新型化疗药物对视网膜母细胞瘤的体外药效实验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、目的:
     1、研究肿瘤干细胞在视网膜母细胞瘤化疗耐药中的作用;
     2、开发更有效的新型化疗药物并探索更科学的化疗方案
     二、方法:
     选用Y79细胞株及本课题组前期工作中自行建立的、具有肿瘤干细胞样特性的细胞株FD-RB作为研究的对象。用CCK-8的方法检测新型化疗药物拓扑替康、DG-2在不同浓度下对Y79细胞和FD-RB细胞的抑制作用,并与Rb传统化疗药物卡铂及长春新碱的体外作用做对照,用t检验的方法比较两株细胞在各种药物不同浓度下的存活率差异,同时比较新型化疗药物与传统化疗药物的半数抑制浓度(IC50),筛选出体外杀伤作用最强的化疗药物;将不同浓度的DG-2与拓扑替康、卡铂进行两两组合,检测联合用药下Y79和FD-RB的细胞存活率,用多重线性回归分析联合用药与单药使用的效用差异,并分析药物间的相互作用。
     三、结果
     FD-RB细胞的体外耐药性低于Y79细胞,两者的差异具有统计学意义(P<0.05);在四种检测药物中,拓扑替康的体外细胞杀伤作用仅次于长春新碱,它对Y79细胞的IC50约为6.52umol/L,对FD-RB细胞的IC50约为0.026umol/L; DG-2在有氧状态下也能有效杀伤两株细胞;拓扑替康与DG-2联合应用时可能会相互削弱的彼此的效用;卡铂和DG-2的体外联合用药未发现交互作用,两者的联合效应只是两者单独效应的叠加。
     四、结论
     从本研究的数据来看,肿瘤干细胞不一定是导致肿瘤耐药、化疗失败的唯一因素,其自身的耐药性也受多方面的影响。拓扑替康在体外对Y79及FD-RB细胞均有良好的杀伤作用,对于治疗复发转移的Rb具有潜在的临床应用价值;DG-2在正常氧供状态下也可抑制Y79及FD-RB细胞的生长,结合其降低缺氧相关的化疗耐药作用,DG-2在Rb中的治疗前景令人期待。拓扑替康与DG-2联合应用体内疗效有待进一步实验证实。
Purpose:
     1、To investigate the role of cancer stem cells in retinoblastoma chemoresistance.
     2、To identify novel active drugs with higher efficacy and to develop better chemotherapeutics.
     Methods:
     We have established a new continuous cell line named FD-RB, and demonstrated its characteristics as tumor stem-like cells in our previous work. Y79 is another cell line chosen in this study. Using Cell Counting Kit-8, we tested the in vitro efficacy of novel chemotherapeutics (including a topoisomerase I inhibitor named Topotecan and a glycolytic inhibitor named 2-deoxy-D-glucose) to both Y79 and FD-RB. The efficacy of tradition chemotherapeutics (including carboplatin and vincristine) is used as matched control. Cell viabilities of Y79 and FD-RB under every concentration was analysed by t-test. Then we compared the 50% inhibiting concentration of each drug. After selecting the most effective drug in vitro, we tested the efficacy of topotecan combined with DG-2 and of DG-2 combined with carboplatin for the treatment of Y79 and FD-RB, and assessed the cell viabilities under different drug combination. The effect of combination chemotherapeutics is compared with the effect of single chemotherapeutics. Then we investigated the interaction between these combined agents.
     Results:
     The drug tolerance of FD-RB in vitro is inferior to that of Y79, the difference has statistics significance (P<0.05); Among four tested drugs, topotecan has a good cell-killing effect second only to vincristine, its IC50 Y79 is about 6.52umol/L,and its IC50 ED-RB is about 0.026umol/L. DG-2 can effectively kill both Y79 and FD-RB even under normoxia. Combined topotecan and DG-2 may attenuate their efficacy. No interaction between DG-2 and Carboplatin was determined. The combined effect of this two agents is simply accumulated.
     Conclusion:
     Cancer stem cells may not be the only reason that leads to chemoresistance and treatment failure. The resistance of CSCs can also be affected by many aspects. Topotecan has good cell-killing effect to both Y79 and FD-RB in vitro, and it has a potential value in treating recurrent or metastasis Rb. DG-2 can inhibit the growth of Y79 and FD-RB in vitro even under normoxia condition, while it can also reduce the hypoxia-related chemoresistance. So it may have a good prospect in Rb treatment. The efficacy of topotecan combined with DG-2 in vivo must be further confirmed.
引文
[1]. Tamboli A, Podgor MJ, Horm JW. The incidence of retinoblastoma in the United States: 1974 through 1985[J]. Arch Ophthalmol,1990,108:128-132.
    [2]. Leal-Leal C, Flores-Rojo M, Medina-Sanson A, et al. A multicentre report from the Mexican Retinoblastoma Group[J]. Br J Ophthalmol,2004,88:1074-1077.
    [3]. Albert DM. Historic review of retinoblastoma[J]. Ophthalmology,1987,94:654-662.
    [4]. Shields JA, Shields CL. Management and prognosis of retinoblastoma[A]. In:Shields JA, Shields CL (eds) Intraocular tumors. A text and atlas[M]. Philadelphia:WB Saunders,1992:377-392.
    [5]. Shields JA, Shields CL. Current management of retinoblastoma[J]. Mayo Clin Proc, 1994,69:50-56
    [6]. Abramson DH. Retinoblastoma in the 20th century:past success and future challenges the Weisenfeld lecture[J]. Invest Ophthalmol Vis Sci,2005,46:268 3-2691.
    [7]. Yanagisawa T. Systemic chemotherapy as a new conservative treatment for intraocular retinoblastoma[J]. Int J Clin Oncol,2004,9(1):13-24.
    [8]. Shields CL, Shields JA. Recent developments in the management of retinoblastoma[J]. J Pediatr Ophthalmol Strabismus,1999,36(1):8-18; quiz 35-6.
    [9]. Shields CL, Mashayekhi A, Au AK, Czyz C, Leahey A, Meadows AT, Shields JA. The International Classification of Retinoblastoma predicts chemoreduction success[J]. Ophthalmology,2006,113:2276-2280.
    [10].Shields, C.L., et al., Development of new retinoblastomas after 6 cycles of chemoreduction for retinoblastoma in 162 eyes of 106 consecutive patients[J]. Arch Ophthalmol,2003,12(11):1571-6.
    [11]. Chan HS, Gallie BL, Munier FL, Beck Popovic M. Chemotherapy for retinoblastoma[J]. Ophthalmol Clin North Am,2005,18:55-63.
    [12]. Dunkel IJ, Aledo A, Kernan NA, et al. Successful treatment of metastatic retinoblastoma[J]. Cancer,2000,89:2117-2121.
    [13]. Namouni F, Doz F, Tanguy ML, Quintana E, Michon J, Pacquement H, etal. High-dose chemotherapy with carboplatin, etoposide and cyclophosphamide followed by a haematopoietic stem cell rescue in patients with high-risk retinoblastoma:a SFOP and SFGM study[J]. Eur J Cancer,1997,33:23-68-75.
    [14].Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer and cancer stem cells[J]. Nature,2001,414:105-111.
    [15].Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer[J]. Nat Rev Cancer,2003,3:895-902.
    [16].Bonnet, D.and J.E. Dick. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell[J]. Nat Med,1997,3(7):730-7.
    [17].Al-Hajj, M., et al. Prospective identification of tumorigenic breast cancer cells[J]. Proc Natl Acad Sci U S A,2003,100(7):3983-8.
    [18].Singh, S.K., et al. Identification of a cancer stem cell in human brain tumors[J]. Cancer Res,2003,63(18):5821-8.
    [19].Ricci-Vitiani, L., et al. Identification and expansion of human colon cancer-initiating cells[J]. Nature,2007.445(7123):111-5.
    [20].Li, C., et al., Identification of pancreatic cancer stem cells[J]. Cancer Res,2007,67 (3):1030-7
    [21].Zhang, S., et al., Identification and characterization of ovarian cancer-initiating cells from primary human tumors[J]. Cancer Res,2008,68(11):4311-20.
    [22].Seigel, G.M., et al., Cancer stem cell characteristics in Retinoblastoma[J]. Mol Vis, 2005,11:729-37.
    [23].Seigel, G.M., et al., Human embryonic and neuronal stem cell markers in retinoblastoma [J]. Mol Vis,2007,13:823-32.
    [24].Mohan, A., et al., Stem cell markers:ABCG2 and MCM2 expression in retinoblastoma[J]. Br J Ophthalmol,2006,90(7):889-93.
    [25].Zhong, X., et al., Identification of tumorigenic retinal stem-like cells in human solid retinoblastomas[J]. Int J Cancer,2007,121(10):2125-31.
    [26]. Shields CL, Honavar SG, Meadows AT, et al. Chemoreduction plus focal therapy for retinoblastoma: factors predictive of need for treatment with external beam radiotherapy or enucleation[J]. Am J Ophthalmol,2002,133:657-664.
    [27]. Laurie NA, Gray JK, Zhang J, et al. Topotecan combination chemotherapy in two new rodent models of retinoblastoma[J]. Clin Cancer Res,2005,11:7569-7578.
    [28]. Abramson DH, Frank CM. Second nonocular tumors in survivors of bilateral retinoblastoma: a possible age effect on radiation-related risk[J]. Ophthalmology,1998, 105:573-580.
    [29]. Pui CH, Ribeiro RC, Hancock ML, et al. Acute myeloid leukemia in children treated with epipodophyllotoxins for acute lymphoblastic leukemia[J]. N Engl J Med,1991, 325:1682-1687
    [30]. Bokemeyer C, Schmoll HJ. Treatment of testicular cancer and the development of secondary malignancies[J]. J Clin Oncol,1995,13:283-292.
    [31]. Rodriguez-Galindo C, Wilson MW, Haik BG, et al. Treatment of intraocular retinoblastoma with vincristine and carboplatin[J]. J Clin Oncol,2003,21:2019-2025
    [32]. Thompson J, Stewart CF, Houghton PJ. Animal models for studying the action of topoisomerase I targeted drugs[J]. Biochim Biophys Acta,1998,1400:301—19.
    [33].Thompson J, George EO, Poquette CA, et al. Synergy of topotecan in combination with vincristine for treatment of pediatric solid tumor xenografts[J]. Clin Cancer Res, 1999,5:3617-31.
    [34]. Laurie NA, Donovan SL, Shih CS, et al. Inactivation of the p53 pathway in retinoblastoma[J]. Nature,2006,444:61-66.
    [35]. Chantada GL, Fandino AC, Casak SJ, Mato G, Manzitti J, Schvartzman E. Activity of topotecan in retinoblastoma[J]. Ophthalmic Genet,2004,25:37-43.
    [36]. Hockel, M., K. Schlenger, B. Aral, M. Mitze, U. Schaffer, and P. Vaupel. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix[J]. Cancer Res,1996,56:4509-4515.
    [37].Maschek G, Savaraj N, Priebe W, Braunschweiger P, Hamilton K, Tidmarsh GF, et al. 2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo[J]. Cancer Research,2004, 64:31-34.
    [38].Singh DH, Banerji AK, Dwarakanath BS, Tripathi RP, Gupta JP, Mathew TL, et al. Optimizing cancer radiotherapy with 2-deoxy-D-glucose-Dose escalation studies in patients with glioblastoma multiforme[J]. Strahlentherapie Und Onkologie,2005, 181:507-514.
    [39].Boutrid H, Jockovich ME, Murray TG, Pina Y, Feuer WJ, Lampidis TJ, Cebulla CM. Targeting hypoxia, a novel treatment for advanced retinoblastoma[J]. Invest Ophthalmol Vis Sci,2008,49:2799-2805.
    [40].Metin Kurtoglu, Ningguo Gao, Jie Shang, et al. Under normoxia,2-deoxy-D-glucose elicits cell death in select tumor types not by inhibition of glycolysis but by interfering with N-linked glycosylation[J]. Mol Cancer Ther,2007,6(11):3049-58.
    [41]. Gail M. Seigel, Lorrie M. Campbell, Malathi Narayan, Federico Goalez-Fernandez. Cancer stem cell characteristics in retinoblastoma[J]. Molecular Vision,2005, 11:729-37.
    [42]. Edward H. Lin, Yixing Jiang, Yanhong Deng, Ritu Lapsiwala, Tongyu Lin, C. Anthony Blau. Cancer Stem Cells, Endothelial Progenitors, and Mesenchymal Stem Cells: "Seed and Soil" Theory Revisited[J]. Gastrointest Cancer Res,2008,2:169-174.
    [43]. Paul T. Finger, J. William Harbour, and Zeynel A. Karcioglu. Risk Factors for Metastasis in Retinoblastoma[J]. Surv Ophthalmol,2002,47:1-16.
    [44]. Reid, T. W., Albert, D. M., Rabson, A. S., Russell, P., Craft, J., Chu, E. W., Tralka, T. 5., and Wilcox, J. L. Characteristics of an Established Cell Line of Retinoblastoma[J]. J. NatI. Cancer Inst,1974,53:347-360.
    [45]. Rosemary C. McFall, Theodore W. Sery, and Marcia Makadon. Characterization of a New Continuous Cell Line Derived from a Human Retinoblastoma[J]. CANCER RESEARCH,1977,37:1003-1010.
    [46]. Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L., Fuchs, E. Self-Renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche[J]. Cell.2004,118,635-648.
    [47]. Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopietic bone marrow progenitors initiate the pre-metastatic niche[J]. Nature,2005,438:820-6.
    [48]. Scadden DT. The stem cell niche in health and leukemic disease[J]. Clin Hematol. 2007; 20:19-27.
    [49]. Nishimura S, SatoT, Ueda H, Ueda K. Acute myeloblastic leukemia as a second malignancy in a patient with hereditary retinoblastoma[J]. J Clin Oncol, 2001,19:4182-3.
    [50]. Johnathan C. Maher, Awtar Krishan, Theodore J. Lampidis. Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-D-glucose in tumor cells treated under hypoxic vs aerobic conditions[J]. Cancer Chemother Pharmacol,2004,53:116-122
    [51].徐和平,祝和成.视网膜母细胞瘤细胞系HXO-Rb44化疗敏感性及多药耐药性研究[J].中国实用眼科杂志,1996,14(9):531-33.
    [1]Reya, T., Morrison, S. J., Clarke, M. F.& Weissman, I. L.Stem cells, cancer, and cancer stem cells. Nature.2001,414:105-111
    [2]Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ,Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci.2003, 100:3983-3988.
    [3]Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J,Dirks PB: Identification of a cancer stem cell in human brain tumors. Cancer Res 2003, 63:5821-5828.
    [4]Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005,5(4):275-84.
    [5]Pluen, A. et al. Role of tumor-host interactions in interstitial diffusion of macromolecules:cranial vs. subcutaneous tumors. Proc. Natl Acad. Sci.2001.98,4628-4633.
    [6]Jain, R. K. Delivery of molecular and cellular medicine to solid tumors. Adv. Drug Deliv.Rev.2001.46:149-168.
    [7]Jain, R. K. Normalizing tumor vasculature with antiangiogenic therapy: a new paradigm for combination therapy. Nature Med.2001.7:987-989.
    [8]Green, S. K., Frankel, A.& Kerbel, R. S. Adhesion-dependent multicellular drug resistance. Anticancer Drug 1999,14,153-168.
    [9]杨纯正.肿瘤耐药研究的若干问题.中华医学杂志.2001,81(24):1475-1478.
    [10]Michael M,Gottesman, Tito Fojo, Susan E. Bates. Multidrug resistance in cancer: role of ATP-dependent transporters. Nature Reviews Cancer.2002,2(1):48-58.
    [11]Biedler JL, Riehm H. Cellular resistance to actinomycin D in Chinese hamster cells in vitro:cross-resistance, radioautographic, and cytogenetic studies. Cancer Res. 1970;30:1174-1184.
    [12]Ling V, Thompson LH. Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J Cell Physiol.1974;83(1):103-116.
    [13]Roninson IB, Abelson HT, Housman DE, Howell N, Varshavsky A. Amplification of specific DNA sequences correlates with multi-drug resistance in Chinese hamster cells. Nature.1984;309:626-628.
    [14]Ambudkar, S. V. et al. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu. Rev. Pharmacol. Toxicol.1999,39:361-398.
    [15]Shen, D. W., Goldenberg, S., Pastan, I.& Gottesman, M.M. Decreased accumulation of [14C]carboplatin in human cisplatin-resistant cells results from reduced energy-dependent uptake. J. Cell Physiol.2000,183:108-116.
    [16]Shen, D., Pastan, I.& Gottesman, M. M. Cross-resistance to methotrexate and metals in human cisplatin-resistant cell lines results from a pleiotropic defect in accumulation of these compounds associated with reduced plasma membrane binding proteins. Cancer Res.1998,58,268-275.
    [17]Schuetz, E. G., Beck, W. T.& Schuetz, J. D. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol. Pharmacol.1996,49:311-318.
    [18]Synold, T. W., Dussault, I.& Forman, B. M. The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nature Med.2001,7:584-590.
    [19]Lowe, S. W., Ruley, H. E., Jacks, T.& Housman, D. E.p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell,1993,74:957-967.
    [20]Liu, Y. Y., Han, T. Y., Giuliano, A. E.& Cabot, M. C. Ceramide glycosylation potentiates cellular multidrug resistance.FASEB J.2001,15:719-730.
    [21]Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L., Fuchs, E. Self-Renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell.2004,118,635-648.
    [22]Scharenberg, C. W., Harkey, M. A.& Torok-Storb, B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood.2002,99:507-512.
    [23]Dean, M., Rzhetsky, A.,Alliknets, R. The human ATP binding cassette (ABC) transporter superfamily. Genome Res.2001,11:1156-1166.
    [24]Goodell, M. A., Brose, K., Paradis, G, Conner, A. S.&Mulligan, R. C. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp.Med.1996,183:1797-1806.
    [25]Zhou, S. et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Med.2001,7:1028-1034.
    [26]Hirschmann-Jax, C. et al. A distinct'side population' of cells with high drug efflux capacity in human tumor cells. Proc. Natl Acad. Sci.2004,101:14228-14233.
    [27]Craig T, Jordan., Monica L. Guzman, Mark Noble. Cancer Stem Cells. N Engl J Med.2006.355:1253-61.
    [28]Lessard, J.& Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells.Nature.2003,423:255-260.
    [29]Vera S. Donnenberg, Albert D. Donnenberg. Multiple Drug Resistance in Cancer Revisited:The Cancer Stem Cell Hypothesis. J. Clin. Pharmacol.2005; 45; 872
    [30]Knutsen, T. et al. Cytogenetic and molecular characterization of random chromosomal rearrangements activating the drug resistance gene, MDR1/P-glycoprotein, in drug-selected cell lines and patients with drug refractory ALL. Genes Chromosom. Cancer.1998,23:44-54
    [31]Yin, A.H., et al.1997. AC133, a novel marker for human hematopoietic stem and progenitor cells.Blood.90:5002-5012.
    [32]Matilde Todaro, Mileidys Perez Alea, Anna B. Di Stefano,Colon Cancer Stem Cells Dictate Tumor Growth and Resist Cell Death by Production of Interleukin-4. Cell Stem Cell.2007,1:389-402
    [33]S Mal, TK Lee, B-J Zheng, KW Chanl, X-Y Guan.CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene.2008,27:1749-1758.
    [34]Borhane Annabi, Carl Laflamme, Asmaa Sinal, Marie-Paule Lachambre2,Richard Beliveau.A MT1-MMP/NF-κB signaling axis as a checkpoint controller of COX-2 expression in CD133(+) U87 glioblastoma cells. J Neuroinflammation.2009 Mar 9;6:8.
    [35]Zimmermann KC, Sarbia M, Weber AA, Borchard F, Gabbert HE,Schror K. Cyclooxygenase-2 expression in human esophageal carcinoma. Cancer Res 1999, 59:198-204.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700