NaCl胁迫对结荚期毛豆生理特性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛豆[Glycine max(L)Merrill],又称菜用大豆,为一种营养丰富、经济效益高的蔬菜。毛豆主要的生产、消费及出口地区在我国长江中下游和东南沿海地区,它已经成为该地区重要的创收农产品。近年来,土壤盐渍化问题日益突出,严重影响了该地区的毛豆生产,因此研究毛豆的耐盐生理具有重要的意义。目前,国内外已经对野生大豆以及栽培大豆苗期和种子的耐盐生理进行了大量的研究,但对毛豆耐盐生理的研究却鲜有报道。本研究以‘理想95-1'毛豆为试材,采用基质培的栽培方法,比较了结荚期毛豆在NaCl胁迫下叶片及籽粒中有关生理特性的变化,旨在揭示结荚期毛豆对盐胁迫的适应机理,主要研究结果如下:
     1.研究了100 mmol·L~(-1)的NaCl胁迫对结荚期毛豆叶片抗氧化酶活性、脯氨酸和丙二醛含量的影响,结果表明:NaCl胁迫后,毛豆叶片的SOD和POD活性均显著上升,其中SOD比POD活性上升幅度大,而CAT的活性却显著下降。NaCl胁迫后,毛豆叶片的脯氨酸含量显著升高,并随胁迫时间的延长呈递增趋势;叶片的MDA含量在NaCl胁迫初期显著升高,并在胁迫后9d达到峰值,随后开始下降。
     2.研究了100 mmol·L~(-1)的NaCl胁迫对结荚期毛豆叶片脯氨酸和多胺含量的影响。结果表明,NaCl胁迫后,毛豆叶片的三种形态腐胺(Put)的含量先升高后下降,而脯氨酸含量在胁迫后期明显的提高,同时不同形态的腐胺(Put)在胁迫后期都有向亚精胺(Spd)和精胺(Spm)的转化的趋势,游离态腐胺(Put)最为明显。
     3.研究了100 mmol·L~(-1)的NaCl胁迫对结荚期毛豆抗氧化酶活性、丙二醛含量和毛豆籽粒干、鲜重的影响。结果表明:NaCl胁迫后,毛豆籽粒的干鲜重显著降低;SOD和CAT活性均较对照植株有所下降,其中SOD比CAT活性下降的幅度大;POD活性在NaCl胁迫初期显著升高,并在胁迫后3d达到峰值,随后开始下降,但是始终高于对照植株毛豆籽粒的POD活性;而MDA的含量在处理初期低于对照,但是到了胁迫后6d以后MDA含量显著低于对照。
     4.研究了100mmol·L~(-1)的NaCl胁迫对结荚期毛豆多胺含量和脯氨酸的影响。结果表明,NaCl胁迫后,毛豆籽粒的脯氨酸随处理时间的延长表现出先升高后下降的趋势,且处理植株比未处理植株显著提高;盐胁迫下,处理植株毛豆籽粒不同形态的多胺含量表现出升高的趋势:游离态Spm,结合态Put、Spd、Spm以及束缚态Put、Spd、Spm均显著高于未处理植株。
Vegetable soybean [Glycine max (L.) Merrill] is the nutritious vegetable with high profit. It has been a very important agricultural product in the areas where are middle-and-downriver of Yangtze River and south-and-east littoral of China. The areas are also the main areas for production, consumption and export of vegetable soybean. Soil salinization has seriously effected the production of vegetable soybean in their main production areas presently, so it is very important to study the salt tolerance physiology in vegetable soybean. There are lots of studies reported on salt tolerance physiology of G. soja and G. max in seedlings and seeds, but less reported in vegetable soybean. Using 'Lixiang95-1' as material, we compared the differences between the contrast and the salt stress vegetable soybean in physiological characteristics of leaves and seeds during the pod-filling stage. It helped us to find out the mechanism of vegetable soybean adapting to salt stress during the pod-filling stage. The results of this study were as follows:
     1. We studied the effects of 100 mmol·L~(-1) NaCl stress on activities of antioxidant enzymes, contents of proline and malondiadehyde (MDA) in leaves of vegetable soybean during the pod-setting stage. The results showed that the activities of superoxide dismutase (SOD) and peroxidase (POD) was significantly increased under NaCl stress, and the former was more significantly, but the opposite was CAT activities. The content of proline was significantly increased under salt-stress, and the longer NaCl stress prolonged the more significantly the contents increased. The content of MDA early was also significantly increased, peaked at the 9th day, and then it came down.
     2. The effects of 100 mmol·L~(-1) NaCl stress on the contents of Pro and PAs in leaves of vegetable soybean during the pod-filling stage. The results showed that the contents of three modal Put were increased firstly and than decreased under salt stress, but the content of Pro was increased significantly. The different modal Put changed to Spd and Spm during later stag, significantly did the free Put content.
     3. We studied the effects of 100 mmol·L~(-1) NaCl stress on activities of antioxidant enzymes, the MDA content, the fresh weight and the dry weight in seeds of vegetable soybean during the pod-setting stage. The results showed that the fresh weight and dry weight were significantly decreased; the activities of SOD and CAT were decreased under salt stress, and the former was more significant; the POD activity was significantly increased under salt stress early stage, which peaked at the 3rd day and then decreased, but the activity in the salt stress was higher than the contrast; the MDA content in the salt stress is lower than the contrast early, but higher than the contrast after the 6th day.
     4. The effects of 100 mmol·L~(-1) NaCl stress on the content of Pro and PAs in seeds of vegetable soybean during the pod-filling stage. The results showed that , the Pro content was increased firstly then decreased, which was higher in the salt stress than in the contrast; the contents of the three modal PAs were increased in seeds of vegetable soybean under salt stress: the contents of free Spm, conjugated Put, Spd, Spm and bound Put, Spd, Spm were significantly increased under NaCl stress.
引文
1.艾希珍,于贤昌.低温胁迫下黄瓜嫁接苗与自根苗某些物质含量的变化.植物生理学通讯,1999,(1):26-28
    2.白丽萍,周宝利,李宁,等.嫁接茄子对NaCl胁迫的反应.植物生理学通讯,2005,41(1):31-33
    3.常汝镇,陈一舞,邵桂花,等.盐对大豆农艺性状及籽粒品质的影响,大豆科学,1994,13(2):101-105
    4.陈云昭,王玉国.在盐胁迫下获得的大豆愈伤组织及再生植株的生化反应,大豆科学,1992,11(1):70-73
    5.陈一舞,常汝镇,邵桂花,等.盐胁迫下大豆超氧物歧化酶的变化.作物学报,1994,20(3):363-367
    6.陈一舞,邵桂花,常汝镇.盐胁迫对大豆幼苗子叶各细胞器超氧物歧化酶(SOD)的影响.作物学报,1997,23(2):214-219
    7.程美廷.温室土壤盐分积累、盐害及其防治.土壤肥料,1990,(1):1-4
    8.陈国安.钠对棉花生长及钾钠吸收的影响.土壤,1992,24(4):201-204
    9.陈淑芳,朱月林,刘友良,等.NaCl胁迫对番茄嫁接苗叶片ABA和多胺含量的影响.园艺学报,2006,33(1):58-62
    10.陈淑芳,朱月林,刘友良,等.NaCl胁迫对番茄嫁接苗保护酶活性、渗透调节物质含量及光合特性的影响.园艺学报,2005,32(4):609-613
    11.戴伟民,蔡润,潘俊松,等.盐胁迫对番茄幼苗生长发育的影响.上海农业学报,2002,18(1):58-62
    12.杜军华,冯桂莲,高榕.盐胁迫对蚕豆(Vicia faba L.)叶绿素a和b含量的影响.青海师范大学学报(自然科学版),2000,(4):36-38
    13.段辉国,袁澍,刘文娟,等.多胺与植物逆境胁迫的关系.植物生理学通讯,2005,41(4):531-536
    14.冯忻,于贤昌,郭恒俊,等.低温胁迫对黄瓜嫁接苗和自根苗保护酶活性的影响.山东农业大学学报(自然科学版),2002,33(3):302-304
    15.高洪波,刘艳红,郭世荣,等.低氧胁迫下钙对网纹甜瓜幼苗多胺含量及多胺氧化酶活性的影响.植物生态学报,2005,29(4):652-658
    16.盖钧镒,王明军,陈长之.中国毛豆生产的历史渊源与发展.大豆科学,2002,21(1):7- 13
    17.郭文忠,刘声锋,李丁仁,等.设施蔬菜土壤次生盐渍化发生机理的研究现状与展望.土壤,2004,36(1):25-29
    18.何生根,黄学林,傅家瑞.植物的多胺氧化酶.植物生理学通讯,1998,34(3):213-218
    19.何文寿.设施农业中存在的土壤障碍及其对策研究进展.土壤,2004,36(3):235-242
    20.韩天富,盖钧镒.世界菜用大豆生产、贸易和研究的进展.大豆科学,2002,21(4):278-284
    21.蒋武生,芦翠乔,杨延明,等.盐对番茄植株生长和细胞膜透性的影响.河南农业科学,1992,(6):23-25
    22.李淑娟,杨传平,刘桂丰,等.HAL1基因转化烟草及其耐盐性.东北林业大学学报,2004,32(4):47-49
    23.李卫欣,陈贵林,赵利,等.NaCl胁迫下不同南瓜幼苗耐盐性研究.植物遗传资源学报,2006,7(2):192-196
    24.李玉全,张海艳,沈法富.作物耐盐性的分子生物学研究进展.山东科学,2002,15(2):8-15
    25.李合生.植物生理生化实验原理和技术.高等教育出版社,2000:260-261
    26.林植芳,李双顺,林桂珠.过氧化物在衰老叶片和叶绿体中的积累与膜脂过氧化的关系.植物生理学报,1988,14(1):12-16
    27.刘慧英,朱祝军,吕国华.低温胁迫对嫁接西瓜冷害抗性和活性氧保护系统的影响.应用生态学报,2004,15(4):659-662
    28.刘正鲁,朱月林,胡春梅,等.氯化钠胁迫对嫁接茄子生长、抗氧化酶活性和活性氧代谢的影响.应用生态学报,2007,18(3):537-541
    29.刘友良,毛才良,汪良驹.植物耐盐性研究进展,植物生理学通讯,1987,(4):1-7
    30.刘友良,汪良驹.植物对盐胁迫的反应和耐盐性.见余叔文、汤章城主编,植物生理与分子生物学(第二版),科学出版社,1998:752-769
    31.陆静梅,刘友良.中国野生大豆盐腺的发现.科学通报.1998,43(19):2074-2079
    32.林栖凤.耐盐植物研究.科学出版社,2004:11-64
    33.林栖凤,李冠一.植物耐盐性研究进展.生物工程进展,2000,20(2):20-26
    34.刘宛,胡文玉,谢浦纬,等.NaCl胁迫及外源自由基对离体小麦叶片O_2~(·-)和膜脂过氧化的影响.植物生理学通讯,1995,(1):26-29
    35.吕福堂,司东霞.日光温室土壤盐分积累及离子组成变化的研究.土壤,2004,36(2):208-210
    36.毛桂莲,许兴,徐兆祯.植物耐盐生理生化研究进展.中国生态农业学报,2004,12(1):43-46
    37.潘瑞炽.多胺是植物生长发育的调节物.植物生理通讯,1985,21(6):63-68
    38.潘宛虹.作为叶绿体H_2O_2分解系统关键酶的抗坏血酸过氧化物酶.植物生理学通讯,1994,30(6):452-458
    39.邵桂花,常汝镇,陈一舞,等.大豆耐盐性遗传的研究.作物学报,1994,20(6):721-726
    40.邵雪玲,毛歆,郭一清.生物化学与分子生物学实验指导.武汉大学出版社,2003:159-160
    41.施木田,陈如凯.锌硼营养对苦瓜产量品质与叶片多胺、激素及衰老的影响.应用生态学报,2004,15(1):77-80
    42.石元春.盐碱土改良.中国农业出版社,1986
    43.史庆华,朱祝军,刘慧英,等.等渗盐胁迫对番茄保护酶、H~+-ATPase、H~+-PPase活性的影响.植物生理与分子生物学学报,2004,30(3):311-316
    44.史跃林.黄瓜的抗盐调控及其机理研究.西南农业大学博士研究生论文,1996
    45.童有为,陈淡飞.温室土壤次生盐渍化的形成和治理途径研究.园艺学报,1991,18(2):159-162
    46.王爱国,罗广华,邵从本,等.大豆种子超氧物歧化酶的研究.植物生理学报,1983,9(1):77-83
    47.王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系.植物生理学通讯,1990,26(6):55-57
    48.王汉忠,赵福庚,张国珍.多胺延缓植物衰老的机制.山东农业大学学报,1995,26(2):227-232
    49.王冉,陈贵林,梁静,等.盐胁迫对黑仔南瓜和白仔南瓜种子萌发特性的影响.河北农业大学学报,2005,28(5):42-44
    50.王仁雷,华春,罗庆云,等.盐胁迫下水稻叶绿体中Na~+、Cl~-积累导致叶片净光合速率下降.植物生理与分子生物学学报,2002,28(5):385-390
    51.王艳青,陈雪梅,李悦,等.植物抗逆中的渗透调节物质及其转基因工程进展.北京林业大学学报,2001,23(4):66-70
    52.夏天翔,刘兆普,王景艳.盐分和水分胁迫对菊芋幼苗离子吸收及叶片酶活性的影响.西北植物学报,2004,24(7):1241-1245
    53.许祥明,叶和春,李国凤.植物抗盐机理的研究进展.应用与环境生物学报,2000,6(4):379-387
    54.徐云岭,余叔文.植物适应盐逆境过程中的能量消耗.植物生理学通讯,1990,(6):70-73
    55.严小龙,郑少玲,连兆煌.水稻耐盐机理的研究(Ⅰ)不同基因型植株水平耐盐性初步比较.华南农业大学学报,1992,13(4):6-11
    56.阎秀峰,孙国荣,李晶,等.碱性盐胁迫下星星草幼苗中几种渗透调节物质的变化.植物研究,1999,19(3):374-375
    57.杨立飞,朱月林,胡春梅,等.NaCl胁迫下营养液栽培嫁接西瓜生长动态及叶片生理生化特性的研究.西南农业学报,2005,18(4):439-443
    58.杨淑慎,高俊凤.高等植物叶片的衰老.西北植物学报,2001,21(2):215-220
    59.姚春娜,裴新梧,孔英珍,等.盐胁迫下小麦新品系89122的抗氧化酶活性和内源ABA 含量变化的研究.兰州大学学报(自然科学版),2001,37(4):76-79
    60.於丙军,吉晓佳,刘俊,等.氯化钠胁迫下野生和栽培大豆幼苗体内的多胺水平变化.应用生态学报,2004,15(7):1223-1226
    61.於丙军,罗庆云,刘友良.盐胁迫对盐生野大豆生长和离子分布的影响.作物学报,2001,27(6):776-780
    62.於丙军,章文华.NaCl对大麦幼苗根系蛋白质和游离氨基酸含量的影响.西北植物学报,1997,17(4):439-442
    63.余叔文,汤章城.植物生理与分子生物学(第二版).科学技术出版社,1998:752-769
    64.郁万文,曹帮华,吴丽云.盐胁迫下刺槐无性系生长和矿质营养平衡研究.西北植物学报,2005,25(10):2097-2102
    65.曾韶西,王以柔,李美如.不同胁迫预处理提高水稻幼苗抗寒性期间膜保护系统的变化比较.植物学报,1997,39(4):308-314
    66.张殿忠,汪沛洪,赵会贤.测定小麦叶片游离脯氨酸含量的方法.植物生理学通讯,1990,(4):62-65
    67.张宪法,于贤昌,张振贤.土壤水分对温室黄瓜结果期生长与生理特性的影响.园艺学报,2002,29(4):343-347
    68.张新春,庄炳昌,李自超.植物耐盐性研究进展.玉米科学,2002,10(1):50-56
    69.张殿忠,汪沛洪,赵会贤.测定小麦叶片游离脯氨酸含量的方法.植物生理学通讯,1990,26(4):62-65
    70.赵福庚,陈诚,刘友良.盐胁迫下大麦根系多胺代谢与其耐盐性的关系.植物学报,2003,45(3):295-300
    71.赵军,赵玉田,梁博文.寒胁迫过程中冬小麦叶片组织可溶性蛋白质含量的变化和功能.中国农业科学,1994,27(2):57-61
    72.郑丽锦,张学英,葛会波,等.果树盐.胁迫生理生化特性的研究进展.河北农业大学学报,2003,(26):41-44
    73.郑群,宋维慧.国内外蔬菜嫁接技术研究进展.长江蔬菜,2000,(8):1-4
    74.周宝利,林桂荣,高新艳,等.嫁接茄子黄萎病抗性与苯丙烷类代谢的关系.沈阳农业大学学报,2000,31(1):57-60
    75.周桃华.NaCl胁迫对棉子萌发及幼苗生长的影响.中国棉花,1995,22(5):11-12
    76.朱晓军,杨劲松,梁永超,等.盐胁迫下外源钙素对水稻幼苗光合作用及其相关特性的影响.中国农业科学,2004,37(10):1497-1503
    77.庄炳昌,徐豹,路琴华.萌发过程中野生大豆(G.soja)和栽培大豆(G.max)超氧物歧化酶的变化.大豆科学,1988,7(3):241-243
    78.Ahmed S,Nawata E,and Hosokawa M.Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging.Plant Sci.,2002,163:117-123
    79.Alscherr G A,Donahue L D,and Cramer C L.Reactive oxygen species and antioxidants:relationships in green cells.Physiol Plant.,1997,100:224-233
    80.Alscher R G,Erturk N,Heath L S.Role of superoxide dismutases(SODs) in controlling oxidative stress in plants.J Exp Bot,2003,53:1131-1341
    81.Ana S C,Maria M M,Francisco P A.The rootstock effect on the tomato salinity response depends on the shoot genotype.Plant Sci.,2002,162:825-831
    82.Apse M P,Aharon G S,Snedden W A,et al.Salt tolerance conferred by over expression of a vacuolar Na~+/H~+ anti-port in Arabidopsis.Science,1999,285:1256-1258
    83.Asao T,Shimizu N,Ohta K.Effect of rootstocks on the extension of harvest period of cucumber(Cucumis sativus L.) growth in non-renewal hydroponics.J Jpn Soc Hort Sci.,1999,68:589-602
    84.Athwal D S,Huber S C.Divalent cations and polyamines bind to loop 8 of 14-3-3 protein,modulating their interaction with phosphorylated nitrate reductase.Plant J.,2002,29:119- 130
    85. Aziz A, Martin-Tanguy J, Larher F. Salt stress-induced proline accumulation and changes in tyramine and polyamine levels are linked to ionic adjustment in tomato leaf discs. Plant Sci., 1999,145: 83-91
    86. Aziz A, Martin-Tanguy J, Larher F. Salt-induced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodium chloride. Physiol Plant., 1998, 104: 195-202
    87. Balestrasse K B, Gallego S M, Benavides M P, et al. Polyamines and proline are affected by cadmium stress in nodules and roots of soybean plants. Plant and Soil, 2005, 270: 343-353.
    88. Bohnert H J, Jensen R G. Strategies for engineering water stress tolerance in plants. Trends Biotech., 1996,14: 879-897
    89. Bowler C, Van Montagu M, Inze D. Super-oxide dismutase and stress tolerance. Ann Rev Plant Physiol Plant Mol Biol., 1992,43: 83—116
    90. Borsani O, Valpuesta .V, Botella M A. Developing salt tolerance plants in a new century: a molecular biology approach. Plant Cell Tissue and Organ Culture, 2003, 73: 101 — 115
    91. Bouchereau A, Aziz A, Larher F, et al. Polyamines and environmental challenges: recent development. Plant Sci., 1999, 140: 103—125
    92. Bowler C, Van C W, Montagu M, et al. Superoxide dismutase in plants. Crit Rev Plant Sci., 1994, 13: 199-218
    93. Bray E A. Plant responses to water deficit. Trends Plant Sci., 1997, 2: 48—54
    94. Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Physiol Plant., 1992,98: 1222-1227
    95. Cayuela E, Estan M T, Parra M, et al. NaCl pretreatment at the seedling stage enhances fruit yield of tomato plants irrigated with salt water. Plant and Soil, 2001, 230: 231 —238
    96. Chen T C, Ching H K. Senescence of rice leaves. Plant cell physiol. 1992, 32: 935-941
    97. Chen T H, Murata N. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol, 2002, 5: 250—257
    98. Comba, ME, Benavides, et al. Relationship between nitrogen fixation and oxidative stress induction in nodules of salt-treated soybean plants. Phyton Buenos Aires., 1997, 60: 115 —126
    99. Cuartero J, Fernandez M R. Tomato and salinity. Sci Hort., 1999, 78: 83—125
    100. Dasgan H Y, Aktas H, Aktas H, et al. Determination of screening techniques to salinity tolerance in tomatoes and investigation of genotype responses. Plant Sci., 2002, 163: 695— 703
    
    101. Davenport S B, Gallego S M, Benavides M P, et al. Behaviour of antioxidant defense system in the adaptive response to salt stress in Helianthus annuus L. cells. Plant Growth Regul., 2003, 40:81-88
    
    102. Delfine S, Alvino A, Concettavillani M. Restrictions to dioxide conductance and photosynthesis in spinach leaves recovering from salt stress. Physiol Plant., 1999,119: 1101—1106
    
    103. Delgado, M J, Ligero, et al. Effects of salt stress on growth and nitrogen fixation by pea, fababean, comman bean and soybean plants. Soil Biology and Biochemistry. 1994, 26: 371- 376
    
    104. Drolet G, Dumbroff E B, Legge R L, et al. Radical scavenging properties of polyamines. Phytochem., 1986, 25: 367-371
    
    105. Durand, M. and Lacan, et al. Sodium partitioning within the shoot of soybean. Physiol Plant., 1994,91:65-71
    
    106. Elsayed, H. and Kirkwood R C. Solute accumulation in soybean (Glycine max. L.) cells adapted to NaCl salinity. Phyton Horn., 1992, 31: 233—249
    
    107. Elsamad, HMA, Shaddad, et al. Salt tolerance of soybean cultivars, Biologia Plantarum, 1997, 39: 263-269
    
    108. Elsheikh, EAE, Wood, et al., Respose of chickpea and soybean rhizobia to salt: influence of carbon source, temperature and pH, Soil Biology and Biochemistry, 1989,21: 883—887
    
    109. Evans D E, Williams L E. P-type calcium ATPases in higher plants: biochemical, molecular and functional properties. Biochim Biophys Acta., 1998, 9: 1—25
    
    110. Evans P T, Malmberg R L. Do polyamines have roles in plant development? Annu Rev Plant Physiol Plant Mol Biol., 1989,40: 235-269
    
    111. Fernandez-Ballester G, Martinez V, and Ruiz D. Changes in inorganic and organic solutes in citrus growing under saline stresses. J Plant Nutri., 1998,21: 2497—2514
    
    112. Galston A W. Polyamines as modulators of plant development. Biosci, 1983, 33: 382—388
    
    113. GalstonAW. Polyamines. Annu. Rev Biochem., 1984, 53: 749—790
    
    114. Galston A W, Kaur-Sawhney R K. Polyamines in plant physiology. Physiol Plant., 1990, 94: 406-410
    115. Greenway H, Munns R. Mechanisms of salt tolerance in non-halophytes. Annu Rev Plant Physiol., 1980,31: 149-190
    116. Halfter U, Ishitani M, and Zhu J K. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium binding protein SOS1. Proc Natl Acad Sci USA., 2000, 97: 3735-3740
    117. Huang, C Y., Salt stress induces lipid degradation and lipid phase transition in plasma membrane of soybean plants. Taiwania, 1996,41(2): 96-104
    118. Huang, C Y, Chen, and Y M. Role of glutathione reductase and related enzymes in salt-tolerant mechanism of soybean plants grown under salt-stress condition. Taiwania, 1995, 40(1): 21 -34
    119. Kim T E, Kim S K, and Han T J, et al. ABA and polyamines act independently in primary leaves of cold-stressed tomato (Lycopersicon esculentum). Physiol Plant., 2002, 115: 370— 376
    120. Krackhardt, M, and Guerrier, et al. Effect of osmotic and ionic stresses on proline and organic acid contents during inbibition and germination of soybean seeds, Journal of Plant Physiology, 1995, 146: 725-730
    121. Krishnamurthy R, Bhagwat K A. Polyamines as modulators of salt tolerance in rice cultivars. Physiol Plant., 1989, 91: 500-504
    122. Lacan, D. and Durand M. Na~+-K~+exchange at the xylem/symplast boundary. Physiol plant., 1996,110:705-711
    123. Liang Y C. Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant and Soil, 1999, 29: 217—224
    124. Liu J, Zhu J K. A calcium sensor homolog required for plant salt tolerance. Science, 1998, 280: 1943-1945
    125. Maathuis F J M, Sanders D. Contrasting roles in ion transport of two K~+-channel types in root cells of Arabidopsis thaliana. Planta., 1995, 197: 456—464
    126. Maathuis F J M, Sanders D. Mechanism of high-affinity potassium uptake in roots of Arabidopsis thaliana. Proc Natl Acad Sci USA., 1994, 91: 9272—9276
    127. Maiale S, Sanchez D H, and Guirado A, et al. Spermine accumulation under salt stress. Physiol plant.,2004, 161(1): 35—42
    128. Maria T E, Maria M M, and Francisco P A. Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. J Exp Bot., 2005, 56: 703—712
    129. Matsuzoe N. Resistance of tomato grafted on solanum rootstocks to bacterial wilt. J Jpn Soc Hort Sci., 1991, 60(suppl. 2): 176-177
    130. Maurel C. Aquaporins and water permeability of plant membranes. Annu Rev Plant Physio Plant Mol Biol., 1997,48: 399-429
    131. Mittle R R. Oxidative stress, antioxidants and stress tolerance. Trend Plant Sci., 2002, 7: 405-410
    132. Moghaieb R E A, Tanaka N, and Saneoka H. Expression of betaine aldehyde dehydrogenase gene in transgenic tomato hairy roots leads to the accumulation of glycine betaine and contributes to the maintenance of the osmotic potential under salt stress. Soil Sci Plant Nutr., 2000,46:873-883
    133.Navarro-Avino J P, Bennet A B. Do untranslated introns control Ca~(2+)-ATPase isoform dependence on CaM, found in TN and PM? Biochem Biophys Res Commun., 2003, 312: 1377-1382
    
    134. Oeda K, Salinas J, and Chua N H. A tobacco bZip transcription activator (TAF-1) binds to a G-box-like motif conserved in plant genes. EMBO J., 1991,10: 1793—1802
    135. Panda S K, Khan M H. Salt stress influences lipid peroxidation and antioxidants in the leaf of anindica rice (Oryza sativa L.). Physiol Mol Biol., 2003, 9(2): 273—278
    136. Qiu Q S, Guo Y, and Dietrich M A, et al. Regulation of SOS1, a plasma membrane Na~+/H~+ exchanger in Arabidopsis by SOS2 and SOS3. Proc Natl Acad Sci USA., 2002, 99: 8436— 8441
    137. Sanchez D H, Cuevas J C, Chiesa M A, et al. Free spemidine and spermine content in Lotus glaber under long-term salt stress. Plant Sci., 2005, 168: 541—546
    138. Sairam R K, Rao K V, Srivastava G C. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress. Plant Sci., 2002, 163: 1037—1046
    139. Sairam R K, Srivastava G C. Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci., 2002, 162(6): 897-904
    140. Schroeder J I, Ward J M, Gassmann W. Perspectives on the physiology and structure of inward-rectifying K~+ channels in higher plants: Biophysical implications for K uptake. Annu Rev Biophys Biomol Struct., 1994, 23: 441 -471
    141. Serraj, R, Roy, et al. Salt stress induces a decrease in the oxygen uptake of soybean nodules and in their permeability to oxygen diffusion, Physiologia Plantarum, 1994, 91(2): 161-168
    142. Shalata A, Tal M. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol Plant., 1998,104:169-174
    143. Shen W Y, Nada K, and Tachibana S J. Involvement of polyamines in the chilling tolerance of cucumber cultivars. Physiol Plant., 2000,124: 431-439
    144. Shi D C, Sheng Y M, and Zhao K F. Stress effects of mixed salts with various salinities on the seedlings of Aneurolepidium chinese. Acta Botonica Sinica., 1998,40(12): 1136—1142
    145. Shi H, Ishitani M, Wu S J, et al. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na~+/H~+ antiporter. Proc Natl Acad Sci USA., 2000, 97: 6896—6901
    146. Surjus, A and Durand, M., Lipid changes in soybean root membranes in response to salt treatment. Journal of Experimental Botany, 1996,47(294):17—31
    147. Trotel P, Bouchereau A, Niogret M F, et al. The fate of osmo-accumulated proline in leaf discs of rape (Brassica napusL.) incubated in a medium of low osmolarity. Plant Sci., 1996, 118: 31-45.
    148. Thomson, W W, Farady, et al., Salt glands. In: Baker, DA, and Hall, JL. (des.), Solute transport in plant cells and tissues. Longman Scientific and Technical, Essex., 1998, 498—537
    149. Venema K, Belver A, Marin-Manzano M C, et al. A novel intracellular K~+/H.+antiporter related to Na~+/H~+ antiporters is important for K~+ ion homeostasis in plants. J Biol Chem., 2003, 278(25): 22453-22459
    150. Very A A, Sentenac H. Molecular mechanisms and regulation of K~+ transport in higher plants. Annu Rev Plant Biol., 2003, 54: 575-603
    151. Wu S J, Ding L, Zhu J K. SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell, 1996, 8: 617—627
    
    152. Yeo A R, Flowers T J. Accumulation and localization of sodium ions within the shoots of rice (Oryza sativa L.) varieties differing in salinity resistance. Physiol Plant Copenhage, 1982, 56: 343-348
    
    153. Zapata P J, Serrano M, Pretel M T, et al. Polyamines and ethylene changes during germination of different plant species under salinity. Plant Sci., 2004, 167: 781 —787
    154. Zelith I. Further studies on O_2~- resistant photosynthesis and photorespiration in a tobacco mutant with the enhanced catalase activity. Physiol plant., 1990, 92: 352-357
    155. Zenoff, A M, Hilal, et al. Changes in roots lipid composition and inhibition of the extrusion of protons during salt stress in two genotypes of soybean resistant or susceptible to stress. Plant and Cell Physiology, 1994, 35(5): 729-735

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700