南极罗斯海地区粪土沉积物的元素同位素地球化学与企鹅古生态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球变化持续冲击着人类的居住环境,为了更好地理解各种驱动因子对气候系统的作用过程和机理以预测未来的变化趋势,就非常有必要对过去地球环境的变化进行系统地研究,达到以古论今论未来的目的。阿德利企鹅是南大洋食物链的顶级捕食者,广泛分布于南极地区,其生存状况受到多种环境因素的影响,是研究古生态对气候环境变化响应的理想对象。罗斯海地区是目前阿德利企鹅在南极最大的聚居地之一,同时也拥有着较长的企鹅居住历史,这些古生态信息有可能在粪土沉积物中得到较好的保存。利用这些珍贵的地质样品,通过定年、元素地球化学、同位素生态地质学等多种手段,本研究将讨论企鹅粪的输入对沉积物地球化学性质和同位素组成的影响,并从时间尺度上恢复企鹅的古生态,在空间记录对比的基础上,探讨企鹅数量变化对气候和环境变化的响应。
     1.罗斯海粪土沉积剖面年代序列的确立
     我们利用210Pb-137Cs和MS14C定年共同确定了罗斯海地区受企鹅粪影响的MB4、MB6、CL2、BI、CC、MB1、MR1、MR2等8个沉积剖面的年代序列。核素的分析结果显示剖面中过剩21opb的零点均可以达到,CRS模式适用于该地区表层沉积物年轻年代学的计算。沉积剖面过剩210pb的平均通量为5.88Bq/m2a,具有南极的区域性特征。137Cs活度较低,且多在剖面表层达到最大值,可能是受到气候变暖后冰川融水中蓄积137Cs输入的影响。根据平均沉积速率外推和210Pb与AMS14C定年结果拟合,MB4、MB6、CL2、BI、CC、MB1、MR1、MR2底部的年龄被分别确定为394、1281、572、1656、1796、574、1631、1530AD。
     2.企鹅粪土沉积物中生物标型元素的识别及其生态环境意义
     海鸟是海陆间物质传输的纽带,对海岸地带的元素地球化学循环有着重要的影响。我们测定了受企鹅粪影响的MB4, MB6、CL2、BI、CC、MB1、MR1、MR2等8个粪土沉积剖面中23种元素的含量。根据多种统计方法,在与环境介质样品对比分析基础上,我们发现企鹅粪是剖面中有机质和营养物质的主要来源,并且对As, Cd、Cu、F、P、S、Se、Zn这8种元素有着很强的富集作用,说明它们是该地区企鹅粪土标型元素组合。通过与南极其他地区、北极地区、南中国海西沙群岛地区海鸟生物标型元素的比较,我们发现它们在全球尺度上都存在重叠, As、Cd、Cu、P、Se、 Zn为共通的标型元素组合。这项比较工作加深了我们对于海鸟作为生物传输介质在海陆地球元素化学循环中所起作用的认识,为开展古环境和古气候重建工作奠定了基础。
     3.粪土沉积物中Hg元素对生物群落演替的记录及初步污染评价
     对MB4、MB6、CL2. BI、CC、MB1、MR1、MR2等8个剖面中总汞(Hg)含量的测试和分析显示Hg在沉积物中与TOC呈显著正相关关系,说明有机质是Hg的载体。企鹅粪中高含量的Hg以及剖面中Hg和企鹅粪土标型元素P之间的高度相关性证明了在受企鹅影响程度强烈的MB6、BI、CC、MR1、MR2中企鹅粪是Hg的主要来源。MB6底层海豹毛的出现伴随着Hg的升高,很可能是由于海豹粪的输入所引起的,显示出沉积物中的Hg具有区分不同营养级栖息物种(海豹与企鹅)的潜力。剖面中Hg富集系数的计算结果表明由于企鹅和海豹等生物传输介质的影响,罗斯海地区的粪土沉积物对Hg存在显著的富集,但通过比照沉积物环境质量基准,我们发现沉积物中的Hg还不足以对当地生物群落造成负面影响。
     4.沉积物中稀土元素的来源和地球化学分布特征
     我们对MB4、MB6、BI剖面中稀土元素的含量进行了分析,发现其在剖面上存在显著波动。通过对环境介质样品中稀土元素含量的测定以及剖面中稀土元素与岩性元素、企鹅粪土标型元素的相关性分析,我们认为沉积物中的稀土元素主要来源于基岩风化产物,而来自企鹅粪和藻类的生物源稀土元素则非常少。进一步对球粒陨石标准化后稀土元素分布模式中样品曲线斜率以及Ce、Eu异常的分析,揭示出沉积物中基岩风化产物、企鹅粪、藻类三个组分的混合过程是影响剖面中稀土元素分布的主要控制因素。我们利用端元混合模型计算了剖面中来自三个组分的稀土元素量,计算结果很好的区分出了来自基岩风化产物的稀土元素,并且能在一定程度上指示企鹅粪对沉积剖面影响的大小。总体来看,沉积物中的稀土元素与企鹅粪土标型元素呈相反的分布趋势,可以用来辅助恢复历史时期企鹅数量变化。
     5.粪土沉积物中碳、氮同位素地球化学特征及其生态环境意义
     我们对MB4、MB6、CL2、BI、CC这5个剖面沉积物碳、氮(分为酸处理和未处理两个组分)同位素的组成进行了分析。沉积物的碳同位素组成显示出明显的企鹅粪—藻类混合来源特征,使用同位素混合模型,我们重建了沉积剖面上不同深度企鹅粪输入和藻类生物量的大小。酸处理和未处理组分的氮同位素差值(△15N)在强烈受到企鹅粪影响的剖面较大,而在受到企鹅粪影响较小的剖面则不显著。分析结果表明企鹅粪和藻类是沉积物中主要的氮源,通过对两个特定剖面氮型态的分析我们发现在寒冷干燥的南极地区,企鹅粪沉积后的分解和氨挥发作用会造成显著的同位素分馏效应,使得沉积物中企鹅粪来源的无机氮同位素大幅上升,沉积物中无机氮占总氮的比例指示剖面受到企鹅粪影响的程度,也是控制△15N大小的关键因素。以上分析成功解释了其他剖面氮同位素组成的特征,因此我们认为在罗斯海地区,△15N是比传统δ15N更加有效的判断沉积物受企鹅影响程度的指标。
     6.罗斯海地区企鹅古生态的恢复
     企鹅对气候和环境变化反应敏感,因此常被用作指示古气候变化的生物指标。我们以MB4、MB6、CL2、MB1这4个沉积剖面中所确定的企鹅粪土标型元素为基础重建了罗斯岛Cape Bird地区过去1600年的企鹅数量变化。不同剖面的企鹅数量高峰在1400AD存在着明显的接替现象,很可能是区域内部企鹅迁徙的结果。接替现象在MB4剖面中沉积时间为1400~1900AD的砂质层中表现最为明显,多种理化指标的分析显示这一段沉积物并不是在淡水湖相环境下形成的,而是带有明显的海洋性来源特征。我们认为在小冰期寒冷气候的作用下罗斯岛的冰量积累上升,造成岛屿的地壳均衡下沉,海岸线向内陆推进。生存环境的剧烈变化使得栖息在Cape Bird中部海岸的企鹅放弃了它们的聚居地,向北部或者中部海拔更高的位置迁徙,显示出气候和环境的变化对企鹅生态的强烈影响。对采自Cape Crozier、Cape Royds和蒲福岛的较短沉积剖面中企鹅数量变化记录的恢复显示最近200年由于气候变暖,企鹅的数量在不断上升,这一结论与现代的观测资料一致。
     7. Marble Point海豹生态初探
     于Marble Point剖面中提取的海豹毛定年结果显示其年龄约为2700a BP左右,对应罗斯海南部地区温暖气候下的“海豹适宜期”。
Global climate change is now laying substantial impact on the environment we are living in. To better understand the process and mechanism that how various drivers may influence the climate system of the earth, it is essential to study the historical change in the environment comprehensively, so that precise prediction for future climate change can be conducted. Adelie penguin is widely distributed around Antarctica, as one of the top predators in the Southern Ocean. The survival of Adelie penguin is heavily affected by many environmental factors, making the species an ideal target for research on the response of paleo-ecology to climate and environmental changes. The Ross Sea region has one of the biggest Adelie penguin concentrations nowadays with a long history of penguin occupation, and the ornithogenic sediments in the rookeries contain useful information of the past. In this study, we will analyze the samples with various techniques to interpret the influence that penguins imposed on the geochemical and isotopic composition of the sediments, and discuss the response of paleo-ecology of Adelie penguin to historical climate and environmental changes.
     1. Establishment of chronologies for the sediment profiles from the Ross Sea region
     210Pb-137Cs dating and AMS14C dating were employed to determine the chronologies of the ornithogenic sediment profiles from the Ross Sea region. Analysis for the activity of the radionuclides indicated that the zero point of210Pbex could always be reached in the profiles, and CRS mode was applied to calculate the age of the upper layers. Average flux of210Pbex in the profiles of this region is5.88Bq/m2a, similar to that of Antarctica region. Activity of137Cs in the sediments was generally low, and the maximum was often found in the surface, probably caused by additional137Cs brought by melt water from adjacent glaciers due to the warming climate in recent decades. According to the calculation of average deposition rate and combined analysis of210Pb-137Cs dating and AMS14C dating, the bottom layer of MB4, MB6, CL2, BI, CC, MB1, MR1and MR2were found dating back to394,1281,572,1656,1796,574,1631,1530AD, respectively.
     2. Identification of penguin bio-elements in the ornithogenic sediments and the eco-environmental implications
     Seabirds have substantial influence on geochemical circulation of elements, serving as a link for substance exchange between their foraging area and colonies. We investigated the elemental composition of eight penguin-affected sediment profiles including MB4, MB6, CL2, BI, CC, MB1, MR1and MR2. Among the three main constituents of the sediments (including weathered bedrock, guano and algae), guano was the main source of organic matter and nutrients, causing selective enrichment of several elements in each of the sediment profiles. In the23measured elements, As, Cd, Cu, F, P, S, Se and Zn were identified as penguin bio-elements in the Ross Sea region through statistical analysis and comparison with local end-member environmental media such as weathered bedrock, fresh guano and fresh algae. Compared with research in other parts of Antarctic, Arctic, and South China Sea, we found apparent overlap of avian bio-elements including As, Cd, Cu, P, Se, and Zn. Information on the composition and behavior of bio-elements in seabird guano on a global scale, and the role that bio-vectors play in the geochemical circulation between land and sea, will facilitate future research on avian ecology and palaeoclimatic reconstruction.
     3. Ecological succession recorded in sedimentary Hg and the preliminary pollution assessment
     Total mercury (Hg) concentrations were determined in profile MB4, MB6, CL2, BI, CC, MB1, MR1and MR2. Our data show significant positive correlations between Hg concentration and total organic carbon (TOC) content in all the profiles, suggesting the predominant role of organic matter (OM) as a Hg carrier. High Hg content in guano and a positive correlation between Hg and guano bio-element (phosphorus, P) in the ornithogenic sediment cores (MB6, BI, CC, MR1and MR2) indicate that Hg was strongly influenced by guano input. The bottom sediments of core MB6with seal hairs contain relatively high Hg. This increase is attributed to the input of seal excrement, suggesting that sedimentary Hg may be an effective trophic-level indicator from seals to penguins. The enrichment factors (EF) for Hg were calculated and the results indicated apparent Hg enrichment in the sediment cores from the Ross Sea region caused by bio-vectors such as penguins and seals. But sediment quality guidelines (SQGs) showed the total amount of Hg in the study area still rarely cause adverse effect to the local bio-communities.
     4. Distribution and sources of rare earth elements in ornithogenic sediments from the Ross Sea region, Antarctica
     Concentrations of rare earth elements (REEs) were determined in profile MB4, MB6and BI. The distribution of REEs in each profile fluctuated with depth. REEs measured in environmental media and analysis on the correlations of∑REE lithological elements and∑REE-bio-elements in the profiles indicated that sedimentary REEs were mainly from weathered bedrock in this area, and the non-crustal bio-genetic REEs from guano and algae were minor. Further discussion on the slopes and Ce and Eu anomalies of chondrite-normalized REE patterns indicated that a mixing process of weathered bedrock, guano and algae was the main controlling factor for the fluctuation of REEs with depth in the sediments. An end-member equation was developed to calculate the proportion of REEs from the three constituents in the sediments. The calculation functioned well in estimating bedrock-derived REEs and the magnitude of ornithogenic influence in different profiles. In general, REEs in the ornithogenic sediments showed anti bio-element patterns and thus can be used as an additional proxy to reconstruct historical penguin populations.
     5. Environmental implication of carbon and nitrogen isotopic composition in ornithogenic sediments
     We analyzed δ13C, and δ15N in both acid-treated and untreated sediments from profile MB4, MB6, CL2, BI and CC that were influenced by penguin guano. Carbon isotopic composition in the ornithogenic sediments showed a mixing feature of guano and algae. Using a2-member isotope mixing equation, we were able to reconstruct the historical change of guano input and algal bio-mass. The difference between treated and untreated δ15N (△15N) was significant in three profiles which were heavily impacted by guano, and minor in two profiles with less guano influence. We determined that total nitrogen in the sediments is primarily derived from penguin guano and algae, and used an N-species test to explain the variation of△15N in two profiles. It was found that post-depositional decomposition and ammonia volatilization, which have important roles in the cold and arid environment of Antarctica, would render an elevated δ15N through kinetic isotopic fractionation in the inorganic nitrogen from guano. N-species analysis revealed that the percentage of inorganic nitrogen in total nitrogen, indicative of the degree of guano influence, is the key factor controlling△15N in the sediments. This hypothesis successfully explained nitrogen isotopic composition in the remaining three sediment profiles. We conclude that the parameter A15N, rather than traditionally used untreated δ15N, can be taken as an effective proxy for the strength of avian influence on ornithogenic sediments in the Ross Sea region.
     6. Paleo-ecology of penguins and seals in the Ross Sea region and the comparison with ice-free areas around Antarctica
     Due to the sensitivity to environmental changes, penguins in Antarctica are widely used as bio-indicators in paleoclimate research. On the basis of bio-element assemblages identified in ornithogenic sediments, we reconstructed the historical penguin population change at Cape Bird, Ross Island, for the past1600years. Clear succession of penguin population peaks were observed in different profiles at about1400AD, which suggested a high probability of internal migration within this region. The succession was most obviously marked by a sand layer lasting from1400to1900AD in profile MB4. Multiple physical/chemical analysis indicated this layer was not formed in a lacustrine environment, but was marine-derived. We believe that colder condition during the little ice age (LIA) would lead to increased ice mass on Ross Island, causing isostatic subsidence and inland-ward movement of the shoreline, which in turn resulted in the abandonment of the colonies. The penguins migrated from the coastal area of mid Cape Bird northward and to higher ground as documented in other sediment profiles, indicating an ecological response to global climate change and subsequent geological effects in Antarctica. Several shorter profiles from Cape Crozier, Cape Royds and Beaufort Island showed that the penguin population only stated to rise in the most recent200years due to a warming climate, corresponding to various geological and instrumental records.
     7. Preliminary research on seal ecology at Marble Point
     The seal hairs excavated from Marble Point, Victoria Land recorded the presence of seals at around2700a BP, in accordance with the "seal optimum" with warmer climate and open water.
引文
陈宜瑜.(1999).中国全球变化的研究方向.地球科学进展,14(4),319-323.
    刘东生.(2009).黄土与干旱环境:安徽科学技术出版社.
    葛全胜,陈泮勤,方修琦,林海,叶谦.(2004).全球变化的区域适应研究:挑战 与研究对策.地球科学进展,19(4),516-524.
    郭进义,洪业扬.(1998).过去全球变化研究中环境地球化学进展.SCIENTIAGEOLOGICA SINICA,33(3).
    李家洋,陈泮勤,葛全胜,方修琦.(2005).全球变化与人类活动的相互作用.地球科学进展,20(4),371-377.
    林景星,张静,史世云,剧远景,林防.(2003).生态环境地质学——21世纪新兴的地球学科.地质通报,22(7).
    刘东生.(2002).黄土与环境.西安交通大学学报:社会科学版,22(4),7-12.
    秦大河.(2011).中国气候与环境演变.文明(12).
    任国玉.(1996).与当前全球增暖有关的古气候学问题.应用气象学报,7(3),361-370.
    孙立广,刘晓东.(2006).南极无冰区生态与环境变化在粪土层中的记录.气候变化研究进展,2(2),57-62.
    孙立广,刘晓东,谢周清,赵俊琳.(2002).南极菲尔德斯半岛古海蚀龛沉积的古环境记录.极地研究,14(3).
    孙立广、谢周清、刘晓东、尹雪斌、朱仁斌,2006.南极无冰区生态地地质学.科学出版社.
    魏文寿,尚华明, 陈峰.(2013).气候研究中不同时期的资料获取与重建方法综述.气象科技进展:英文版(3).
    徐冠华,葛全胜,宫鹏,方修琦,程邦波,何斌,徐冰.(2013).全球变化和人类可持续发展:挑战与对策.科学通报,58(21),2100-2106.
    姚檀栋,王宁练,任贾文,侯书贵,效存德,叶玉江.(2002).国际冰芯与气候环境研究新进展.冰川冻土,24(6),806-811.
    周秀骥.(2004).对地球系统科学的几点认识.地球科学进展,19(4),513-515.
    Ainley, D. G., Clarke, E. D., Arrigo, K., Fraser, W. R., Kato, A., Barton, K. J., Wilson, P. R. (2005). Decadal-scale changes in the climate and biota of the Pacific sector of the Southern Ocean,1950s to the 1990s. Antarctic Science,17(02),171-182.
    Ballard, G., Toniolo, V., Ainley, D. G., Parkinson, C. L., Arrigo, K. R.,& Trathan, P. N. (2010). Responding to climate change:Adelie penguins confront astronomical and ocean boundaries. Ecology,91(7),2056-2069.
    Ballerini, T., Tavecchia, G., Olmastroni, S., Pezzo, F.,& Focardi, S. (2009). Nonlinear effects of winter sea ice on the survival probabilities of Adelie penguins. Oecologia, 161(2),253-265.
    Baroni, C., Orombelli, G. (1994). Holocene glacier variations in the Terra Nova Bay area (Victoria Land, Antarctica). Antarctic Science,6(04),497-505.
    Bartlein, P. J., Webb III, T., Fleri, E. (1984). Holocene climatic change in the northern Midwest:pollen-derived estimates. Quaternary Research,22(3),361-374.
    Bentley, M. J., Fogwill, C. J., Kubik, P. W., Sugden, D. E. (2006). Geomorphological evidence and cosmogenic 10Be/26Al exposure ages for the Last Glacial Maximum and deglaciation of the Antarctic Peninsula Ice Sheet. Geological Society of America Bulletin,118(9-10),1149-1159.
    Bentley, M. J., Hodgson, D., Smith, J., Cofaigh, C., Domack, E., Larter, R., Roberts, S. J., Brachfeld, S., Leventer, A., Hjort, C. (2009). Mechanisms of Holocene palaeoenvironmental change in the Antarctic Peninsula region. The Holocene,19(1), 51-69.
    Bjorck S., Hjort C., Ingolfsson O., Zale R. and Ising J. (1996a). Holocene deglaciation chronology from lake sediments, In Lopez Martinez J.L., Thomson M.R.A. and Thomson J.W., editors, Geomorphological map of Byers Peninsula, Livingston Island. British Antarctic Survey Geomap Series, Sheet5-A.
    Bjorck, S., Olsson, S., Ellis-Evans, C., Hakansson, H., Humlum, O., de Lirio, J. M. (1996b). Late Holocene palaeoclimatic records from lake sediments on James Ross Island, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology,121(3), 195-220.
    Blais, J. M., Kimpe, L. E., McMahon, D., Keatley, B. E., Mallory, M. L., Douglas, M. S.,& Smol, J. P. (2005). Arctic seabirds transport marine-derived contaminants. Science,309(5733),445-445.
    Blunier, T.,& Brook, E. J. (2001). Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period, science,291(5501), 109-112.
    Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., Bonani, G. (2001). Persistent solar influence on North Atlantic climate during the Holocene. science,294(5549),2130-2136.
    Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., Priore, P., Cullen, H., Hajdas, I., Bonani, G. (1997). A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates, science,278(5341),1257-1266.
    Bradley, R. S., Mann, M., Hughes, M. K. (1999). Northern hemisphere temperatures during the past millennium:inferences, uncertainties, and limitations. Geophysical research letters,26(6),759-762.
    Briffa, K. R. (2000). Annual climate variability in the Holocene:interpreting the message of ancient trees. Quaternary Science Reviews,19(1),87-105.
    Briffa, K., Osborn, T., Schweingruber, F. (2004). Large-scale temperature inferences from tree rings:a review. Global and planetary change,40(1),11-26.
    Brimble, S. K., Blais, J. M., Kimpe, L. E., Mallory, M. L., Keatley, B. E., Douglas, M. S.,& Smol, J. P. (2009). Bioenrichment of trace elements in a series of ponds near a northern fulmar (Fulmarus glacialis) colony at Cape Vera, Devon Island. Canadian Journal of Fisheries and Aquatic Sciences,66(6),949-958.
    Campbell, I., Claridge, G. (1966). A SEQUENCE OF SOILS FROM A PENGUIN ROOKERY INEXPRESSIBLE ISLAND ANTARCTICA. New Zealand Journal of Science,9(2),361-&.
    Colhoun, E. A., Kiernan, K. W., McConnell, A., Quilty, P. G., Fink, D., Murray-Wallace, C. V., Whitehead, J. (2010). Late Pliocene age of glacial deposits at Heidemann Valley, East Antarctica:evidence for the last major glaciation in the Vestfold Hills. Antarctic Science,22(01),53-64.
    Conway, H., Hall, B., Denton, G., Gades, A., Waddington, E. (1999). Past and future grounding-line retreat of the West Antarctic Ice Sheet. Science,286(5438), 280-283.
    Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., Totterdell, I. J. (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature,408(6809),184-187.
    Cremer, H., Gore, D., Melles, M., Roberts, D. (2003). Palaeoclimatic significance of late Quaternary diatom assemblages from southern Windmill Islands, East Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology,195(3),261-280.
    Cremer, H., Heiri, O., Wagner, B., Wagner-Cremer, F. (2007). Abrupt climate warming in East Antarctica during the early Holocene. Quaternary Science Reviews, 26(15),2012-2018.
    Croxall, J., Trathan, P., Murphy, E. (2002). Environmental change and Antarctic seabird populations. Science,297(5586),1510-1514.
    Cunningham, W. L., Leventer, A., Andrews, J. T., Jennings, A. E., Licht, K. J. (1999). Late Pleistocene-Holocene marine conditions in the Ross Sea, Antarctica:evidence from the diatom record. The Holocene,9(2),129-139.
    D'Arrigo, R., Jacoby, G., Pederson, N., Frank, D., Buckley, B., Nachin, B., Mijiddorj, R., Dugarjav, C. (2000). Mongolian tree-rings, temperature sensitivity and reconstructions of Northern Hemisphere temperature. The Holocene,10(6), 669-672.
    Davis, B., Brewer, S., Stevenson, A., Guiot, J. (2003). The temperature of Europe during the Holocene reconstructed from pollen data. Quaternary Science Reviews, 22(15),1701-1716.
    Domack E.W.2002. A synthesis for site 1098:Palmer Deep. In Barker P.F., Camerlenghi A., Acton G.D. and Ramsay A.T.S., editors, Proceedings of the ocean drilling program, scientific results. Ocean Drilling Program, Texas A&M University.
    Domack E.W., Leventer A., Root S., Ring J., Williams E., Carlson D., Hirshorn E., Wright W., Gilbert R., Burr G. (2003). Marine sedimentary record of natural environmental variability and recent warming in the Antarctic Peninsula. In Domack E.W., Leventer A., Burnett A., Bindschadler R., Convey P. and Kirby M., editors, Antarctic Peninsula climate variability:historical and paleoenvironmental perspectives. AntarcticResearchSeries79, American Geophysical Union,205-22.
    Domack, E. W., Ishman, S. E., Stein, A. B., McClennen, C. E., Jull, A. (1995). Late Holocene advance of the Miiller Ice Shelf, Antarctic Peninsula:sedimentological, geochemical and palaeontological evidence. Antarctic Science,7(02),159-170.
    Domack, E. W., Jacobson, E. A., Shipp, S., Anderson, J. B. (1999). Late Pleistocene-Holocene retreat of the West Antarctic Ice-Sheet system in the Ross Sea:Part 2-sedimentologic and stratigraphic signature. Geological Society of America Bulletin,111(10),1517-1536.
    Domack, E., Duran, D., Leventer, A., Ishman, S., Doane, S., McCallum, S., Amblas, D.,Ring, J., Gilbert, R., Prentice, M. (2005). Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch. Nature,436(7051),681-685.
    Emslie, S. D. (2001). Radiocarbon dates from abandoned penguin colonies in the Antarctic Peninsula region. Antarctic Science,13(03),289-295.
    Emslie, S. D., McDaniel, J. D. (2002). Adelie penguin diet and climate change during the middle to late Holocene in northern Marguerite Bay, Antarctic Peninsula. Polar biology,25(3),222-229.
    Emslie, S. D., Coats, L., Licht, K. (2007a). A 45,000 yr record of Adelie penguins and climate change in the Ross Sea, Antarctica. Geology,35(1),61-64.
    Emslie, S. D.,& Patterson, W. P. (2007b). Abrupt recent shift in 513C and δ15N values in Adelie penguin eggshell in Antarctica. Proceedings of the National Academy of Sciences,104(28),11666-11669.
    Etheridge, D., Steele, L., Langenfelds, R., Francey, R., Barnola, J. M., Morgan, V. (1996). Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. Journal of Geophysical Research: Atmospheres (1984-2012),101(D2),4115-4128.
    Evans, J., Pudsey, C. J., OCofaigh, Colm, Morris, P., Domack, E. (2005). Late Quaternary glacial history, flow dynamics and sedimentation along the eastern margin of the Antarctic Peninsula Ice Sheet. Quaternary Science Reviews,24(5), 741-774.
    Finocchiaro, F., Langone, L., Colizza, E., Fontolan, G., Giglio, F., Tuzzi, E. (2005). Record of the early Holocene warming in a laminated sediment core from Cape Hallett Bay (Northern Victoria Land, Antarctica). Global and planetary change, 45(1),193-206.
    Fitzsimons, S. J., Colhoun, E. A. (1995). Form, structure and stability of the margin of the Antarctic ice sheet, Vestfold Hills and Bunger Hills, East Antarctica. Antarctic Science,7(02),171-179.
    Fraser, W. R., Trivelpiece, W. Z., Ainley, D. G., Trivelpiece, S. G. (1992). Increases in Antarctic penguin populations:reduced competition with whales or a loss of sea ice due to environmental warming? Polar biology,11(8),525-531.
    Fulford-Smith, S. P., Sikes, E. L. (1996). The evolution of Ace Lake, Antarctica, determined from sedimentary diatom assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology,124(1),73-86.
    Gibson, J. A., Paterson, K. S., White, C. A., Swadling, K. M. (2009). Evidence for the continued existence of Abraxas Lake, Vestfold Hills, east Antarctica during the Last Glacial Maximum. Antarctic Science,21(03),269-278.
    Gore, D., Rhodes, E., Augustinus, P., Leishman, M., Colhoun, E., Rees-Jones, J. (2001). Bunger Hills, East Antarctica:ice free at the last glacial maximum. Geology, 29(12),1103-1106.
    Hall, B. L. (2009). Holocene glacial history of Antarctica and the sub-Antarctic islands. Quaternary Science Reviews,28(21),2213-2230.
    Hall, B. L., Baroni, C., Denton, G. H. (2004). Holocene relative sea-level history of the Southern Victoria Land Coast, Antarctica. Global and Planetary Change,42(1), 241-263.
    Hall, B. L., Denton, G. H., Hendy, C. H. (2000). Evidence from Taylor Valley for a grounded ice sheet in the Ross Sea, Antarctica. Geografiska Annaler:Series A, Physical Geography,82(2-3),275-303.
    Hall, B., Denton, G. (1995). Late Quaternary lake levels in the dry valleys, Antarctica. Antarctic Journal of the United States,30(5),52-53.
    Hall, B., Hoelzel, A., Baroni, C., Denton, G., Le Boeuf, B., Overturf, B., Topf, A. (2006). Holocene elephant seal distribution implies warmer-than-present climate in the Ross Sea. Proceedings of the National Academy of Sciences,103(27), 10213-10217.
    Hendy, C. H. (2000). Late Quaternary lakes in the McMurdo Sound region of Antarctica. Geografiska Annaler:Series A, Physical Geography,82(2-3),411-432.
    Hjort, C, Ingolfsson,O., Moller, P., Lirio, J. M. (1997). Holocene glacial history and sea-level changes on James Ross Island, Antarctic Peninsula. Journal of Quaternary Science,12(4),259-273.
    Hodgson, D. A., Convey, P. (2005). A 7000-year record of oribatid mite communities on a maritime-Antarctic island:responses to climate change. Arctic, Antarctic, and Alpine Research,37(2),239-245.
    Hodgson, D. A., Bentley, M. J., Roberts, S. J., Smith, J. A., Sugden, D. E., Domack, E. W. (2006). Examining Holocene stability of Antarctic Peninsula ice shelves. Eos, Transactions American Geophysical Union,87(31),305-308.
    Hodgson, D. A., Doran, P. T., Roberts, D., McMinn, A. (2004). Paleolimnological studies from the Antarctic and subantarctic islands Long-Term Environmental Change in Arctic and Antarctic Lakes (pp.419-474):Springer.
    Hodgson, D. A., Verleyen, E., Sabbe, K., Squier, A. H., Keely, B. J., Leng, M. J. Saunders, K. M., Vyverman, W. (2005). Late Quaternary climate-driven environmental change in the Larsemann Hills, East Antarctica, multi-proxy evidence from a lake sediment core. Quaternary Research,64(1),83-99.
    Hu, Q.-H., Sun, L.-G., Xie, Z.-Q., Emslie, S. D., Liu, X.-D. (2013). Increase in penguin populations during the Little Ice Age in the Ross Sea, Antarctica. Scientific reports,3.
    Huang, J., Sun, L., Huang, W., Wang, X., Wang, Y. (2010). The ecosystem evolution of penguin colonies in the past 8,500 years on Vestfold Hills, East Antarctica. Polar Biology,33(10),1399-1406.
    Huang, T., Sun, L., Long, N., Wang, Y., Huang, W. (2013). Penguin tissue as a proxy for relative krill abundance in East Antarctica during the Holocene. Scientific reports,3.
    Huang, T., Sun, L., Stark, J., Wang, Y., Cheng, Z., Yang, Q., Sun, S. (2011). Relative changes in krill abundance inferred from Antarctic Fur Seal. PloS one,6(11), e27331.
    Huang, T., Sun, L., Wang, Y, Liu, X., Zhu, R. (2009). Penguin population dynamics for the past 8500 years at Gardner Island, Vestfold Hills. Antarctic Science,21(06), 571-578.
    Hulme, M., Barrow, E. M., Arnell, N. W, Harrison, P. A., Johns, T. C., Downing, T. E. (1999). Relative impacts of human-induced climate change and natural climate variability. Nature,397(6721),688-691.
    Huybrechts, P., de Wolde, J. (1999). The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. Journal of Climate, 12(8).
    Ingolfsson,O., Hjort, C., Humlum, O. (2003). Glacial and climate history of the Antarctic Peninsula since the Last Glacial Maximum. Arctic, Antarctic, and Alpine Research,35(2),175-186.
    IPCC Fifth Assessment Report:Climate Change 2013.
    Jansen, E.et al. in Climate Change 2007:The Physical Science Basis (eds Solomon, S. et al.) 466-482 (Cambridge Univ. Press,2007).
    Kaplan, M. R., Wolfe, A. P., Miller, G. H. (2002). Holocene environmental variability in southern Greenland inferred from lake sediments. Quaternary Research,58(2), 149-159.
    King, J. (1994). Recent climate variability in the vicinity of the Antarctic Peninsula. International journal of climatology,14(4),357-369.
    KIRKUP, H., MELLES, M., GORE, D. B. (2002). Late Quaternary environment of southern Windmill islands, east Antarctica. Antarctic Science,14(04),385-394.
    Kulbe, T., Melles, M., Verkulich, S. R., Pushina, Z. V. (2001). East Antarctic climate and environmental variability over the last 9400 years inferred from marine sediments of the Bunger Oasis. Arctic, Antarctic, and Alpine Research,223-230.
    Lamy, F., Hebbeln, D., Rohl, U., Wefer, G. (2001). Holocene rainfall variability in southern Chile:a marine record of latitudinal shifts of the Southern Westerlies. Earth and Planetary Science Letters,185(3),369-382.
    Landres, P. B., Morgan, P., Swanson, F. J. (1999). Overview of the use of natural variability concepts in managing ecological systems. Ecological Applications,9(4), 1179-1188.
    Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., Schellnhuber, H. J. (2008). Tipping elements in the Earth's climate system. Proceedings of the National Academy of Sciences,105(6),1786-1793.
    Leventer, A., Domack, E., Barkoukis, A., McAndrews, B., Murray, J. (2002). Laminations from the Palmer Deep:A diatom-based interpretation. Paleoceanography,17(3), PAL 3-1-PAL 3-15.
    Li, Y, Cole-Dai, J., Zhou, L. (2009). Glaciochemical evidence in an East Antarctica ice core of a recent (AD 1450-1850) neoglacial episode. Journal of Geophysical Research:Atmospheres (1984-2012),114(D8).
    Licht, K. J., Jennings, A. E., Andrews, J. T., Williams, K. M. (1996). Chronology of late Wisconsin ice retreat from the western Ross Sea, Antarctica. Geology,24(3), 223-226.
    Liu, X.-D., Li, H.-C., Sun, L.-G., Yin, X.-B., Zhao, S.-P., Wang, Y.-H. (2006).δ13C and 815N in the ornithogenic sediments from the Antarctic maritime as palaeoecological proxies during the past 2000 yr. Earth and Planetary Science Letters,243(3),424-438.
    Lorenzini, S., Olmastroni, S., Pezzo, F., Salvatore, M. C.,& Baroni, C. (2009). Holocene Adelie penguin diet in Victoria Land, Antarctica. Polar biology,32(7), 1077-1086.
    Lorenzini, S., Baroni, C., Fallick, A. E., Baneschi, I., Salvatore, M. C., Zanchetta, G., & Dallai, L. (2010). Stable isotopes reveal Holocene changes in the diet of Adelie penguins in Northern Victoria Land (Ross Sea, Antarctica). Oecologia,164(4), 911-919.
    Mann, M. E., Jones, P. D. (2003). Global surface temperatures over the past two millennia. Geophysical research letters,30(15).
    Mann, M. E., Bradley, R. S., Hughes, M. K. (1998). Global-scale temperature patterns and climate forcing over the past six centuries. Nature,392(6678),779-787.
    Mann, M. E., Zhang, Z., Hughes, M. K., Bradley, R. S., Miller, S. K., Rutherford, S., Ni, F. (2008). Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proceedings of the National Academy of Sciences,105(36),13252-13257.
    Masson, V., Vimeux, F., Jouzel, J., Morgan, V., Delmotte, M., Ciais, P., Hammer, C., Johnsen, S., Lipenkov, V. Y, Mosley-Thompson, E. (2000). Holocene climate variability in Antarctica based on 11 ice-core isotopic records. Quaternary Research, 54(3),348-358.
    Mayewski, P. A., Meredith, M., Summerhayes, C., Turner, J., Worby, A., Barrett, P., Casassa, G., Bertler, N. A., Bracegirdle, T., Naveira Garabato, A. (2009). State of the Antarctic and Southern Ocean climate system. Reviews of Geophysics,47(1).
    Mayewski, P. A., Rohling, E. E., Curt Stager, J., Karlen, W., Maasch, K. A., David Meeker, L., Meyerson, E. A., Gasse, F., van Kreveld, S., Holmgren, K. (2004). Holocene climate variability. Quaternary Research,62(3),243-255.
    McCulloch, M., Mortimer, G., Esat, T., Xianhua, L., Pillans, B., Chappell, J. (1996). High resolution windows into early Holocene climate:SrCa coral records from the Huon Peninsula. Earth and Planetary Science Letters,138(1),169-178.
    McMinn, A. (2000). Late Holocene increase in sea ice extent in fjords of the Vestfold Hills, eastern Antarctica. Antarctic Science,12(01),80-88.
    Melles, M., Kulbe, T., Verkulich, S., Pushina, Z., Hubberten, H.-W. (1997). Late Pleistocene and Holocene environmental history of Bunger Hills, East Antarctica, as revealed by fresh-water and epishelf lake sediments. The Antarctic region: Geological evolution and processes (CA Ricci, ed) Terra Antartica Publication, Siena,809-820.
    Mulvaney, R., Abram, N. J., Hindmarsh, R. C., Arrowsmith, C., Fleet, L., Triest, J., Sime, L. C., Alemany, O., Foord, S. (2012). Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history. Nature,489(7414),141-144.
    Pudsey, C., Barker, P., Larter, R. (1994). Ice sheet retreat from the Antarctic Peninsula shelf. Continental Shelf Research,14(15),1647-1675.
    Rahmstorf, S. (1993). A fast and complete convection scheme for ocean models. Ocean Modelling,101(9),11.
    Roberts, D., McMinn, A. (1999). A diatom-based palaeosalinity history of Ace Lake, Vestfold Hills, Antarctica. The Holocene,9(4),401-408.
    Roberts, D., McMinn, A., Cremer, H., Gore, D. B., Melles, M. (2004). The Holocene evolution and palaeosalinity history of Beall Lake, Windmill Islands (East Antarctica) using an expanded diatom-based weighted averaging model. Palaeogeography, Palaeoclimatology, Palaeoecology,208(1),121-140.
    Roberts, S., Hodgson, D., Bentley, M., Smith, J., Millar, I., Olive, V., Sugden, D. E. (2008). The Holocene history of George VI Ice Shelf, Antarctic Peninsula from clast-provenance analysis of epishelf lake sediments. Palaeogeography, Palaeoclimatology, Palaeoecology,259(2),258-283.
    Schilman, B., Bar-Matthews, M., Almogi-Labin, A., Luz, B. (2001). Global climate instability reflected by Eastern Mediterranean marine records during the late Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology,176(1),157-176.
    Seppelt, R. D., Green, T., Skotnicki, M. (1999). Notes on the flora, vertebrate fauna and biological significance of Beaufort Island, Ross Sea, Antarctica. Polarforschung,66(1/2),53-59.
    Shao, X., Xu, Y, Yin, Z.-Y, Liang, E., Zhu, H., Wang, S. (2010). Climatic implications of a 3585-year tree-ring width chronology from the northeastern Qinghai-Tibetan Plateau. Quaternary Science Reviews,29(17),2111-2122.
    Ship, S., Anderson, J., Domack, E. (1999). Late Pleistocene-Holocene retreat of the West Antarctic Ice-Sheet system in the Ross Sea:part 1-geophysical results. Geological Society of America Bulletin,111(10),1486-1516.
    Sjunneskog, C., Taylor, F. (2002). Postglacial marine diatom record of the Palmer deep, Antarctic Peninsula (ODP Leg 178, site 1098) 1. Total diatom abundance. Paleoceanography,17(3), PAL 4-1-PAL 4-8.
    Sun, L., Emslie, S., Huang, T., Blais, J., Xie, Z., Liu, X., Yin, X., Wang, Y., Huang, W., Hodgson, D. (2013). Vertebrate records in polar sediments:biological responses to past climate change and human activities. Earth-Science Reviews.
    Sun, L., Liu, X., Yin, X., Zhu, R., Xie, Z., Wang, Y (2004). A 1,500-year record of Antarctic seal populations in response to climate change. Polar Biology,27(8), 495-501.
    Sun, L., Xie, Z., Zhao, J. (2000). Palaeoecology:A 3,000-year record of penguin populations. Nature,407(6806),858-858.
    Sun, L., Yin, X., Liu, X., Zhu, R., Xie, Z., Wang, Y (2006). A 2000-year record of mercury and ancient civilizations in seal hairs from King George Island, West Antarctica. Science of the Total Environment,368(1),236-247.
    Taylor, F., Whitehead, J., Domack, E. (2001). Holocene paleoclimate change in the Antarctic Peninsula:evidence from the diatom, sedimentary and geochemical record. Marine Micropaleontology,41(1),25-43.
    Thomas, E., Dennis, P., Bracegirdle, T. J., Franzke, C. (2009). Ice core evidence for significant 100-year regional warming on the Antarctic Peninsula. Geophysical research letters,36(20).
    Trivelpiece, W. Z., Hinke, J. T., Miller, A. K., Reiss, C. S., Trivelpiece, S. G.,& Watters, G. M. (2011). Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proceedings of the National Academy of Sciences,108(18),7625-7628.
    van Ommen, T. (2013). Climate change:Antarctic response. Nature Geoscience,6(5), 334-335.
    Vaughan, D. G., Marshall, G. J., Connolley, W. M., Parkinson, C., Mulvaney, R., Hodgson, D. A., King, J. C., Pudsey, C. J., Turner, J. (2003). Recent rapid regional climate warming on the Antarctic Peninsula. Climatic change,60(3),243-274.
    Verkulich, S. R., Melles, M., Hubberten, H.-W., Pushina, Z. V. (2002). Holocene environmental changes and development of Figurnoye Lake in the southern Bunger Hills, East Antarctica. Journal of Paleolimnology,28(2),253-267.
    Verleyen, E., Hodgson, D. A., Sabbe, K., Vyverman, W. (2004). Late Quaternary deglaciation and climate history of the Larsemann Hills (East Antarctica). Journal of Quaternary Science,19(4),361-375.
    Verleyen, E., Hodgson, D. A., Sabbe, K., Cremer, H., Emslie, S. D., Gibson, J., Hall, B., Imura, S., Kudoh, S., Marshall, G. J. (2011). Post-glacial regional climate variability along the East Antarctic coastal margin-Evidence from shallow marine and coastal terrestrial records. Earth-Science Reviews,104(4),199-212.
    Wagner, B., Cremer, H., Hultzsch, N., Gore, D. B., Melles, M. (2004). Late Pleistocene and Holocene history of Lake Terrasovoje, Amery Oasis, East Antarctica, and its climatic and environmental implications. Journal of Paleolimnology,32(4),321-339.
    Wang Shaowu. (2005). Abrupt climate change and collapse of ancient civilizations at 2200BC-2000BC. Progress Natural Science,15:908-913.
    Wang, J., Wang, Y, Wang, X., Sun, L. (2007). Penguins and vegetations on Ardley Island, Antarctica:evolution in the past 2,400 years. Polar Biology,30(11), 1475-1481.
    Wang, S., Luo, Y., Zhao, Z., Dong, W., Yang, B. (2006). Debating about the climate warming. Progress in Natural Science,16(1),1.
    Whittaker, T. E., Hall, B. L., Hendy, C. H., Spaulding, S. A. (2008). Holocene depositional environments and surface-level changes at Lake Fryxell, Antarctica. The Holocene,18(5),775-786.
    Wu, H., Guiot, J., Brewer, S., Guo, Z. (2007a). Climatic changes in Eurasia and Africa at the last glacial maximum and mid-Holocene:reconstruction from pollen data using inverse vegetation modelling. Climate Dynamics,29(2-3),211-229.
    Wu, Y, Andreas, L., Bernd, W., Li, S., Wang, S. (2007b). Holocene climate change in the Central Tibetan Plateau inferred by lacustrine sediment geochemical records. Science in China Series D:Earth Sciences,50(10),1548-1555.
    Yanhong, W., Lucke, A., Zhangdong, J., Sumin, W., Schleser, G. H., Battarbee, R. W., Weilan, X. (2006). Holocene climate development on the central Tibetan Plateau:a sedimentary record from Cuoe Lake. Palaeogeography, Palaeoclimatology, Palaeoecology,234(2),328-340.
    Yin, X., Liu, X., Sun, L., Zhu, R., Xie, Z., Wang, Y. (2006). A 1500-year record of lead, copper, arsenic, cadmium, zinc level in Antarctic seal hairs and sediments. Science of the Total Environment,371(1),252-257.
    Yin, X., Xia, L., Sun, L., Luo, H.,& Wang, Y. (2008). Animal excrement:a potential biomonitor of heavy metal contamination in the marine environment. Science of the total environment,399(1),179-185.
    Yu, K.-F., Zhao, J.-X., Collerson, K. D., Shi, Q., Chen, T.-G., Wang, P.-X., Liu, T.-S. (2004). Storm cycles in the last millennium recorded in Yongshu Reef, southern South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology,210(1), 89-100.
    Yu, K.-F., Zhao, J.-X., Wei, G.-J., Cheng, X.-R., Wang, P.-X. (2005). Mid-late Holocene monsoon climate retrieved from seasonal Sr/Ca and δ18O records of Porites lutea corals at Leizhou Peninsula, northern coast of South China Sea. Global and planetary change,47(2),301-316.
    Zhang, D. e., Lu, L. (2007). Anti-correlation of summer/winter monsoons? Nature, 450(7168), E7-E8.
    Zhisheng, A., Tunghseng, L., Yanchou, L., Porter, S., Kukla, G., Xihao, W., Yingming, H. (1990). The long-term paleomonsoon variation recorded by the loess-paleosol sequence in central China. Quaternary International,7,91-95.
    Zhou, H., Guan, H., Chi, B. (2007). Record of winter monsoon strength. Nature, 450(7168), E10-E11.
    Zhou, L., Li, Y, Tan, D., Sun, B., Ren, J., Wei, L., Wang, H. (2006). A 780-year record of explosive volcanism from DT263 ice core in east Antarctica. Chinese Science Bulletin,51(22),2771-2780.
    安芷生,符淙斌.(2001).全球变化科学的进展.地球科学进展,16(5),671-680.
    刘东生.黄土与干旱环境.2009.安徽科学技术出版社.
    秦大河,丁一汇,苏纪兰,任贾文,王绍武,伍荣生,杨修群,王苏民,刘时银, 董光荣.(2005).中国气候与环境演变评估(Ⅰ):中国气候与环境变化及未来趋势.气候变化研究进展(1),4-9.
    Ainley, D. G., Ballard, G., Barton, K. J., Karl, B. J., Rau, G. H., Ribic, C. A., Wilson, P. R. (2003). Spatial and temporal variation of diet within a presumed metapopulation of Adelie penguins. The Condor,105(1),95-106.
    Emslie, S. D., Berkman, P. A., Ainley, D. G., Coats, L., Polito, M. (2003). Late-Holocene initiation of ice-free ecosystems in the southern Ross Sea, Antarctica. Marine Ecology Progress Series,262,19-25.
    Emslie, S. D., Coats, L., Licht, K. (2007). A 45,000 yr record of Adelie penguins and climate change in the Ross Sea, Antarctica. Geology,35(1),61-64.
    Emslie, S. D., McDaniel, J. D. (2002). Adelie penguin diet and climate change during the middle to late Holocene in northern Marguerite Bay, Antarctic Peninsula. Polar biology,25(3),222-229.
    Emslie, S. D., Woehler, E. J. (2005). A 9000-year record of Adelie penguin occupation and diet in the Windmill Islands, East Antarctica. Antarctic Science,17(01),57-66.
    Hodgson, D., Noon, P., Vyverman, W., Bryant, C., Gore, D., Appleby, P., Gilmour, M., Verleyen, E., Sabbe, K., Jones, V. (2001). Were the Larsemann Hills ice-free through the last glacial maximum? Antarctic Science,13(04),440-454.
    Huang, T., Sun, L., Wang, Y, Zhu, R. (2009). Penguin occupation in the Vestfold Hills. Antarctic Science,21(02),131-134.
    IPCC Fifth Assessment Report:Climate Change 2013
    Liu, X., Zhao, S., Sun, L., Luo, H., Yin, X., Xie, Z., Wang, Y, Liu, K., Wu, X., Ding, X. (2006). Geochemical evidence for the variation of historical seabird population on Dongdao Island of the South China Sea. Journal of Paleolimnology,36(3), 259-279.
    Liu, X.-D., Li, H.-C., Sun, L.-G., Yin, X.-B., Zhao, S.-P., Wang, Y.-H. (2006).δ13C and 515N in the ornithogenic sediments from the Antarctic maritime as palaeoecological proxies during the past 2000 yr. Earth and Planetary Science Letters,243(3),424-438.
    Speir, T., Cowling, J. (1984). Ornithogenic soils of the Cape Bird adelie penguin rookeries, Antarctica. Polar Biology,2(4),199-205.
    Sun, L., Xie, Z., Zhao, J. (2000). Palaeoecology:A 3,000-year record of penguin populations. Nature,407(6806),858-858.
    Thompson L.G., Yao T., Mosley-Thompson E., Davis M.E., Henderson K.A., Lin P.N. (2000). A high-resolution millennial record of the South Asian monsoon from Himalayan ice cores. Science,289:1916-1919.
    Xu, L.-Q., Liu, X.-D., Sun, L.-G., Yan, H., Liu, Y, Luo, Y.-H., Huang, J. (2011). Geochemical evidence for the development of coral island ecosystem in the Xisha Archipelago of South China Sea from four ornithogenic sediment profiles. Chemical Geology,286(3),135-145.
    Yuan, L., Sun, L., Long, N., Xie, Z., Wang, Y, Liu, X. (2010). Seabirds colonized Ny-Alesund, Svalbard, Arctic-9,400 years ago. Polar biology,33(5),683-691.
    Ainley, D. G. (2002). The Adelie penguin:bellwether of climate change:Columbia University Press.
    Ainley, D. G., Ribic, C. A., Ballard, G., Heath, S., Gaffney, I., Karl, B. J., Barton, K. J., Wilson, P. R., Webb, S. (2004). Geographic structure of Adelie penguin populations:overlap in colony-specific foraging areas. Ecological monographs, 74(1),159-178.
    Arrigo, K. R., van Dijken, G. L., Ainley, D. G., Fahnestock, M. A., Markus, T. (2002). Ecological impact of a large Antarctic iceberg. Geophysical Research Letters,29(7), 8-1-8-4.
    Broady, P. A. (1989). Broadscale patterns in the distribution of aquatic and terrestrial vegetation at three ice-free regions on Ross Island, Antarctica High Latitude Limnology (pp.77-95):Springer.
    Dochat, T. M., Marchant, D. R., Denton, G. H. (2000). Glacial geology of Cape Bird, Ross Island, Antarctica. Geografiska Annaler:Series A, Physical Geography, 82(2-3),237-247.
    Emison, W. B. (1968). Feeding preferences of the Adelie penguin at Cape Crozier, Ross Island. Antarctic Research Series,12,191-212.
    Hall, B., Hoelzel, A., Baroni, C., Denton, G., Le Boeuf, B., Overturf, B., Topf, A. (2006). Holocene elephant seal distribution implies warmer-than-present climate in the Ross Sea. Proceedings of the National Academy of Sciences,103(27), 10213-10217.
    IF, S. (1970). ABANDONED PENGUIN ROOKERIES NEAR CAPE ROYDS, ROSS-ISLAND, ANTARCTICA AND C-14 DATING OF PENGUIN REMAINS. New Zealand Journal of Science,13(3),380-&.
    Monaghan, A. J., Bromwich, D. H., Powers, J. G., Manning, K. W. (2005). The climate of the McMurdo, Antarctica, region as represented by one year of forecasts from the Antarctic Mesoscale Prediction System. Journal of Climate,18(8).
    Seppelt, R. D., Green, T., Skotnicki, M. (1999). Notes on the flora, vertebrate fauna and biological significance of Beaufort Island, Ross Sea, Antarctica. Polarforschung,66(1/2),53-59.
    Stonehouse, B. (1966). Emperor penguin colony at Beaufort Island, Ross Sea, Antarctica.
    Thomson, R. (1977). Effects of human disturbance on an Adelie penguin rookery and measures of control. Paper presented at the Adaptations within Antarctic ecosystems. Proceedings of the Third SCAR Symposium on Antarctic Biology. Smithsonian Institution, Washington, DC.
    Woehler, E., Croxall, J. (1997). The status and trends of Antarctic and sub-Antarctic seabirds. Marine Ornithology,25(1),43-66.
    Xu, L., Liu, X., Sun, L., Yan, H., Liu, Y, Luo, Y, Huang J., Wang, Y (2010). Distribution of radionuclides in the guano sediments of Xisha Islands, South China Sea and its implication. Journal of environmental radioactivity,101(5),362-368
    万国江,Appleby, P.(2000).环境生态系统散落核素示踪研究新进展.地球科学进展,15(2),172-177.
    王自磐,刘广山,卢冰,张卫国,韩晓菲.(2006).南极长城站附近企鹅栖息地粪土沉积地层放射性核素210Pb定年.海洋学报,28(5).
    Cooke, C. A., Hobbs, W. O., Michelutti, N., Wolfe, A. P. (2010). Reliance on 210Pb chronology can compromise the inference of preindustrial Hg flux to lake sediments. Environmental science & technology,44(6),1998-2003.
    Emslie, S. D., Coats, L., Licht, K. (2007). A 45,000 yr record of Adelie penguins and climate change in the Ross Sea, Antarctica. Geology,35(1),61-64.
    Emslie, S. D., Woehler, E. J. (2005). A 9000-year record of Adelie penguin occupation and diet in the Windmill Islands, East Antarctica. Antarctic Science,17(01),57-66.
    Ferreira, P. A. d. L., Ribeiro, A. P., Nascimento, M. G. d., Martins, C. d. C., Mahiques, M. M. d., Montone, R. C., Figueira, R. C. L. (2013).137Cs in marine sediments of Admiralty Bay, King George Island, Antarctica. Science of the Total Environment, 443,505-510.
    Goldberg, E. D. (1963). Geochronology with 210Pb. Radioactive dating,121-131.
    Guojiang, W. (1997). (210) Pb DATING FOR RECENT SEDIMENTATION [J]. Quaternary Sciences,3.
    Huang, T., Sun, L., Wang, Y, Zhu, R. (2009). Penguin occupation in the Vestfold Hills. Antarctic Science,21(02),131-134.
    Koide, M., Michel, R., Goldberg, E. D., Herron, M. M., Langway Jr, C. C. (1979). Depositional history of artificial radionuclides in the Ross Ice Shelf, Antarctica. Earth and Planetary Science Letters,44(2),205-223.
    Krishnaswamy, S., Lal, D., Martin, J., Meybeck, M. (1971). Geochronology of lake sediments. Earth and Planetary Science Letters,11(1),407-414.
    Kullman, L., Kjallgren, L. (2000). A coherent postglacial tree-limit chronology (Pinus sylvestris L.) for the Swedish Scandes:aspects of paleoclimate and" recent warming," based on megafossil evidence. Arctic, Antarctic, and Alpine Research, 419-428.
    Libby, W. F., Johnson, F. (1955). Radiocarbon dating (Vol.124):University of Chicago Press Chicago.
    Neves, P. A., de Lima Ferreira, P. A., Bicego, M. C., Figueira, R. C. L. (2014). Radioanalytical assessment of sedimentation rates in Guajara Bay (Amazon Estuary, N Brazil):a study with unsupported 210Pb and 137Cs modeling. Journal of Radioanalytical and Nuclear Chemistry,299(1),407-414.
    Nie, Y., Liu, X., Wen, T., Sun, L.,& Emslie, S. D. (2014). Environmental implication of nitrogen isotopic composition in ornithogenic sediments from the Ross Sea region, East Antarctica:△15N as a new proxy for avian influence. Chemical Geology,363,91-100.
    Pennington, W., Tutin, T., Cambray, R., Fisher, E. (1973). Observations on lake sediments using fallout 137Cs as a tracer.
    Pourchet, M., Magand, O., Frezzotti, M., Ekaykin, A., Winther, J.-G. (2003). Radionuclides deposition over Antarctica. Journal of environmental radioactivity, 68(2),137-158.
    Robbins, J. A. (1978). Geochemical and geophysical applications of radioactive lead. The biogeochemistry of lead in the environment,1,285-337.
    Robbins, J. A., Edgington, D. N. (1975). Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137. Geochimica et Cosmochimica Acta, 39(3),285-304.
    Sanders, C. J., Santos, I. R., Patchineelam, S. R., Schaefer, C., Silva-Filho, E. V. (2010). Recent 137Cs deposition in sediments of Admiralty Bay, Antarctica. Journal of environmental radioactivity,101(5),421-424.
    Schuller, P., Bunzl, K., Voigt, G., Handl, J., Ellies, A., Castillo, A. (2002). Fallout radiocesium in an Antarctic region. Radiation and environmental biophysics,41(4), 295-302.
    Shopov, Y., Ford, D., Schwarcz, H. (1994). Luminescent microbanding in speleothems:High-resolution chronology and paleoclimate. Geology,22(5), 407-410.
    Stuiver, M., van der Plicht, J. (1998). INTCAL 98:Calibration issue.124p. Radiocarbon,40(3).
    Suzuki, T., Kamiyama, K., Furukawa, T., Fujii, Y. (2004). Lead-210 profile in firn layer over Antarctic ice sheet and its relation to the snow accumulation environment. Tellus B,56(1),85-92.
    Ainley, D. G., Ballard, G., Barton, K. J., Karl, B. J., Rau, G. H., Ribic, C. A., Wilson, P. R. (2003). Spatial and temporal variation of diet within a presumed metapopulation of Adelie penguins. The Condor,105(1),95-106.
    Ainley, D. G., Clarke, E. D., Arrigo, K., Fraser, W. R., Kato, A., Barton, K. J., Wilson, P. R. (2005). Decadal-scale changes in the climate and biota of the Pacific sector of the Southern Ocean,1950s to the 1990s. Antarctic Science,17(02),171-182.
    Alibo, D. S., Nozaki, Y. (1999). Rare earth elements in seawater:particle association, shale-normalization, and Ce oxidation. Geochimica et Cosmochimica Acta,63(3), 363-372.
    Ancora, S., Volpi, V, Olmastroni, S., Focardi, S., Leonzio, C. (2002). Assumption and elimination of trace elements in Adelie penguins from Antarctica:a preliminary study. Marine Environmental Research,54(3),341-344.
    Bargagli, R., Agnorelli, C., Borghini, F., Monaci, F. (2005). Enhanced deposition and bioaccumulation of mercury in Antarctic terrestrial ecosystems facing a coastal polynya. Environmental Science & Technology,39(21),8150-8155.
    Bargagli, R., Battisti, E., Focardi, S., Formichi, P. (1993). Preliminary data on enviornmental distribution of mercury in northern Victoria Land, Antarctica. Antarctic Science,5(01),3-8.
    Bargagli, R., Borghini, F., Celesti, C. (2000). Elemental composition of the lichen Umbilicaria decussata. Italian Journal of Zoology,67(S1),157-162.
    Bargagli, R., Monaci, F., Bucci, C. (2007). Environmental biogeochemistry of mercury in Antarctic ecosystems. Soil Biology and Biochemistry,39(1),352-360.
    Bargagli, R., Monaci, F., Sanchez-Hernandez, J., Cateni, D. (1998). Biomagnification of mercury in an Antarctic marine coastal food web. Marine Ecology Progress Series,169,65-76.
    Bargagli, R., Nelli, L., Ancora, S., Focardi, S. (1996). Elevated cadmium accumulation in marine organisms from Terra Nova Bay (Antarctica). Polar Biology,16(7),513-520.
    Bargagli, R., Sanchez-Hernandez, J., Martella, L., Monaci, F. (1998). Mercury, cadmium and lead accumulation in Antarctic mosses growing along nutrient and moisture gradients. Polar Biology,19(5),316-322.
    Blais, J. M., Kimpe, L. E., McMahon, D., Keatley, B. E., Mallory, M. L., Douglas, M. S., Smol, J. P. (2005). Arctic seabirds transport marine-derived contaminants. Science,309(5733),445-445.
    Blais, J. M., Macdonald, R. W., Mackay, D., Webster, E., Harvey, C, Smol, J. P. (2007). Biologically mediated transport of contaminants to aquatic systems. Environmental science & technology,41(4),1075-1084.
    Brauer, A., Endres, C., Gunter, C., Litt, T., Stebich, M., Negendank, J. F. (1999). High resolution sediment and vegetation responses to Younger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany. Quaternary Science Reviews,18(3),321-329.
    Brimble, S. K., Blais, J. M., Kimpe, L. E., Mallory, M. L., Keatley, B. E., Douglas, M. S., Smol, J. P. (2009a). Bioenrichment of trace elements in a series of ponds near a northern fulmar (Fulmarus glacialis) colony at Cape Vera, Devon Island. Canadian Journal of Fisheries and Aquatic Sciences,66(6),949-958.
    Brimble, S. K., Foster, K. L., Mallory, M. L., Macdonald, R. W., Smol, J. P., Blais, J. M. (2009b). High Arctic ponds receiving biotransported nutrients from a nearby seabird colony are also subject to potentially toxic loadings of arsenic, cadmium, and zinc. Environmental toxicology and chemistry,28(11),2426-2433.
    Campbell, I., Claridge, G. (1969). A classification of frigic soils-the zonal soils of the Antarctic continent. Soil science,107(2),75-85.
    Campbell, L., Hecky, R., Muggide, R., Dixon, D., Ramlal, P. (2003). Variation and distribution of total mercury in water, sediment and soil from northern Lake Victoria, East Africa. Biogeochemistry,65(2),195-211.
    Campbell, L. M., Norstrom, R. J., Hobson, K. A., Muir, D. C., Backus, S., Fisk, A. T. (2005). Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay). Science of the Total Environment,351, 247-263.
    Chatterjee, M., Silva Filho, E., Sarkar, S., Sella, S., Bhattacharya, A., Satpathy, K., Prasad, M. V. R., Chakraborty, S., Bhattacharya, B. (2007). Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environment International,33(3), 346-356.
    Chen, Q., Liu, X., Nie, Y., Sun, L. (2013). Using visible reflectance spectroscopy to reconstruct historical changes in chlorophyll a concentration in East Antarctic ponds. Polar Research,32.
    Choy, E. S., Kimpe, L. E., Mallory, M. L., Smol, J. P., Blais, J. M. (2010). Contamination of an arctic terrestrial food web with marine-derived persistent organic pollutants transported by breeding seabirds. Environmental Pollution, 158(11),3431-3438.
    Corsolini, S. (2009). Industrial contaminants in Antarctic biota. Journal of Chromatography A,1216(3),598-612.
    Crockett, A. B. (1998). Background levels of metals in soils, McMurdo Station, Antarctica. Environmental monitoring and assessment,50(3),289-296.
    Croxall, J., Trathan, P., Murphy, E. (2002). Environmental change and Antarctic seabird populations. Science,297(5586),1510-1514.
    De Carlo, E. H., Green, W. J. (2002). Rare earth elements in the water column of Lake Vanda, McMurdo Dry Valleys, Antarctica. Geochimica et Cosmochimica Acta, 66(8),1323-1333.
    De Mora, S., Patterson, J., Bibby, a. M. (1993). Baseline atmospheric mercury studies at Ross Island, Antarctica. Antarctic Science,5(03),323-326.
    De Moreno, J., Gerpe, M., Moreno, V., Vodopivez, C. (1997). Heavy metals in Antarctic organisms. Polar Biology,17(2),131-140.
    Dietz, R., Riget, F., Johansen, P. (1996). Lead, cadmium, mercury and selenium in Greenland marine animals. Science of the Total Environment,186(1),67-93.
    Domack, E., Leventer, A., Burnett, A., Bindschadler, R., Convey, P., Kirby, M. (2003). Antarctic Peninsula climate variability:historical and paleoenvironmental perspectives (Vol.79):American Geophysical Union.
    Dos Santos, I. R., Silva-Filho, E. V., Schaefer, C., Maria Sella, S., Silva, C. A., Gomes, V., Passos, M. J. de ACR, Van Ngan, P. (2006). Baseline mercury and zinc concentrations in terrestrial and coastal organisms of Admiralty Bay, Antarctica. Environmental Pollution,140(2),304-311.
    Emison, W. B. (1968). Feeding preferences of the Adelie penguin at Cape Crozier, Ross Island. Antarctic Research Series,12,191-212.
    Ethier, A., Scheuhammer, A., Blais, J., Paterson, A., Mierle, G., Ingram, R., Lean, D. (2010). Mercury empirical relationships in sediments from three Ontario lakes. Science of the Total Environment,408(9),2087-2095.
    Farmer, J., Lovell, M. (1986). Natural enrichment of arsenic in Loch Lomond sediments. Geochimica et Cosmochimica Acta,50(9),2059-2067.
    Favaro, D. I., Cavallaro, G. P., Damato, S. R., Mazzilli, B. P., Braga, E. S., Bosquilha, G., Berbel, G. (2004). Total mercury in bottom sediment samples from Admiralty Bay, King George Island, Antarctic region. Materials and Geoenvironment,51(2), 972.
    Fitzgerald, W. F., Engstrom, D. R., Mason, R. P., Nater, E. A. (1998). The case for atmospheric mercury contamination in remote areas. Environmental Science & Technology,32(1),1-7.
    Fitzwater, S., Johnson, K., Gordon, R., Coale, K., Smith Jr, W. (2000). Trace metal concentrations in the Ross Sea and their relationship with nutrients and phytoplankton growth. Deep Sea Research Part II:Topical Studies in Oceanography, 47(15),3159-3179.
    Geisz, H. N., Dickhut, R. M., Cochran, M. A., Fraser, W. R., Ducklow, H. W. (2008). Melting glaciers:a probable source of DDT to the Antarctic marine ecosystem. Environmental Science & Technology,42(11),3958-3962.
    Gibbs, R. J. (1993). Metals of the bottom muds in Townsville Harbor, Australia. Environmental Pollution,81(3),297-300.
    GROMET, P., SILVER, L. T. (1987). REE variations across the Peninsular Ranges batholith:Implications for batholithic petrogenesis and crustal growth in magmatic arcs. Journal of Petrology,28(1),75-125.
    Grotti, M., Soggia, F., Lagomarsino, C., Riva, S. D., Goessler, W., Francesconi, K. A. (2008). Natural variability and distribution of trace elements in marine organisms from Antarctic coastal environments. Antarctic Science,20(01),39-52.
    Guerra, R., Fetter, E., Ceschim, L. M., Martins, C. C. (2011). Trace metals in sediment cores from Deception and Penguin islands (South Shetland Islands, Antarctica). Marine pollution bulletin,62(11),2571-2575.
    Hadley, K. R., Douglas, M. S., Blais, J. M., Smol, J. P. (2010). Nutrient enrichment in the High Arctic associated with Thule Inuit whalers:a paleolimnological investigation from Ellesmere Island (Nunavut, Canada). Hydrobiologia,649(1), 129-138.
    Haskin, L. A., Wildeman, T. R., Frey, F. A., Collins, K. A., Keedy, C. R., Haskin, M. A. (1966). Rare earths in sediments. Journal of Geophysical Research,71(24), 6091-6105.
    Henderson, P. (1984). General geochemical properties and abundances of the rare earth elements. Rare earth element geochemistry,2,1-32.
    Hodgson, D., Johnston, N., Caulkett, A., Jones, V. (1998). Palaeolimnology of Antarctic fur seal Arctocephalus gazelle populations and implications for Antarctic management. Biological Conservation,83(2),145-154.
    Hofstee, E. H., Balks, M. R., Petchey, F., Campbell, D. I. (2006). Soils of Seabee Hook, Cape Hallett, northern Victoria Land, Antarctica. Antarctic Science,18(04), 473-486.
    Holser, W. T. (1997). Evaluation of the application of rare-earth elements to paleoceanography. Palaeogeography, Palaeoclimatology, Palaeoecology,132(1), 309-323.
    Hu, Q.-H., Sun, L.-G., Xie, Z.-Q., Emslie, S. D., Liu, X.-D. (2013). Increase in penguin populations during the Little Ice Age in the Ross Sea, Antarctica. Scientific reports,3.
    Huang, T., Sun, L., Wang, Y., Kong, D. (2011). Late Holocene Adelie penguin population dynamics at Zolotov Island, Vestfold Hills, Antarctica. Journal of Paleolimnology,45(2),273-285.
    Huang, T., Sun, L., Wang, Y., Liu, X., Zhu, R. (2009). Penguin population dynamics for the past 8500 years at Gardner Island, Vestfold Hills. Antarctic Science,21(06), 571-578.
    Jost, C., Zauke, G.-P. (2008). Trace metal concentrations in Antarctic sea spiders (Pycnogonida, Pantopoda). Marine pollution bulletin,56(8),1396-1399.
    Kamenov, G. D., Brenner, M., Tucker, J. L. (2009). Anthropogenic versus natural control on trace element and Sr-Nd-Pb isotope stratigraphy in peat sediments of southeast Florida (USA),-1500 AD to present. Geochimica et Cosmochimica Acta, 73(12),3549-3567.
    King, C., Riddle, M. (2001). Effects of metal contaminants on the development of the common Antarctic sea urchin Sterechinus neumayeri and comparisons of sensitivity with tropical and temperate echinoids. Marine Ecology Progress Series,215, 143-154.
    Lee, Y. I., Lim, H. S., Yoon, H. I. (2004). Geochemistry of soils of King George Island, South Shetland Islands, West Antarctica:implications for pedogenesis in cold polar regions. Geochimica et Cosmochimica Acta,68(21),4319-4333.
    Lindberg, S. E., Harriss, R. C. (1974). Mercury-organic matter associations in estuarine sediments and interstitial water. Environmental Science & Technology, 8(5),459-462.
    Liu, X., Nie, Y., Sun, L., Emslie, S. D. (2013). Eco-environmental implications of elemental and carbon isotope distributions in ornithogenic sediments from the Ross Sea region, Antarctica. Geochimica et Cosmochimica Acta,117,99-114.
    Liu, X., Sun, L., Li, D., Wang, Y. (2011). Rare earth elements in the ornithogenic sediments from the Maritime Antarctic:A potential new palaeoecology proxy. Geochemical Journal,45(1),15.
    Liu, X., Zhao, S., Sun, L., Luo, H., Yin, X., Xie, Z., Wang, Y, Liu, K., Wu, X., Ding, X. (2006). Geochemical evidence for the variation of historical seabird population on Dongdao Island of the South China Sea. Journal of Paleolimnology,36(3), 259-279.
    Long, E., MacDonald, D. (1998). Recommended uses of empirically derived, sediment quality guidelines for marine and estuarine ecosystems. Human and Ecological Risk Assessment,4(5),1019-1039.
    Luoma, S. N., Phillips, D. (1988). Distribution, variability, and impacts of trace elements in San Francisco Bay. Marine pollution bulletin,19(9),413-425.
    Maggi, C., Berducci, M. T., Bianchi, J., Giani, M., Campanella, L. (2009). Methylmercury determination in marine sediment and organisms by Direct Mercury Analyser. Analytica chimica acta,641(1),32-36.
    Martin-Puertas, C., Valero-Garces, B. L., Mata, M. P., Moreno, A., Giralt, S., Martinez-Ruiz, F., Jimenez-Espejo, F. (2011). Geochemical processes in a Mediterranean Lake:a high-resolution study of the last 4,000 years in Zonar Lake, southern Spain. Journal of Paleolimnology,46(3),405-421.
    McArthur, J., Walsh, J. (1984). Rare-earth geochemistry of phosphorites. Chemical Geology,47(3),191-220.
    McArthur, T., Butler, E. C., Jackson, G. D. (2003). Mercury in the marine food chain in the Southern Ocean at Macquarie Island:an analysis of a top predator, Patagonian toothfish (Dissostichus eleginoides) and a mid-trophic species, the warty squid (Moroteuthis ingens). Polar Biology,27(1),1-5.
    Metcheva, R., Yurukova, L., Teodorova, S. E. (2011). Biogenic and toxic elements in feathers, eggs, and excreta of Gentoo penguin (Pygoscelis papua ellsworthii) in the Antarctic. Environmental monitoring and assessment,182(1-4),571-585.
    Michelutti, N., Blais, J. M., Mallory, M. L., Brash, J., Thienpont, J., Kimpe, L. E., Douglas, M. S. V., Smol, J. P. (2010). Trophic position influences the efficacy of seabirds as metal biovectors. Proceedings of the National Academy of Sciences, 107(23),10543-10548.
    Miemisto, L., Perttila, M. (1995). Trace elements in the Weddell Sea water and sediments in the continental shelf area. Chemosphere,31(7),3643-3650.
    Mittlefehldt, D. W., Lindstrom, M. M. (1991). Generation of abnormal trace element abundances in Antarctic eucrites by weathering processes. Geochimica et Cosmochimica Acta,55(1),77-87.
    Negri, A., Burns, K., Boyle, S., Brinkman, D., Webster, N. (2006). Contamination in sediments, bivalves and sponges of McMurdo Sound, Antarctica. Environmental Pollution,143(3),456-467.
    Nie, Y., Liu, X., Sun, L., Emslie, S. D. (2012). Effect of penguin and seal excrement on mercury distribution in sediments from the Ross Sea region, East Antarctica. Science of the Total Environment,433,132-140.
    Piper, D., Perkins, R., Rowe, H. (2007). Rare-earth elements in the Permian Phosphoria Formation:paleo proxies of ocean geochemistry. Deep Sea Research Part II:Topical Studies in Oceanography,54(11),1396-1413.
    Ravichandran, M. (1996). Distribution of rare earth elements in sediment cores of Sabine-Neches Estuary. Marine pollution bulletin,32(10),719-726.
    Riva, S. D., Abelmoschi, M., Magi, E., Soggia, F. (2004). The utilization of the Antarctic environmental specimen bank (BCAA) in monitoring Cd and Hg in an Antarctic coastal area in Terra Nova Bay (Ross Sea-Northern Victoria Land). Chemosphere,56(1),59-69.
    Roosens, L., Van Den Brink, N., Riddle, M., Blust, R., Neels, H., Covaci, A. (2007). Penguin colonies as secondary sources of contamination with persistent organic pollutants. Journal of Environmental Monitoring,9(8),822-825.
    Rubio, B., Nombela, M., Vilas, F. (2000). Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain):an assessment of metal pollution. Marine pollution bulletin,40(11),968-980.
    Santos, I. R., Favaro, D. I., Schaefer, C. E., Silva-Filho, E. V. (2007). Sediment geochemistry in coastal maritime Antarctica (Admiralty Bay, King George Island): evidence from rare earths and other elements. Marine chemistry,107(4),464-474.
    Savinov, V. M., Gabrielsen, G. W., Savinova, T. N. (2003). Cadmium, zinc, copper, arsenic, selenium and mercury in seabirds from the Barents Sea:levels, inter-specific and geographical differences. Science of the Total Environment, 306(1),133-158.
    Schuster, P. F., Krabbenhoft, D. P., Naftz, D. L., Cecil, L. D., Olson, M. L., Dewild, J. F., Susong, D. D.,
    Green, J. R., Abbott, M. L. (2002). Atmospheric mercury deposition during the last 270 years:a glacial ice core record of natural and anthropogenic sources. Environmental Science & Technology,36(11),2303-2310.
    Setti, M., Marinoni, L., Lopez-Galindo, A. (2004). Mineralogical and geochemical characteristics (major, minor, trace elements and REE) of detrital and authigenic clay minerals in a Cenozoic sequence from Ross Sea, Antarctica. Clay Minerals, 39(4),405-421.
    Siegel, S., Siegel, B., McMurtry, G. (1980). Atmosphere-soil mercury distribution:the biotic factor. Water, air, and soil pollution,13(1),109-112.
    Siegel, S., Siegel, B., McMurtry, G. (1981). Antarctic iron-mercury abundance ratios: Evidence for mercury depletion in an active volcanic zone. Water, air, and soil pollution,15(4),465-469.
    Slemr, F., Langer, E. (1992). Increase in global atmospheric concentrations of mercury inferred from measurements over the Atlantic Ocean.
    Smol, J. P., Cumming, B. F. (2000). Tracking long-term changes in climate using algal indicators in lake sediments. Journal of Phycology,36(6),986-1011.
    Soszka, G., Suplinska, M., Baranski, A., Grzybowska, D., Pietruszewski, A. (1981). Trace metals, fluorine and radionuclides in Antarctic krill Euphausia superba Dana. Polish Polar Research,2,109-117.
    Speir, T., Cowling, J. (1984). Ornithogenic soils of the Cape Bird adelie penguin rookeries, Antarctica. Polar Biology,2(4),199-205.
    Sprovieri, F., Pirrone, N., Hedgecock, I., Landis, M., Stevens, R. (2002). Intensive atmospheric mercury measurements at Terra Nova Bay in Antarctica during November and December 2000. Journal of Geophysical Research:Atmospheres (1984-2012),107(D23), ACH 20-21-ACH 20-28.
    Sun, L., Emslie, S., Huang, T., Blais, J., Xie, Z., Liu, X., Yin, X., Wang, Y., Huang, W., Hodgson, D. (2013). Vertebrate records in polar sediments:biological responses to past climate change and human activities. Earth-Science Reviews.
    Sun, L., Liu, X., Yin, X., Zhu, R., Xie, Z., Wang, Y. (2004). A 1,500-year record of Antarctic seal populations in response to climate change. Polar Biology,27(8), 495-501.
    Sun, L., Xie, Z., Zhao, J. (2000). Palaeoecology:A 3,000-year record of penguin populations. Nature,407(6806),858-858.
    Sun, L., Yin, X., Liu, X., Zhu, R., Xie, Z., Wang, Y. (2006). A 2000-year record of mercury and ancient civilizations in seal hairs from King George Island, West Antarctica. Science of the Total Environment,368(1),236-247.
    Sun, S. S., Hanson, G. N. (1975). Origin of Ross Island basanitoids and limitations upon the heterogeneity of mantle sources for alkali basalts and nephelinites. Contributions to Mineralogy and Petrology,52(2),77-106.
    Sun, S.-S., Hanson, G. N. (1976). Rare earth element evidence for differentiation of McMurdo volcanics, Ross Island, Antarctica. Contributions to Mineralogy and Petrology,54(2),139-155.
    Tatur, A., Keck, A. (1990). Phosphates in ornithogenic soils of the maritime Antarctic. Paper presented at the Proc NIPR Symp Polar Biol.
    Taylor, S. (1964). Abundance of chemical elements in the continental crust:a new table. Geochimica et Cosmochimica Acta,28(8),1273-1285.
    Turekian, K. K., Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth's crust. Geological Society of America Bulletin,72(2),175-192.
    Turekian, K. K., Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth's crust. Geological Society of America Bulletin,72(2),175-192.
    Tyler, G. (2004). Rare earth elements in soil and plant systems-A review. Plant and soil,267(1-2),191-206.
    Vandal, G., Mason, R., McKnight, D., Fitzgerald, W. (1998). Mercury speciation and distribution in a polar desert lake (Lake Hoare, Antarctica) and two glacial meltwater streams. Science of the Total Environment,213(1),229-237.
    Vandal, G. M., Fitzgerald, W. F., Boutron, C. F., Candelone, J.-P. (1993). Variations in mercury deposition to Antarctica over the past 34,000 years.
    Williams, P., Robertson, K., Chew, K., Weiss, H. (1974). Mercury in the South Polar Seas and in the northeast Pacific Ocean. Marine chemistry,2(4),287-299.
    Wilson, K.-J. (1990). Fluctuations in populations of Adelie penguins at Cape Bird, Antarctica. Polar Record,26(159),305-308.
    Xie, Z., Sun, L. (2008). A 1,800-year record of arsenic concentration in the penguin dropping sediment, Antarctic. Environmental geology,55(5),1055-1059.
    Xu, L.-Q., Liu, X.-D., Sun, L.-G., Yan, H., Liu, Y, Luo, Y.-H., Huang, J. (2011). Geochemical evidence for the development of coral island ecosystem in the Xisha Archipelago of South China Sea from four ornithogenic sediment profiles. Chemical Geology,286(3),135-145.
    Yang, S. Y, Jung, H. S., Choi, M. S., Li, C. X. (2002). The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments. Earth and Planetary Science Letters,201(2),407-419.
    Yin, X., Xia, L., Sun, L., Luo, H., Wang, Y (2008). Animal excrement:a potential biomonitor of heavy metal contamination in the marine environment. Science of the Total Environment,399(1),179-185.
    Zdanowski, M. K., Zmuda, M. J., Zwolska, I. (2005). Bacterial role in the decomposition of marine-derived material (penguin guano) in the terrestrial maritime Antarctic. Soil Biology and Biochemistry,37(3),581-595.
    Barrett, J., Virginia, R., Hopkins, D., Aislabie, J., Bargagli, R., Bockheim, J., Campbell, I., Lyons, W., Moorhead, D., Nkem, J. (2006). Terrestrial ecosystem processes of Victoria Land, Antarctica. Soil Biology and Biochemistry,38(10), 3019-3034.
    Barrett, J. E., Virginia, R., Wall, D. H., Cary, S. C., Adams, B. J., Hacker, A., Aislabie, J. M. (2006). Co-variation in soil biodiversity and biogeochemistry in northern and southern Victoria Land, Antarctica. Antarctic Science,18(04),535-548.
    Bird, M. I., Boobyer, E. M., Bryant, C., Lewis, H., Paz, V., Stephens, W. E. (2007). A long record of environmental change from bat guano deposits in Makangit Cave, Palawan, Philippines. Earth and Environmental Science Transactions of the Royal Society of Edinburgh,98(1),59-69.
    Bird, M. I., Tait, E., Wurster, C. M., Furness, R. W. (2008). Stable carbon and nitrogen isotope analysis of avian uric acid. Rapid Communications in Mass Spectrometry, 22(21),3393-3400.
    Bishop, J. L., Lougear, A., Newton, J., Doran, P. T., Froeschl, H., Trautwein, A. X., Korner, W., Koeberl, C. (2001). Mineralogical and geochemical analyses of Antarctic lake sediments:a study of reflectance and Mossbauer spectroscopy and C, N, and S isotopes with applications for remote sensing on Mars. Geochimica et Cosmochimica Acta,65(17),2875-2897.
    Blunden, J., Aneja, V. P. (2008). Characterizing ammonia and hydrogen sulfide emissions from a swine waste treatment lagoon in North Carolina, Atmospheric Environment,42(14),3277-3290.
    Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., J(?)rgensen, B. B., Witte, U., Pfannkuche, O. (2000). A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804),623-626.
    Bokhorst, S., Huiskes, A., Convey, P., Aerts, R. (2007). External nutrient inputs into terrestrial ecosystems of the Falkland Islands and the Maritime Antarctic region. Polar Biology,30(10),1315-1321.
    Brodie, C, Casford, J., Lloyd, J., Leng, M. Heaton, THE,& Kendrick, CP (2012). Evidence for bias in C/N,δ13C and δ15N values of bulk organic matter, and on environmental interpretation, from a lake sedimentary sequence by pre-analysis acid treatment methods. Quaternary Science Reviews,30,3076-3087.
    Brodie, C. R., Leng, M. J., Casford, J. S., Kendrick, C. P., Lloyd, J. M., Yongqiang, Z., Bird, M. I. (2011). Evidence for bias in C and N concentrations and δ13C composition of terrestrial and aquatic organic materials due to pre-analysis acid preparation methods. Chemical Geology,282(3),67-83.
    Burkins, M. B., Virginia, R. A., Chamberlain, C. P., Wall, D. H. (2000). Origin and distribution of soil organic matter in Taylor Valley, Antarctica. Ecology,81(9), 2377-2391.
    Campbell, I., Claridge, G. (1966). A SEQUENCE OF SOILS FROM A PENGUIN ROOKERY INEXPRESSIBLE ISLAND ANTARCTICA. New Zealand Journal of Science,9(2),361-&.
    Capo, R. C., Stewart, B. W., Chadwick, O. A. (1998). Strontium isotopes as tracers of ecosystem processes:theory and methods. Geoderma,82(1-3),197-225.
    Caut, S., Angulo, E., Pisanu, B., Ruffino, L., Faulquier, L., Lorvelec, O., Chapuis, J., Pascal, M., Vidal, E., Courchamp, F. (2012). Seabird modulations of isotopic nitrogen on islands. PloS one,7(6), e39125.
    Chamberlain, C., Blum, J., Holmes, R., Feng, X., Sherry, T., Graves, G. R. (1996). The use of isotope tracers for identifying populations of migratory birds. Oecologia, 109(1),132-141.
    Chen, Q., Liu, X., Nie, Y., Sun, L. (2013). Using visible reflectance spectroscopy to reconstruct historical changes in chlorophyll a concentration in East Antarctic ponds. Polar Research,32.
    Chen, Q., Liu, X., Nie, Y, Sun, L. (2013). Using visible reflectance spectroscopy to reconstruct historical changes in chlorophyll a concentration in East Antarctic ponds. Polar Research,32.
    Doran, P. T., Wharton, R., Lyons, W., Des Marais, D., Andersen, D. (2000). Sedimentology and geochemistry of a perennially ice-covered epishelf lake in Bunger Hills Oasis, East Antarctica. Antarctic Science,12(02),131-140.
    Doran, P. T., Wharton, R. A., Des Marais, D. J., McKay, C. P. (1998). Antarctic paleolake sediments and the search for extinct life on Mars. Journal of Geophysical Research:Planets (1991-2012),103(E12),28481-28493.
    Dunton, K. H. (2001).δ15N and δ13C measurements of Antarctic Peninsula fauna: trophic relationships and assimilation of benthic seaweeds. American Zoologist, 41(1),99-112.
    Emslie, S. D., Patterson, W. P. (2007). Abrupt recent shift in δ13C and δ15N values in Adelie penguin eggshell in Antarctica. Proceedings of the National Academy of Sciences,104(28),11666-11669.
    Griffiths, K., Michelutti, N., Blais, J. M., Kimpe, L. E., Smol, J. P. (2010). Comparing nitrogen isotopic signals between bulk sediments and invertebrate remains in High Arctic seabird-influenced ponds. Journal of Paleolimnology,44(2),405-412.
    Hansson, L.-A., Tranvik, L. J. (2003). Food webs in sub-Antarctic lakes:a stable isotope approach. Polar Biology,26(12),783-788.
    Hassan, K. M., Swinehart, J. B., Spalding, R. F. (1997). Evidence for Holocene environmental change from C/N ratios, and δ13C and 815N values in Swan Lake sediments, western Sand Hills, Nebraska. Journal of Paleolimnology,18(2), 121-130.
    Hawke, D., Newman, J. (2007). Carbon-13 and nitrogen-15 enrichment in coastal forest foliage from nutrient-poor and seabird-enriched sites in southern New Zealand. New Zealand Journal of Botany,45(2),309-315.
    Hawke, D. J., Miskelly, C. M. (2009).13C and 15N enrichment in snipe (Coenocorypha spp.) from islands across the New Zealand biogeographic region. Journal of the Royal Society of New Zealand,39(1),35-42.
    Hesslein, R., Capel, M., Fox, D., Hallard, K. (1991). Stable isotopes of sulfur, carbon, and nitrogen as indicators of trophic level and fish migration in the lower Mackenzie River basin, Canada. Canadian Journal of Fisheries and Aquatic Sciences,48(11),2258-2265.
    Hobson, K. A. (1999). Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia,120(3),314-326.
    Hu, Q.-H., Sun, L.-G., Xie, Z.-Q., Emslie, S. D., Liu, X.-D. (2013). Increase in penguin populations during the Little Ice Age in the Ross Sea, Antarctica. Scientific reports,3.
    Huang, T., Sun, L., Long, N., Wang, Y, Huang, W. (2013). Penguin tissue as a proxy for relative krill abundance in East Antarctica during the Holocene. Scientific reports,3.
    Kazama, K., Murano, H., Tsuzuki, K., Fujii, H., Niizuma, Y., Mizota, C. (2013). Input of seabird-derived nitrogen into rice-paddy fields near a breeding/roosting colony of the Great Cormorant (Phalacrocorax carbo), and its effects on wild grass. Applied Geochemistry,28,128-134.
    Kelly, J. F. (2000). Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Canadian Journal of Zoology,78(1),1-27.
    Kennedy, P., Kennedy, H., Papadimitriou, S. (2005). The effect of acidification on the determination of organic carbon, total nitrogen and their stable isotopic composition in algae and marine sediment. Rapid Communications in Mass Spectrometry,19(8),1063-1068.
    Kennett, J. P., Cannariato, K. G., Hendy, I. L., Behl, R. J. (2000). Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials. Science, 288(5463),128-133.
    Kielland, K. (1994). Amino acid absorption by arctic plants:implications for plant nutrition and nitrogen cycling. Ecology,75(8),2373-2383.
    Lee, Y. I., Lim, H. S., Yoon, H. I. (2009). Carbon and nitrogen isotope composition of vegetation on King George Island, maritime Antarctic. Polar Biology,32(11), 1607-1615.
    Lindeboom, H. (1984). The nitrogen pathway in a penguin rookery. Ecology,65(1), 269-277.
    Liu, X., Zhao, S., Sun, L., Luo, H., Yin, X., Xie, Z., Wang, Y, Liu, K., Wu, X., Ding, X. (2006). Geochemical evidence for the variation of historical seabird population on Dongdao Island of the South China Sea. Journal of Paleolimnology,36(3), 259-279.
    Liu, X.-D., Li, H.-C, Sun, L.-G., Yin, X.-B., Zhao, S.-P., Wang, Y.-H. (2006).δ13C and δ15N in the ornithogenic sediments from the Antarctic maritime as palaeoecological proxies during the past 2000 yr. Earth and Planetary Science Letters,243(3),424-438.
    Lorenzini, S., Baroni, C., Fallick, A. E., Baneschi, I., Salvatore, M. C., Zanchetta, G., Dallai, L. (2010). Stable isotopes reveal Holocene changes in the diet of Adelie penguins in Northern Victoria Land (Ross Sea, Antarctica). Oecologia,164(4), 911-919.
    Lorrain, A., Savoye, N., Chauvaud, L., Paulet, Y.-M., Naulet, N. (2003). Decarbonation and preservation method for the analysis of organic C and N contents and stable isotope ratios of low-carbonated suspended particulate material. Analytica Chimica Acta,491(2),125-133.
    Marra, P. P., Hobson, K. A., Holmes, R. T. (1998). Linking winter and summer events in a migratory bird by using stable-carbon isotopes. Science,282(5395), 1884-1886.
    Michelutti, N., Keatley, B. E., Brimble, S., Blais, J. M., Liu, H., Douglas, M. S., Mallory, M. L., Macdonald, R. W., Smol, J. P. (2009a). Seabird-driven shifts in Arctic pond ecosystems. Proceedings of the Royal Society B:Biological Sciences, 276(1656),591-596.
    Michelutti, N., Liu, H., Smol, J. P., Kimpe, L. E., Keatley, B. E., Mallory, M., Macdonald, R. W., Douglas, M. S. V., Blais, J. M. (2009b). Accelerated delivery of polychlorinated biphenyls (PCBs) in recent sediments near a large seabird colony in Arctic Canada. Environmental pollution,157(10),2769-2775.
    Michelutti, N., Simonetti, A., Briner, J. P., Funder, S., Creaser, R. A., Wolfe, A. P. (2009c). Temporal trends of pollution Pb and other metals in east-central Baffin Island inferred from lake sediment geochemistry. Science of the total environment, 407(21),5653-5662.
    Minagawa, M., Wada, E. (1986). Nitrogen isotope ratios of red tide organisms in the East China Sea:A characterization of biological nitrogen fixation. Marine chemistry,19(3),245-259.
    Minami, H., Minagawa, M., Ogi, H. (1995). Changes in stable carbon and nitrogen isotope ratios in sooty and short-tailed shearwaters during their northward migration. Condor,565-574.
    Mincks, S. L., Smith, C. R., Jeffreys, R. M., Sumida, P. Y. (2008). Trophic structure on the West Antarctic Peninsula shelf:Detritivory and benthic inertia revealed by δ13C and δ15N analysis. Deep Sea Research Part II:Topical Studies in Oceanography,55(22),2502-2514.
    Mizota, C. (2009a). Temporal variations in the concentration and isotopic signature of ammonium-and nitrate-nitrogen in soils under a breeding colony of Black-tailed Gulls (Larus crassirostris) on Kabushima Island, northeastern Japan. Applied Geochemistry,24(2),328-332.
    Mizota, C. (2009b). Nitrogen isotopic patterns of vegetation as affected by breeding activity of Black-tailed Gull (Larus crassiostris):A coupled analysis of feces, inorganic soil nitrogen and flora. Applied Geochemistry,24(11),2027-2033.
    Mizota, C., Naikatini, A. (2007). Nitrogen isotope composition of inorganic soil nitrogen and associated vegetation under a sea bird colony on the Hatana islands, Rotuma Group, Fiji. GEOCHEMICAL JOURNAL-JAPAN-,41(4),297.
    Mizutani, H. (1985). Ammonia volatilization and high 15N/14N ratio in a penguin rookery in Antarctica. Geochemical Journal,19,323-327.
    Mizutani, H., Kabaya, Y., Moors, P., Speir, T., Lyon, G. L. (1991). Nitrogen isotope ratios identify deserted seabird colonies. Auk,108(4),960-964.
    Mizutani, H., Kabaya, Y, Wada, E. (1991). Linear correlation netween latitude and soil 15N enrichment at seabird rookeries. Naturwissenschaften,78(1),34-36.
    Mizutani, H., McFARLANE, D. A., Kabaya, Y. (1992). Nitrogen and carbon isotope studies of a bat guano core from Eagle Creek Cave, Arizona, USA.
    Mizutani, H., Wada, E. (1988). Nitrogen and carbon isotope ratios in seabird rookeries and their ecological implications. Ecology,69(2),340-349.
    Naito, Y. I., Honch, N. V., Chikaraishi, Y, Ohkouchi, N., Yoneda, M. (2010). Quantitative evaluation of marine protein contribution in ancient diets based on nitrogen isotope ratios of individual amino acids in bone collagen:an investigation at the Kitakogane Jomon site. American journal of physical anthropology,143(1), 31-40.
    Orchard, V. A., Corderoy, D. M. (1983). Influence of environmental factors on the decomposition of penguin guano in Antarctica. Polar Biology,1(4),199-204.
    Peterson, B. J., Fry, B. (1987). Stable isotopes in ecosystem studies. Annual review of ecology and systematics,293-320.
    Robinson, D. (2001).δ15N as an integrator of the nitrogen cycle. Trends in Ecology & Evolution,16(3),153-162.
    Robinson, R. S., Kienast, M., Luiza Albuquerque, A., Altabet, M., Contreras, S., De Pol Holz, R., Dubois, N., Francois, R., Galbraith, E., Hsu, T. C. (2012). A review of nitrogen isotopic alteration in marine sediments. Paleoceanography,27(4).
    Schmidt, M., Gleixner, G. (2005). Carbon and nitrogen isotope composition of bulk soils, particle-size fractions and organic material after treatment with hydrofluoric acid. European Journal of Soil Science,56(3),407-416.
    Schmidt, S., Dennison, W. C, Moss, G. J., Stewart, G. R. (2004). Nitrogen ecophysiology of Heron Island, a subtropical coral cay of the Great Barrier Reef, Australia. Functional plant biology,31(5),517-528.
    Schmitz, O. J., Hawlena, D., Trussell, G. C. (2010). Predator control of ecosystem nutrient dynamics. Ecology letters,13(10),1199-1209.
    Schoeninger, M. J., DeNiro, M. J. (1984). Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochimica et Cosmochimica Acta,48(4),625-639.
    Scholle, P. A., Arthur, M. A. (1980). Carbon isotope fluctuations in Cretaceous pelagic limestones:potential stratigraphic and petroleum exploration tool. AAPG Bulletin, 64(1),67-87.
    Speir, T., Cowling, J. (1984). Ornithogenic soils of the Cape Bird adelie penguin rookeries, Antarctica. Polar Biology,2(4),199-205.
    Speir, T.W. and Ross D.J. (1984). Ornithogenic soils of the Cape Bird Adelie penguin rookeries, Antarctica.2. Ammonia Evolution and Enzyme Activities. Polar Biology 2(4),207-212.
    Strauch, G., Haendel, D., Maaβ, I., Muhle, K., Runge, A. (2011). Isotope variations of hydrogen, carbon and nitrogen in florae from the Schirmacher Oasis, East Antarctica. Isotopes in environmental and health studies,47(3),280-285.
    Sun, L., Emslie, S., Huang, T., Blais, J., Xie, Z., Liu, X., Yin, X., Wang, Y, Huang, W., Hodgson, D. (2013). Vertebrate records in polar sediments:biological responses to past climate change and human activities. Earth-Science Reviews.
    Sun, L., Xie, Z., Zhao, J. (2000). Palaeoecology:A 3,000-year record of penguin populations. Nature,407(6806),858-858.
    Sun, L., Zhu, R., Liu, X., Xie, Z., Yin, X., Zhao, S., Wang, Y (2005). HCl-soluble 87Sr/86Sr ratio in sediments impacted by penguin or seal excreta as a proxy for historical population size in the maritime Antarctic. Marine ecology. Progress series, 303,43-50.
    Szpak, P., Millaire, J.-F., White, C. D.,& Longstaffe, F. J. (2012). Influence of seabird guano and camelid dung fertilization on the nitrogen isotopic composition of field-grown maize (Zea mays). Journal of Archaeological Science,39(12), 3721-3740.
    Wada, E., Mizutani, H., Minagawa, M. (1991). The use of stable isotopes for food web analysis. Critical Reviews in Food Science & Nutrition,30(4),361-371.
    Wada, E., Shibata, R., Torii, T. (1981).15N abundance in Antarctica:origin of soil nitrogen and ecological implications.
    Wurster, C. M., Patterson, W. P., McFarlane, D. A., Wassenaar, L. I., Hobson, K. A., Athfield, N. B., Bird, M. I. (2008). Stable carbon and hydrogen isotopes from bat guano in the Grand Canyon, USA, reveal Younger Dryas and 8.2 ka events. Geology,36(9),683-686.
    Zhu, R., Liu, Y, Ma, E., Sun, J., Xu, H., Sun, L. (2009). Nutrient compositions and potential greenhouse gas production in penguin guano, ornithogenic soils and seal colony soils in coastal Antarctica. Antarctic Science,21(05),427-438.
    Zhu, R., Sun, J., Liu, Y, Gong, Z., Sun, L. (2011). Potential ammonia emissions from penguin guano, ornithogenic soils and seal colony soils in coastal Antarctica: effects of freezing-thawing cycles and selected environmental variables. Antarctic Science,23(01),78-92.
    刘英俊,曹励明,(1987).元素地球化学导论:地质出版社.
    陆龙骅,卞林根,逯昌贵等.中国南极站气候特征与全球变化研究.见:陈立奇主编,南极地区对全球变化的响应与反馈作用研究.北京,海洋出版社2004,243-248.
    孙立广,谢周清,赵俊琳.(2000).南极阿德雷岛湖泊沉积物Sr/Ba与B/Ga比值特征.海洋地质与第四纪地质,20(4),43-47.
    Ahmed, M., Anchukaitis, K. J., Asrat, A., Borgaonkar, H. P., Braida, M., Buckley, B. M., Buntgen, U., Chase, B. M., Christie, D. A., Cook, E. R. (2013). Continental-scale temperature variability during the past two millennia. Nature geoscience.
    Ainley, D. G. (2002). The Adelie penguin:bellwether of climate change:Columbia University Press.
    Ainley, D. G., Ballard, G., Barton, K. J., Karl, B. J., Rau, G. H., Ribic, C. A., Wilson, P. R. (2003). Spatial and temporal variation of diet within a presumed metapopulation of Adelie penguins. The Condor,105(1),95-106.
    Ainley, D. G., Clarke, E. D., Arrigo, K., Fraser, W. R., Kato, A., Barton, K. J.,& Wilson, P. R. (2005). Decadal-scale changes in the climate and biota of the Pacific sector of the Southern Ocean,1950s to the 1990s. Antarctic Science,17(02), 171-182.
    Ainley, D. G., Divoky, G. (2001). Seabird responses to climate change. Encyclopedia of ocean sciences,5,2669-2677.
    Arrigo, K. R., van Dijken, G. L. (2003). Phytoplankton dynamics within 37 Antarctic coastal polynya systems. Journal of Geophysical Research:Oceans (1978-2012), 108(C8).
    Baroni, C., Orombelli, G. (1994a). Abandoned penguin rookeries as Holocene paleoclimatic indicators in Antarctica. Geology,22(1),23-26.
    Baroni, C., Orombelli, G. (1994b). Holocene glacier variations in the Terra Nova Bay area (Victoria Land, Antarctica). Antarctic Science,6(04),497-505.
    Bertler, N., Mayewski, P., Carter, L. (2011). Cold conditions in Antarctica during the Little Ice Age-Implications for abrupt climate change mechanisms. Earth and Planetary Science Letters,308(1),41-51.
    Blackburn, N., Taylor, R., Wilson, P. (1991). An interpretation of the growth of the Adelie penguin rookery at Cape Royds,1955-1990. New Zealand journal of ecology,15(2),117-121.
    Blais, J. M., Kimpe, L. E., McMahon, D., Keatley, B. E., Mallory, M. L., Douglas, M. S., Smol, J. P. (2005). Arctic seabirds transport marine-derived contaminants. Science,309(5733),445-445.
    Blais, J. M., Macdonald, R. W., Mackay, D., Webster, E., Harvey, C., Smol, J. P. (2007). Biologically mediated transport of contaminants to aquatic systems. Environmental science & technology,41(4),1075-1084.
    BROWNELL, R., Ainley, D. (1976). SOUTHERN ELEPHANT SEALS IN ROSS SEA. Antarctic Journal of the United States,11(3),189-190.
    Campbell, I., Claridge, G. (1966). A SEQUENCE OF SOILS FROM A PENGUIN ROOKERY INEXPRESSIBLE ISLAND ANTARCTICA. New Zealand Journal of Science,9(2),361-&.
    Chen, Q., Liu, X., Nie, Y, Sun, L. (2013). Using visible reflectance spectroscopy to reconstruct historical changes in chlorophyll a concentration in East Antarctic ponds. Polar Research,32.
    Conway, H., Hall, B., Denton, G., Gades, A., Waddington, E. (1999). Past and future grounding-line retreat of the West Antarctic Ice Sheet. Science,286(5438), 280-283.
    Croxall, J., McCann, T., Prince, P., Rothery, P. (1988). Reproductive performance of seabirds and seals at South Georgia and Signy Island, South Orkney Islands,1976-1987:implications for Southern Ocean monitoring studies Antarctic Ocean and resources variability (pp.261-285):Springer.
    Croxall, J., Trathan, P., Murphy, E. (2002). Environmental change and Antarctic seabird populations. Science,297(5586),1510-1514.
    Cunningham, W. L., Leventer, A., Andrews, J. T., Jennings, A. E., Licht, K. J. (1999). Late Pleistocene-Holocene marine conditions in the Ross Sea, Antarctica:evidence from the diatom record. The Holocene,9(2),129-139.
    Daly, K., Macaulay, M. (1991). Influence of physical and biological mesoscale dynamics on the seasonal distribution and behavior of Euphausia superba in the Antarctic marginal ice zone. Marine ecology progress series. Oldendorf,79(1), 37-66.
    Dochat, T. M., Marchant, D. R., Denton, G. H. (2000). Glacial geology of Cape Bird, Ross Island, Antarctica. Geografiska Annaler:Series A, Physical Geography, 82(2-3),237-247.
    Domack, E. W., Jacobson, E. A., Shipp, S., Anderson, J. B. (1999). Late Pleistocene-Holocene retreat of the West Antarctic Ice-Sheet system in the Ross Sea:Part 2-sedimentologic and stratigraphic signature. Geological Society of America Bulletin,111(10),1517-1536.
    Dominik, J., Stanley, D. J. (1993). Boron, beryllium and sulfur in Holocene sediments and peats of the Nile delta, Egypt:their use as indicators of salinity and climate. Chemical Geology,104(1),203-216.
    Emslie, S. D. (2001). Radiocarbon dates from abandoned penguin colonies in the Antarctic Peninsula region. Antarctic Science,13(03),289-295.
    Emslie, S. D., Berkman, P. A., Ainley, D. G., Coats, L., Polito, M. (2003). Late-Holocene initiation of ice-free ecosystems in the southern Ross Sea, Antarctica. Marine Ecology Progress Series,262,19-25.
    Emslie, S. D., Coats, L., Licht, K. (2007). A 45,000 yr record of Adelie penguins and climate change in the Ross Sea, Antarctica. Geology,35(1),61-64.
    Emslie, S. D., McDaniel, J. D. (2002). Adelie penguin diet and climate change during the middle to late Holocene in northern Marguerite Bay, Antarctic Peninsula. Polar biology,25(3),222-229.
    Emslie, S. D., Woehler, E. J. (2005). A 9000-year record of Adelie penguin occupation and diet in the Windmill Islands, East Antarctica. Antarctic Science,17(01),57-66.
    Fitzsimons, S. J., Colhoun, E. A. (1995). Form, structure and stability of the margin of the Antarctic ice sheet, Vestfold Hills and Bunger Hills, East Antarctica. Antarctic Science,7(02),171-179.
    Folk, R. L., Ward, W. C. (1957). Brazos River bar:a study in the significance of grain size parameters. Journal of Sedimentary Research,27(1).
    Fraser, W. R., Trivelpiece, W. Z. (1996). Factors controlling the distribution of seabirds:winter-summer heterogeneity in the distribution of Adelie penguin populations (Vol.70):American Geophysical Union.
    Fraser, W. R., Trivelpiece, W. Z., Ainley, D. G., Trivelpiece, S. G. (1992). Increases in Antarctic penguin populations:reduced competition with whales or a loss of sea ice due to environmental warming? Polar biology,11(8),525-531.
    Grove, J. (1988). The Little Ice Age:London. UK, Methuen.
    Hall, B., Hoelzel, A., Baroni, C., Denton, G., Le Boeuf, B., Overturf, B., Topf, A. (2006). Holocene elephant seal distribution implies warmer-than-present climate in the Ross Sea. Proceedings of the National Academy of Sciences,103(27), 10213-10217.
    Hall, B. L., Baroni, C., Denton, G. H. (2004). Holocene relative sea-level history of the Southern Victoria Land Coast, Antarctica. Global and Planetary Change,42(1), 241-263.
    Hall, B. L., Denton, G. H. (2002). Holocene history of the Wilson Piedmont Glacier along the southern Scott Coast, Antarctica. The Holocene,12(5),619-627.
    Harper, P., Knox, G., Spurr, E., Taylor, R., Wilson, G., Young, E. (1984). The status and conservation of birds in the Ross Sea sector of Antarctica. ICBP Tech. Publ(2), 593-608.
    Hodgson, D. A., Roberts, S. J., Bentley, M. J., Smith, J. A., Johnson, J. S., Verleyen, E., Vyverman, W., Hodson, A. J., Leng, M. J., Cziferszky, A. (2009). Exploring former subglacial Hodgson Lake, Antarctica Paper I:site description, geomorphology and limnology. Quaternary Science Reviews,28(23),2295-2309.
    Hu, Q.-H., Sun, L.-G., Xie, Z.-Q., Emslie, S. D., Liu, X.-D. (2013). Increase in penguin populations during the Little Ice Age in the Ross Sea, Antarctica. Scientific reports,3.
    Huang, T., Sun, L., Wang, Y., Kong, D. (2011). Late Holocene Adelie penguin population dynamics at Zolotov Island, Vestfold Hills, Antarctica. Journal of Paleolimnology,45(2),273-285.
    Huang, T., Sun, L., Wang, Y., Liu, X., Zhu, R. (2009). Penguin population dynamics for the past 8500 years at Gardner Island, Vestfold Hills. Antarctic Science,21(06), 571-578.
    Ingolfsson,O. (2004). Quaternary glacial and climate history of Antarctica. Quaternary Glaciations:Extent and Chronology 3:Part III:South America, Asia, Africa, Australia, Antarctica,3-43.
    Ivins, E. R., James, T. S. (2005). Antarctic glacial isostatic adjustment:a new assessment. Antarctic Science,17(04),541-553.
    King, J. (1994). Recent climate variability in the vicinity of the Antarctic Peninsula. International journal of climatology,14(4),357-369.
    Kreutz, K., Mayewski, P., Meeker, L., Twickler, M., Whitlow, S., Pittalwala, I. (1997). Bipolar changes in atmospheric circulation during the Little Ice Age. Science, 277(5330),1294-1296.
    Le Boeuf, B. J., Laws, R. M. (1994). Elephant seals:population ecology, behavior, and physiology:Univ of California Press.
    Lee, Y. I., Lim, H. S., Yoon, H. I. (2009). Carbon and nitrogen isotope composition of vegetation on King George Island, maritime Antarctic. Polar biology,32(11), 1607-1615.
    Licht, K. J., Jennings, A. E., Andrews, J. T., Williams, K. M. (1996). Chronology of late Wisconsin ice retreat from the western Ross Sea, Antarctica. Geology,24(3), 223-226.
    Liu, X., Nie, Y., Sun, L., Emslie, S. D. (2013). Eco-environmental implications of elemental and carbon isotope distributions in ornithogenic sediments from the Ross Sea region, Antarctica. Geochimica et Cosmochimica Acta,117,99-114.
    Liu, X.-D., Li, H.-C., Sun, L.-G., Yin, X.-B., Zhao, S.-P., Wang, Y.-H. (2006).δ13C and δ15N in the ornithogenic sediments from the Antarctic maritime as palaeoecological proxies during the past 2000 yr. Earth and Planetary Science Letters,243(3),424-438.
    Mann, M. E., Jones, P. D. (2003). Global surface temperatures over the past two millennia. Geophysical Research Letters,30(15).
    Masson, V., Vimeux, F., Jouzel, J., Morgan, V., Delmotte, M., Ciais, P., Hammer, C., Johnsen, S., Lipenkov, V. Y, Mosley-Thompson, E. (2000). Holocene climate variability in Antarctica based on 11 ice-core isotopic records. Quaternary Research, 54(3),348-358.
    Millar, C. D., Subramanian, S., Heupink, T. H., Swaminathan, S., Baroni, C., Lambert, D. M. (2012). Adelie penguins and temperature changes in Antarctica:a long-term view. Integrative zoology,7(2),113-120.
    Morgan, V. (1985). An oxygen isotope-climate record from the Law Dome, Antarctica. Climatic change,7(4),415-426.
    Mosley-Thompson, E., Thompson, L. G., Grootes, P. M., Gundestrup, N. (1990). Little ice age (neoglacial) paleoenvironmental conditions at siple station, Antarctica. Ann. Glaciol,14,199-204.
    Nie, Y, Liu, X., Sun, L., Emslie, S. D. (2012). Effect of penguin and seal excrement on mercury distribution in sediments from the Ross Sea region, East Antarctica. Science of the Total Environment,433,132-140.
    Parkinson, C. L. (1990). Search for the Little Ice Age in Southern Ocean sea-ice records. Ann. Glaciol,14,221-225.
    POLITO, M., EMSLIE, S. D., WALKER, W. (2002). A 1000-year record of Adelie penguin diets in the southern Ross Sea. Antarctic Science,14(04),327-332.
    Rhodes, R., Bertler, N., Baker, J., Steen-Larsen, H. C., Sneed, S., Morgenstern, U., Johnsen, S. J. (2012). Little Ice Age climate and oceanic conditions of the Ross Sea, Antarctica from a coastal ice core record. Climate of the Past Discussions,8(1).
    Schoeninger, M. J., DeNiro, M. J. (1984). Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochimica et Cosmochimica Acta,48(4),625-639.
    Seppelt, R. D., Green, T., Skotnicki, M. (1999). Notes on the flora, vertebrate fauna and biological significance of Beaufort Island, Ross Sea, Antarctica. Polarforschung,66(1/2),53-59.
    Ship, S., Anderson, J., Domack, E. (1999). Late Pleistocene-Holocene retreat of the West Antarctic Ice-Sheet system in the Ross Sea:part1-geophysical results. Geological Society of America Bulletin,111(10),1486-1516.
    Smith, R. C., Ainley, D., Baker, K., Domack, E., Emslie, S., Fraser, B., Kennett, J., Leventer, A., Mosley-Thompson, E., Stammerjohn, S. (1999). Marine Ecosystem Sensitivity to Climate Change Historical observations and paleoecological records reveal ecological transitions in the Antarctic Peninsula region. BioScience,49(5), 393-404.
    Steig, E. J., Morse, D. L., Waddington, E. D., Stuiver, M., Grootes, P. M., Mayewski, P. A., Twickler, M. S., Whitlow, S. I. (2000). Wisconsinan and Holocene climate history from an ice core at Taylor Dome, western Ross Embayment, Antarctica. Geografiska Annaler:Series A, Physical Geography,82(2-3),213-235.
    Steig, E. J., Schneider, D. P., Rutherford, S. D., Mann, M. E., Comiso, J. C., Shindell, D. T. (2009). Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature,457(7228),459-462.
    Sun, L., Emslie, S., Huang, T., Blais, J., Xie, Z., Liu, X., Yin, X., Wang, Y, Huang, W., Hodgson, D. (2013). Vertebrate records in polar sediments:biological responses to past climate change and human activities. Earth-Science Reviews.
    Sun, L., Xie, Z., Zhao, J. (2000). Palaeoecology:A 3,000-year record of penguin populations. Nature,407(6806),858-858.
    Taylor, R., Wilson, P. (1990). Recent increase and southern expansion of Adelie penguin populations in the Ross Sea, Antarctica, related to climatic warming. New Zealand journal of ecology,14,25-29.
    Taylor, R. H. (1962). The Adelie penguin Pygoscelis adeliae at Cape Royds. Ibis, 104(2),176-204.
    Thomson, R. (1977). Effects of human disturbance on an Adelie penguin rookery and measures of control. Paper presented at the Adaptations within Antarctic ecosystems. Proceedings of the Third SCAR Symposium on Antarctic Biology. Smithsonian Institution, Washington, DC.
    Trathan, P., Croxall, J., Murphy, E. (1996). Dynamics of Antarctic penguin populations in relation to inter-annual variability in sea ice distribution. Polar biology,16(5),321-330.
    Vaughan, D. G., Marshall, G. J., Connolley, W. M., Parkinson, C., Mulvaney, R., Hodgson, D. A., King, J. C., Pudsey, C. J., Turner, J. (2003). Recent rapid regional climate warming on the Antarctic Peninsula. Climatic change,60(3),243-274.
    Ward, B. L., Webb, P.-N. (1986). Late Quaternary foraminifera from raised deposits of the Cape Royds-Cape Barne area, Ross Island, Antarctica. The Journal of Foraminiferal Research,16(3),176-200.
    Whitehouse, P. L., Bentley, M. J., Le Brocq, A. M. (2012). A deglacial model for Antarctica:geological constraints and glaciological modelling as a basis for a new model of Antarctic glacial isostatic adjustment. Quaternary Science Reviews,32, 1-24.
    Wilson, K.-J. (1990). Fluctuations in populations of Adelie penguins at Cape Bird, Antarctica. Polar Record,26(159),305-308.
    Wilson, P., Ainley, D., Nur, N., Jacobs, S., Barton, K., Ballard, G., Comiso, J. (2001). Adelie penguin population change in the pacific sector of Antarctica:relation to sea-ice extent and the Antarctic Circumpolar Current. Marine ecology progress series,213,301-309.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700