室温下两亲分子辅助的纳米材料的合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米结构的可控合成是纳米科技发展的重要组成部分,是探索纳米材料性能和应用的基础。在纳米材料的化学制备方法中,液相法,尤其是以水为溶剂的液相法因低耗、环保而备受关注。本文利用两亲分子的辅助作用,在室温下,液相法合成出具有亲水/超亲水性能的CuO基板材料,以及Ag/AgX可见光催化复合材料。
     近年来,具有润湿性的功能材料受到越来越多的关注。润湿性能不仅受材料本身性能的影响,同时也受材料表面结构的重要影响。本论文中,利用两亲分子CTAB和PEG,在铜箔表面原位合成出了具有亲水性表面的CuO基板材料。实验条件简单且温和。一系列研究表明,NaOH的浓度、两亲分子的种类及其浓度,都直接影响了CuO基板材料的表面形貌及润湿性能。
     卤化银是一种光敏性极高的材料。在吸收一个光电子之后,卤化银可以产生一个电子和一个空穴,这样卤化银中的银离子直接变成银原子,如此反复下去,在稳定的太阳光照射下,卤化银成为一种具有光催化性能的化学材料。本文利用两亲分子的调控作用,在室温下,通过可见光照射成功合成了Ag/AgX复合纳米材料。一系列研究表明,Ag/AgBr的可见光催化性能最佳。此外,两亲分子的种类对Ag/AgX复合纳米材料的可见光催化性能也有很大影响。聚合物体系(PVP或PEG)中得到的卤化银的光催化效果最好。
The fabrication of nanoparticles is one of the important sections of nanoscience and nanotechnology, and also the base to investigate the distinctive properties and applications of nanostructures. Among all the synthesis methods to nanoparticles, liquid methods, especially the method using water as solvent, have attracted intensive interest because of their low cost and environmental benign characteristic. In this paper, by a controllable synthesis of amphiphilic molecule, we obtained cupric oxide (CuO) nano/micro superstructure film with hydrophilicity and superhydrophilicity surface on Cu foil via a solution-immersion process at room-temperature, and discussed Ag/AgX photocatalyst material under visible light.
     In recent years, functional surfaces with wettability have become very sought-after because of their value in fundamental research and industrial application. Wettability could be controlled in a rational manner by individually and simultaneously manipulating surface topography and chemical structure. This paper described how we obtained CuO superstructure film with hydrophilicity and superhydrophilicity surfaceds by a controllable synthesis of amphiphilic molecule on Cu foil via a solution-immersion process at room-temperature. The conditions of the experiment are simple and mild. A series of control experiments indicated that the concentration of NaOH, the concentration and the species of amphiphilic molecule had directly influenced the morphology and wettability of the product.
     Silver halide are photosensitive materials extensively used as source materials in photographic films. On absorbing a photon, a silver halide particle generates an electron and a hole, and subsequently the photogenerated electron combines with an Ag+ ion to form an Ag0 atom. Due to this instability under sunlight, which provides the very basis for chemical photography, silver halides are seldom used as photocatalysts. By the amphiphilic molecule controlled, we obtained Ag/AgX nano/micro material at room-temperature. It was found that Ag/AgBr is the best photocatalyst active and stable under visible light. Furthermore, A series of control experiments indicated that the species of amphiphilic molecule had directly influenced the photocatalyst active of silver halides. And in the polymer system, such as PVP or PEG, the photocatalyst active is the best.
引文
[1]周少红,甘树才,陈博。纳米材料的发展及其展望[J]。世界地质,1999,18(3):100-104.
    [2]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001, 51-94.
    [3]杨剑,腾凤恩。纳米材料综述[J]。材料导报,1997,11(2):6-10.
    [4]胡美凤。走进纳米世界[M].上海:学林出版社,2003,8.
    [5]李维芬。纳米材料的性质[J]。现代化工,1999,19(6):1-5.
    [6] Koichi Awazu, Makoto Fujimaki, Carsten Rockstuhl, et.al. A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide[J]. J. AM. CHEM. SOC. 2008(130): 1676-1680.
    [7] Murray C B, Kagan C R, Bawendi M G. Synthesis and characterization of monodisperse nannocrystals and close pac[J]. Annu Rev Mater Sci, 2000,30: 545-610.
    [8] J Y Chen, J M McLellan, A Siekkinen, et al. Facile Synthesis of Gold?Silver Nanocages with Controllable Pores on the Surface[J]. J. Am. Chem. Soc. 2006 ,128: 14776.
    [9] N N Zhao, L M Qi. Low-Temperature Synthesis of Star-Shaped PbS Nanocrystals in Aqueous Solutions of Mixed Cationic/Anionic Surfactants[J], Adv. Mater. 2006 ,18: 359 .
    [10] Y Liu, Y Chu, Y J Zhuo, et al. Controlled Synthesis of Various Hollow Cu Nano/MicroStructures via a Novel Reduction Route[J], Adv. Funct. Mater. 2007,17 : 933.
    [11] J L Song, Y Chu, Y. Liu, et al. Room-temperature controllable fabrication of silver nanoplates reduced by aniline[J], Chem. Commun. 2008 ,10: 1223.
    [12] LiZhi Zhang, Jimmy C Yu, Maosong Mo, et al. A General Solution-Phase Approach to Oriented Nanostructured Films of Metal Chalcogenides on Metal Foils: The Case of Nickel Sulfide[J]. J. AM. CHEM. SOC. 2004,126: 8116-8117.
    [13] D B Zhang, L M Qi, J M Ma, et al. Formation of crystalline nanosized titania in reverse micelles at room temperature[J], J. Mater. Chem, 2002, 12: 3677.
    [14] Jinling Song; Ying Chu; Yang Liu,et al. Room-temperature controllable fabrication of silver nanoplates reduced by aniline[J], Chem. Commun. 2008,10: 1223.
    [15] Yang Liu, Ying Chu, Yujiang Zhuo, et al. Anion-Controlled Construction of CuO Honeycombs and Flowerlike Assemblies on Copper Foils[J]. Crystal Growth & Design 2007, 7(3): 467-470.
    [16] M Boutonnet, J Kizhig, P Stenius. The preparation of monodisperse colloidal metal particles from microemulsions [J]. Colloids and Surfaces, 1982, 5: 209-225.
    [17] B A Simmons, S Li, V T John, et al. Morphology of CdS Nanocrystals Synthesized in a Mixed Surfacetant System[J], Nano Lett, 2002, 2: 263-268.
    [18] M Li, S Mann. Emergence of Morphological Complexity in BaSO4 Fibers Synthesized in AOTMicroemulsions[J], Langmuir, 2000,16: 7088-7094.
    [19] F Kim, S Kwan, J Akana, et al. Langmuir-Blodgett Nanorod Assembly[J], J.AM.Chem.Soc., 2001,123: 4360-4361.
    [20] S Kwan, F Kim, J Akana, et al. Synthesis and assembly of BaWO4 nanorods[J], Chem. Commun, 2001, 21: 447-448.
    [21] T Hirai, H Sato, I Komasawa. Mechanism of formation of titanium dioxide ultrafine particles in reverse micelles by hydrolysis of titanium tetrabutoxide[J], Ind. Eng. Chem. Res, 1993, 32: 3014-3019.
    [22] Zhang T R, Dong W J, Keeter-Brewer M, et al. Site-specific nucleation and growth kinetics in hierarchical nanosyntheses of branched ZnO crystallites [J]. J Am Chem Soc, 2006, 128(33): 10960-10968.
    [23] G D Rees, R Evans-Gowing, S J Hammond, et al. Formation and Morpology of Calcium Sulfate Nanoparticles and Nanowires in Water-in-Oil Microemulsions[J], Langmuir, 1999, 15: 1993-2002.
    [24] G L Li, G H Wang. Synthesis of nanometer-sized TiO2 particles by a microemulsion method[J], Nanostruct. Mater., 1999, 11: 663-668.
    [25] Xufeng Wu, Gaoquan Shi, Shibin Wang, et al. Formation of 3D Dandelions and 2D Nanowalls of Copper Phosphate Dihydrate on a Copper Surface and Their Conversion into a Nanoporous CuO Film[J]. Eur. J. Inorg. Chem. 2005, 32, 4775-4779.
    [26] Shingo Hirano, Kyosuke Masuya, Makoto Kuwabara. Multi-Nucleation-Based Formation of Oriented Zinc Oxide Microcrystals and Films in Aqueous Solutions[J]. J. Phys. Chem. B 2004, 108: 4576-4578.
    [27] M. Miyauchi, A. Shimai, Y. Tsuru. Photoinduced Hydrophilicity of Heteroepitaxially Grown ZnO Thin Films[J]. J. Phys. Chem. B 2005, 109: 13307-13311.
    [28] Kaifu Huo, Yemin Hu, Jijiang Fu, et al. Direct and Large-Area Growth of One-Dimensional ZnO Nanostructures from and on a Brass Substrate[J]. J. Phys. Chem. C 2007, 111: 5876-5881.
    [29] Xiaogang Wen, Yueping Fang, Qi Pang, et al. ZnO Nanobelt Arrays Grown Directly from and on Zinc Substrates: Synthesis, Characterization, and Applications[J]. J. Phys. Chem. B 2005, 109: 15303-15308.
    [30] Wang J M, Li Y D. Rational synthesis of metal nanotubes and nanowires from lamellar structure[J]. Adv Mater, 2003, 15(5): 445-447.
    [31] Fang Lu, Weiping Cai, Yugang Zhang, et al. Fabrication and Field-Emission Performance of Zinc Sulfide Nanobelt Arrays[J]. J. Phys. Chem. C 2007, 111: 13385-13392.
    [32] Soumitra Kar, Apurba Dev, Subhadra Chaudhuri. Simple Solvothermal Route To Synthesize ZnO Nanosheets, Nanonails, and Well-Aligned Nanorod Arrays[J]. J. Phys. Chem. B 2006, 110: 17848-17853.
    [33] A Umar, S Z Kim, E K Suh, et al. Ultraviolet-emitting javelin-like ZnO nanorods by thermalevaporation: Growth mechanism, structural and optical properties[J]. Chemical Physics Letters 2007, 440: 110-115.
    [34] W L Liu, S H Hsieh, W J Chen, et al. Study of nanosized Zinc Oxide on Cu-Zn alloy substrate using Taguchi method[J]. Surface & Coating Technology 2007, 201: 9238-9242.
    [35] Xufeng Wu, Hua Bai, Chun Li, et al. Controlled one-step fabrication of highly oriented ZnO nanoneedle/nanorods arrays at near room temperature[J]. Chem. Commun. 2006, 18: 1655-1657.
    [36] Dongbo Fan, P. John Theomas, Paul O’Brien. Deposition of CdS and ZnS thin films at the water/toluene interface[J]. J. Mater. Chem. 2007, 17: 1381-1386.
    [37] Bin Zhang, Xingchen Ye, Chengming Wang, et al. A facile solution-phase deposition approach to porous selenium materials[J]. J. Mater. Chem. 2007, 17: 2706-2712.
    [38] Dennis Palms, Jochen Norwig, Gerhard Wegner. Electrochemically Induced Growth of Zinc Oxide[J]. ChemPhysChem. 2007, 8: 2260-2264.
    [39] Rui-Qi Song, An-Wu Xu, Bin Deng, et al. From Layered Basic Zinc Acetate Nanobelts to Hierarchical Zinc Oxide Nanostructures and Porous Zinc Oxide Nanobelts[J]. Adv. Funct. Mater. 2007, 17: 296-306.
    [40] Peter Lipowsky, Rudolf C Hoffmann, Udo Welzel, et al. Site-Selective Deposition of Nanostructured ZnO Thin Films from Solutions Containing Polyvinylpyrrolidone[J]. Adv. Funct. Mater. 2007, 17: 2151-2159.
    [41] Chiu-Yen Wang, Ming-Yen Lu, Huai-Chung Chen, et al. Single-Crystalline Pb Nanowires Grown by Galvanic Displacement Reactions of Pb Ions on Zinc Foils and Their Superconducting Properties[J]. J. Phys. Chem. C. 2007, 111: 6215-6219
    [42] Soumitra Kar, Apurba Dev, Subhadra Chaudhuri. Simple Solvothermal Route To Synthesize ZnO Nanosheets, Nanonails, Well-Aligned Nanorod Arrays[J]. J. Phys. Chem. B 2006, 110: 17848-17853.
    [43] Fang Lu, Weiping Cai, Yugang Zhang,et al. Fabrication and Field-Emission Performance of Zinc Sulfide Nanobelt Arrays[J]. J. Phys. Chem. C. 2007, 111: 13385-13392.
    [44] Xia Feng, Junyong Kang, Wataru Inami, et al. ZnO Films Grown on Si Substrates with Au Nanocrystallites as Nuclei[J]. Crystal Growth & Design 2007, 7(3): 564-568.
    [45] Samuel L Mensah, Vijaya K Kayastha, Yoke Khin Yap. Selective Growth of Pure and Long ZnO Nanowires by Controlled Vapor Concentration Gradients[J]. J. Phys. Chem. C, 2007, 111(44): 16092-16095.
    [46] Jaejin Song, Sangwoo Lim. Effect of Seed Layer on the Growth of ZnO Nanorods[J]. J. Phys. Chem. C 2007, 111: 596-600.
    [47] Mei Li, Jin Zhai, Huan Liu, et al. Electrochemical Deposition of Conductive Superhydrophobic Zinc Oxide Thin Films[J]. J. Phys. Chem. B. 2003, 107: 9954-9957.
    [48] S Hirano, K Masuya, M Kuwabara. Multi-Nucleation-Based Formation of Oriented Zinc OxideMicrocrystals and Films in Aqueous Solutions[J], J. Phys. Chem. B. 2004, 108: 4576.
    [49] S Kar, A Dev, S Chaudhuri. Simple Solvothermal Route To Synthesize ZnO Nanosheets, Nanonails, and Well-Aligned Nanorod Arrays[J], J. Phys. Chem. B. 2006, 110: 17848.
    [50] X F Wu, H Bai, J X Zhang, et al. Copper Hydroxide Nanoneedle and Nanotube Arrays Fabricated by Anodization of Copper[J], J. Phys. Chem. B. 2005, 109: 22836.
    [51] H T Zhu, C Y Zhang, Y M Tang, et al. Novel Synthesis and Thermal Conductivity of CuO Nanofluid[J], J. Phys. Chem. C. 2007, 111: 1646.
    [52] K J Wang, G D Li, J X Li, et al. Formation of Single-Crystalline CuS Nanoplates Vertically Standing on Flat Substrate[J], Cryst. Growth. Des. 2007, 7: 2265.
    [53] X Y Bi, K L Yang. Complexation of Copper Ions with Histidine-Containing Tripeptides Immobilized on Solid Surfaces[J], Langmuir. 2007, 23: 11067.
    [54] X L Hu, J C Yu, J M Gong, et al. A Facile Surface-Etching Route to Thin Films of Metal Iodides[J], Cryst. Growth. Des. 2007, 7: 262.
    [55] C H Xu, C H Woo, S Q Shi. Formation of CuO nanowires on Cu foil[J], Chem. Phys. Lett. 2004, 399: 62.
    [56] L T Qu, L M Dai. Novel Silver Nanostructures from Silver Mirror Reaction on Reactive Substrates[J], J. Phys. Chem. B. 2005, 109: 13985.
    [57] K R Brown, K S Choi. Electrochemical synthesis and characterization of transparent nanocrystalline Cu2O films and their conversion to CuO films[J], Chem. Commun. 2006, 31:3311.
    [58] Yanguang Li, Bing Tan, Yiying Wu. Freestanding Mesoporous Quasi-Single-Crystalline Co3O4 Nanowire Arrays[J]. J. AM. CHEM. SOC. 2006, 128: 14258-14259.
    [59] Hongwei Hou, Yi Xie, Qing Li. Large-Scale Synthesis of Single-Crystalline Quasi-Aligned Submicrometer CuO Ribbons[J]. Crystal Growth & Design 2005, 5(1): 201-205.
    [60] Rabenau A. The Role of Hydrothermal Synthesis in Preparative Chemistry[J]. Angewandte, 1985, 24(12):1026-1040.
    [61] Feng S H, Xu R. New Materials in Hydrothermal Synthesis[J]. Acc Chem Res, 2001,34(3): 239-247.
    [62] Yanhong Tong, Yichun Liu, Lin Dong, et al. Growth of ZnO Nanostructures with Different Morphologies by Using Hydrothermal Technique[J]. J. Phys. Chem. B, 2006, 110: 20263-20267.
    [63] Haidong Yu, Zhongping Zhang, Mingyong Han, et al. A General Low-Temperature Route for Large-Scale Fabrication of Highly Oriented ZnO Nanorod/Nanotube Arrays[J]. J. AM. CHEM. SOC. 2005, 127: 2378-2379.
    [64] Conghua Lu, Limin Qi, Jinhu Yang, et al. Hydrothermal growth of large-scale micropatterned arrays of ultralong ZnO nanowires and nanobelts on zinc substrate[J]. Chem. Commun. 2006, 21: 3551-3553.
    [65] Akira Fujishima, Kenichi Honda. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature 1972, 238: 37-38.
    [66]张彤,张悦炜,张世著,等.可见光响应型窄带隙半导体光催化材料的研究及应用进展[J].材料导报:综述篇,2009,23(2): 24-28.
    [67]刘守新,曲振平,韩秀文,等。Ag担载对TiO2光催化活性的影响[J]。催化学报,2004,25(2): 133-137.
    [68] Koichi Awazu, Makoto Fujimaki, Carsten Rockstuhl, et al. A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide[J]. J.AM.CHEM.SOC.2008,130:1676-1680.
    [69] Yosuke Nakajima, Qiliang Jin, Hiroaki Tada. Electrochemically regenerative visible light-induced reactivity ofα-Fe2O3 films with Ag(core)-AgCl(shell) microcrystal composites[J]. Electrochemistry Communications 2008, 10: 1132-1135.
    [70] Mohammad R Elahifard, Sara Rahimnejad, Saeed Haghighi, et al. Apatite-Coated Ag/AgBr/TiO2 Visible-Light Photocatalyst for Destruction of Bacteria[J]. J. AM. CHEM. SOC. 2007, 129: 9552-9553.
    [71] Peng Wang, Baibiao Huang, Xiaoyan Qin, et al. Ag@AgCl: A Highly Efficient and Stable Photocatalyst Active under Visible Light[J]. Angew. Chem. Int. Ed. 2008, 47: 7931-7933.
    [72]周静涛,王弘,黄柏标,等。光催化材料的最新研究进展[J].功能材料,2004,35:1964-1969.
    [73] Y Liu, Y Chu, M Y Li, et al. In situ synthesis and assembly of copper oxide nanocrystals on copper foil via a mild hydrothermal process[J], J. Mater. Chem. 2006, 16:192.
    [74] Y Liu, Y Chu, L L Li, et al. Controlled Fabrication of Highly Oriented ZnO Microrod/Microtube Arrays on a Zinc Substrate and Their Photoluminescence Properties[J], Chem. Eur. J. 2007, 13: 6667.
    [75] Martin Andersson, Henrik Birkedal, Nathan R. Franklin, et al. Ag/AgCl-Loaded Ordered Mesoporous Anatase for Photocatalysis[J]. Chem. Mater. 2005, 17: 1409-1415.
    [76] Hsunling Bai, Chienchih Chen, Chiahsin Lin, et al. Monodisperse Nanoparticle Synthesisi by an Atmospheric Pressure Plasma Process: An Example of a Visible Light Photocatalyst[J]. Ind. Eng. Chem. Res. 2004, 43: 7200-7203.
    [77] Xin Shu, Jing He, Dong Chen. Visible-Light-Induced Photocatalyst Based on Nickel Titanate Nanoparticles[J]. Ind. Eng. Chem. Res. 2008, 47: 4750-4753.
    [78] Suil In, Alexander Orlov, Regina Berg, et al. Effective Visible Light-Activated B-Doped and B,N-Codoped TiO2 Photocatalysts[J]. J.AM.CHEM.SOC.2007, 129: 13790-13791.
    [79] Horst Kisch, Shanmugasundaram Sakthivel, Marcin Janczarek, et al. A Low-Band Gap Nitrogen-Modified Titania Visible-Light Photocatalyst[J]. J.Phys.Chem. C.2007,111(30): 11445-11449.
    [80]李晓苇,胡小永,韩理。卤化银材料光作用过程的时间分辨谱测量[J]。光谱学与光谱分析,2002,22(5):728-731.
    [81]刘志强,李新政,杨少鹏,等.卤化银晶体中的光电子特性[J].人工晶体学报,2003,32(4):315-319.
    [82] H S Lim, D Kwak, D Y Lee, et al. UV–driven reversible switching of a roselike vanadium oxide Film between superhydrophobicity and superhydrophilicity[J], J. Am. Chem. Soc. 2007, 129 :4128.
    [83] Z G Guo, F Zhou, J C Hao, W. M. Liu, et al. Stable Biomimetic Super-Hydrophobic Engineering Materials[J], J. Am. Chem. Soc. 2005, 127: 15670.
    [84]江雷,冯琳.仿生智能纳米界面材料[M].北京,化学工业出版社.2007,5: 95-96.
    [85] N Takeshita, L A Paradis, D Oner, T. J. McCarthy; W. Chen, et al. Simultaneous Tailoring of Surface Topography and Chemical Structure for Controlled Wettability[J], Langmuir. 2004, 20: 8131.
    [86] E Hosono, H Matsuda, I Honma, et al. Synthesis of a Perpendicular TiO2 Nanosheet Film with the Superhydrophilic Property without UV Irradiation[J], Langmuir. 2007, 23: 7447.
    [87] W B Zhong, S M Liu, X H Chen, et al. High-Yield Synthesis of Superhydrophilic Polypyrrole Nanowire Networks[J], Macromolecules. 2006, 39: 3224.
    [88] T L Sun, L Feng, X F Gao, et al. Bioinspired Surfaces with Special Wettability[J], Acc. Chem. Res. 2005, 38: 644.
    [89] W X Zhang, X G Wen, S H Yang. Controlled Reactions on a Copper Surface: Synthesis and Characterization of Nanostructured Copper Compound Films[J]. Inorg. Chem. 2003, 42: 5005.
    [90] J S Xu, D F Xue. Fabrication of Upended Taper-Shaped Cuprous Thiocyanate Arrays on a Copper Surface at Room Temperature[J], J. Phys. Chem. B. 2006, 110: 11232.
    [91] J Q Liu, X T Huang, Y Y Li, et al. Self-Assembled CuO Monocrystalline Nanoarchitectures with Controlled Dimensionality and Morphology[J], Cryst. Growth. Des. 2006, 6:1690.
    [92] X J Feng, J Zhai, L Jiang. The Fabrication and Switchable Superhydrophobicity of TiO2 Nanorod Films[J], Angew. Chem. Int. Ed. 2005, 44:5115.
    [93] D A Wang, Z G Guo, Y M Chen, et al. In Situ Hydrothermal Synthesis of Nanolamellate CaTiO3 with Controllable Structures and Wettability[J], Inorg. Chem. 2007, 46:7707.
    [94]张永来,丁红,刘福建,等.催化学报,2008,29(8):783-787.
    [95]刘志强,李新政,杨少鹏,等.人工晶体学报,2003,32(4):315-319.
    [96]李晓苇,胡小永,韩理.卤化银材料光作用过程的时间分辨谱测量[J]。光谱学与光谱分析,2002,22(5):728-731.
    [97]韩婧,施利毅,成荣明,等。Ag改性纳米ZnO薄膜及光催化活性[J]。无机化学学报,2008,24(6):950-955.
    [98] Yuanhui Zheng, Lirong Zheng, Yingying Zhan, et al. Ag/ZnO Heterostructure Nanocrystals: Synthesis, Characterization, and Photocatalysis[J]. Inorg. Chem. 2007,46: 6980-6986.
    [99] Yunyan Zhang, Jin Mu. One-pot synthesis, photoluminescence, and photocatalysis of Ag/ZnO composites[J]. Journal of Colloid and Interface Science, 2007, 309: 478-484.
    [100]曹静,林海莉,姚林辉,等. AgBr的尺寸及含量对PVA为粘合剂的光敏热成像材料的光敏性的影响[J].感光科学与光化学。2005,23(1):6-12.
    [101]耿爱丛,韩理,傅广生,等。电子陷阱对卤化银微晶感光过程的影响[J]。河北大学学报(自然科学版),2002,22(4):396-414.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700