin converting enzyme inhibitors for cancer t reatment ? Acta Oncol ,2004 ,43 (2) ∶142-152.
    [83]Groot-Besseling RR , Ruers TJ , van Kraat s AA , et al . Antitumor activity of a combination of plasminogen activator and captopril in a human melanoma xenograf t model . Int J Cancer ,2004 ,112 (2) ∶329-334.
    [84]Noguchi R , Yoshiji H , Kuriyama S , et al . Combination of interferon beta and t he angiotensin converting enzyme inhibitor , perindopril , attenuates murine hepatocellular carcinoma development and angiogenesis. Clin Cancer Res ,2003 ,9 (16 Pt 1) ∶6038-6045.
    [85]Yasumaru M , Tsuji S , Tsujii M , et al . Inhibition of angiotensin Ⅱactivity enhanced t he antitumor effect of cyclooxygenase-2 inhibitors via insulin like growt h factor I receptor pat hway. Cancer Res ,2003 ,63(20) ∶6726-6734.
    [86]Yoshiji H , Yoshii J , Ikenaka Y, et al . Suppression of t he rennin angiotensin system attenuates vascular endot helial growt h factor media ted tumor development and angiogenesis in murine hepatocellular carcinoma cells. Int J Oncol ,2002 ,20 (6) ∶1227-1231.
    [87]Yoshiji H , Kuriyama S , Fukui H. Perindopril possible use in cancer therapy. Anticancer Drugs ,2002 ,13 (3) ∶221-228.
    [88]Walt her T , Menrad A , Orzechowski HD , et al . Differential regulation of in vivo angiogenesis by angiotensin Ⅱ receptors. FASEB J ,2003 ,17 (14) ∶2061-2067.
    [89]Molteni A , Ward WF , Ts’ao CH , et al . Cytostatic properties of some angiotensin Ⅰconverting enzyme inhibitors and of angiotensin Ⅱtype Ⅰreceptor antagonist s. Curr Pharm Des ,2003 ,9 (9) ∶751-761.
    [90]Fujita M , Hayashi I , Yamashina S , et al . Blockade of angiotensin AT1a receptor signaling reduces tumor growt h , angiogenesis , and metastasis. Biochem Biophys Res Commun ,2002 ,294 (2) ∶441-447.
    [91]Cook JL , Zhang Z , Re RN. In vit ro evidence for an int racellular site of angiotensin action. Circ Res ,2001 ,89 (12) ∶113821146.
    [92]Morbidelli L , Parenti A , Giovannelli L , et al . B1 receptor involvement in the effect of bradykinin on venular endot helial cell proliferation and potentiation of FGF-2 effect s. Br J Pharmacol ,1998 ,124 (6) ∶1286-1292.
    [93]Rajagopalan S , Kurz S , Munzel T , et al . Angiotensin Ⅱmediated hypertension in t he rat increases vascular superoxide production via membrane NADH/ NADPH oxidase activation. Cont ribution to alterations of vasomotor tone. J Clin Invest ,1996 ,97 (8) ∶1916-1923.
    [94]Li X , Zhang H , Soledad Conrad V , et al . Bleomycin2induced apoptosis of alveolar epit helial cells requires angiotensin synt hesis de novo.Am J Physiol Lung Cell Mol Physiol ,2003 ,284 (3) ∶L501-L507.
    [95]Akishita M , Ito M ,Lehtonen J Y,et al. Expression of the AT2 receptor developmentally programs ext racellular signal regulated kinase activety and influences fetal vasculargrowth. J Clin Invest ,1999 ,103 (1) :63
    [96]Fujimoto Y, Sasaki T , Tsuchida A , et al. Angiotensin Ⅱtype Ⅰreceptor expression in human pancreatic cancer and growth inhibition by angiotensin Ⅱtype Ⅰreceptor antagonist . FEBS Lett ,2001 ,495 (3) :197
    [97]Sujuli Y,Ruiz-Oetrga M,Lorenjl O ,et al. Inflammation and angiotensin Ⅱ[J] Int J Biochem Cell Biol , 2003 , 35 :881- 900.
    [98]Sutamoto T,Wada A ,Maeda K, et al. Angiotensin Ⅱtype 1 receptor antagonist decreases plasma levels of tumor necrosis factor alpha , interleukin26 and soluble adhesion molecules in patients with chronic heart failure[J ] . J Am Coll Cardiol ,2000 , 35 :715-721.
    [99]Kobie J J , Wu R S , Kurtr A ,et al. Transforming growth factor βinhibits the antigen fresenting functions and antitumor activity of dendritic cell vaccines[J ] . Cancer Res , 2003 , 63 :1860-1864.
    [100]Kawamata H ,Furihata T,Omotehara F ,et al. Identification of genes differentially expressed in a newly isolated human metastasizing esophageal cancer cell line , T. Tn-AT1 by cDNA microarray[J ] . Cancer Sci , 2003 , 94 :699-706.
    [101]Yoshij I H , Ikenaka Y, et al. Suppression of the Rennin angiotensin system attenuates vascular endothelial growth factor mediated tumor development and angiogenesis in murine hepatocellular carcinoma cells[J ] . Int J Oncol , 2002 , 20 :1227-1231.
    [102]Egami K, Murohara T, shimada T, et al. Role of host angiotensin Ⅱtype 1 receptor in tumor angiogenesis and growth[J ] . JClin Invest ,2003 , 112 :67-75.
    [103]Noguchi N , Kawashiri S , Tanaka A ,et al. Effects of fibroblast growth inhibitor on proliferation and metastasis of oral squamous cell carcinoma[J] . Oral Oncol , 2003 , 39 :240-247.
    [104]Shime H , Kariya M, Oorii A , et al. Tranilast inhibits the proliferation of uterine leiomyoma cells in vitro through G1 arrest associated with the induction of p21 (waf1) and p53 [J ] . J ClinEndocrinol Metab , 2002 , 87 :5610-5617.
    [105]Baldwin AS Jr. The NFkB and IkB proteins : New discoveries and insights. Annu Rev Immunol ,1996 ,14 :649-681.
    [105]Ohta T, YI S ,Amaya K,et al. Intrinsic angiotensin Ⅱ generating system in human pancreatic cancer tissues [J]. GanTo Kagaku Ryoho , 2002 ,29 :2325-2328.
    [106]Arrieta O , Guevara P , EscobarR E , et al. Blockage of angiotensin Ⅱtype I receptor decreases the synthesis of growth factors and induces apoptosis in C6 cultured cells and C6 rat glioma [J ] . Br J Cancer , 2005 ,92 :1247-1252.
    [107]Uemura H, Ishiguro H, Nakaigawa N, et al. Angiotensin II receptorblocker shows antiproliferative activity in prostate cancer cells:A possibility of tyrosine kinase inhibitor of growth factor. MolCancer Ther 2003;2:1139–1147.
    [108]Siebenlist U, Franzoso G, Brown K, et al. Structure, regulation and function of NF-κB[J]. Annu Rev Cell Biol,1994,10:405-455.
    [109]Tsuchida o Y, Sasaki T, FujimotA, et al. Angiotensin II type 1 receptor expression in human pancreatic cancer and growth inhibition by angiotensin II type 1 receptor antagonist. FEBS Lett 2001;495(3):197–200.
    [110]Fujioka S, Sclabas GM, Schmidt C, Frederick WA, Dong QG, Abbruzzese JL, Evans DB, Baker C, Chiao PJ. 2003.Function of nuclear factor kappaB in pancreatic cancer metastasis. Clin Cancer Res 9:346–354.
    [111]Huang S, DeGuzman A, Bucana CD, Fidler IJ. 2000a.Nuclear factor-kappaB activity correlates with growth,angiogenesis, and metastasis of human melanoma cells in nude mice. Clin Cancer Res 6:2573–2581.
    [112]Kikuchi E, Horiguchi Y, Nakashima J, Kuroda K, Oya M,Ohigashi T, Takahashi N, Shima Y, Umezawa K, Murai M. 2003. Suppression of hormone-refractory prostate cancer by a novel nuclear factor kappaB inhibitor in nude mice. Cancer Res 63:107–110.
    [113]Mukhopadhyay A, Bueso-Ramos C, Chatterjee D, et al. Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines.Oncogene 2001,20:7597–7609.
    [114]Uemura H, Hasumi H, Ishiguro H , et al. Renin-angiotensin system is an important factor in hormone refractory prostate cancer. Prostate 2006;66:822–830
    [115]Cosaka T, Miyajima A, Takayama E , et al. AngiotensinII type I receptor angtagonist as an angiogenic inhibitor in prostate cancer. Prostate 2007,67:41–49.
    [116]Chakraborty M, Qiu SG, Vasudevan KM, Rangnekar VM.. Par-4 drives trafficking and activation of Fas and Fasl to induce prostate cancer cell apoptosis and tumor regression. Cancer Res 2001,61:7255–7263.
    [117]Narang VS, Pauletti GM, Gout PW, et al. Sulfasalazine-induced reduction of glutathione levels in breast cancer cells: enhancement of growth–inhibitory activity of Doxorubicin. Chemotherapy. 2007; 53(3): 210-217.
    [118]Siebenlist U, Franzoso G, Brown K, et al. Structure, regulation and function of NF-κB[J]. Annu Rev Cell Biol,1994,10:405-455.
    [119]Weber A, Soong G, Bryan R, etal Activation of NF-κB in airway epithelial cells is dependent on CFTR trafficking and Cl- channel function [J] Am J Physiol Lung Cell Mol Physiol 2001 281: L71–L78.
    [120]Fujioka S, Sclabas GM, Schmidt C, etal..Function of nuclear factor kappaB in pancreatic cancer metastasis. Clin Cancer Res.2003 9:346–354.
    [121] Yoon SO, Yun CH, Chung AS. Dose effect of oxidative stress on signal transduction in aging. Mech Ageing Dev. 2002 , 123 ( 12) : 1597 – 1604.
    [123]Mukhopadhyay A, Bueso-Ramos C, Chatterjee D,etal. 2001. Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines.Oncogene 20:7597–7609.
    [124]Nishimura K, Nonomura N, Satoh E, etal. 2001.Potential mechanism for the effects of dexamethasone on growth of androgen-independent prostate cancer. J Natl Cancer Inst 93:1739–1746.
    [125]Catz SD, Johnson J L. Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene 20:7342–7351.
    [126]Chakraborty M, Qiu SG, Vasudevan KM, etal. Par-4 drives trafficking and activation of Fas and Fasl to induce prostate cancer cell apoptosis and tumor regression. Cancer Res 2001,61:7255–7263.
    [127]Narang VS, Pauletti GM, Gout PW, et al. Sulfasalazine-induced reduction of glutathione levels in breast cancer cells: enhancement of growth–inhibitoryactivity of Doxorubicin. Chemotherapy. 2007; 53(3): 210-217.
    [128]Vesce S, Jekabsons MB, Johnson-Cadwell LI, et al. Acute glutathione depletion restricts mitochondrial ATP export in cerebellar granule neurons. J Biol Chem. 2005, 280(46) : 38720 – 38728. Chem.2000,275:35091-35097.
    [129]Yoon SO, Yun CH, Chung AS. Dose effect of oxidative stress on signal transduction in aging. Mech Ageing Dev. 2002 , 123 ( 12) : 1597 – 1604.
    [130]CasanovasO,MiroF, EstanyolJM,etal.Osmootic stress regulates the stability of cyclinD1 in a p38SAPK2 dependent manner.J Biol Chem, 2000, 275 : 35091 – 35097.
    [131]Thmoshc,DunlopMG,StarkLA.P38-mediatedinactivationofcyclicd/cyclin-dependent kinase4 stimulatees nucleoiar translocation of RELA and apoptosis in colorectal cancer cells. Cancer Res 2007,67:1660-1669.
    [132]David J Chris A, Jay Sr,etal NF-kB and cell-cycle regulation: the cyclin connectionCytokine and Growth Factor Reviews 12 (2001) 73–90
    [133]Junghan Suh and Arnold B. Rabson NF-kB Activation in Human Prostate Cancer:Important Mediator or Epiphenomenon? J Cellr Biochemistry 91:100–117 2004.
    [134]Uemura H, Ishiguro H, Nakaigawa N, et al. Angiotensin II receptorblocker shows antiproliferative activity in prostate cancer cells:A possibility of tyrosine kinase inhibitor of growth factor. MolCancer Ther 2003;2:1139–1147.
    [135]Uemura H, Nakaigawa N, Ishiguro H, et al. Antiproliferative efficacy of angiotensin II receptor blocker for prostate cancer.Curr Cancer Drug Target 2005;5:307–323.
    [136]Uemura H, Ishiguro H, Nagashima Y, et al.. Antiproliferative activity of an giotensin II receptor blocker through cross-talk between stromal and epithelial prostate cancer cells. Mol Cancer Ther 2005;4:1699–1709.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700