NADPH氧化酶在心梗后大鼠心室肌中的改变及其干预研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨心梗后大鼠左室心肌组织中NADPH氧化酶的变化及夹竹桃麻素对NADPH氧化酶干预作用的机制。
     方法:取雄性SD大鼠,通过结扎左冠状动脉前降支建立大鼠心肌梗塞模型,假手术组为无创缝线只穿过前降支而不结扎,将两组再随机分为药物干预组和安慰剂组两个亚组,术后第二天分别给予等体积的夹竹桃麻素溶液(15mg/kg/day)和生理盐水灌胃,共五周。分别于术前和术后第六周行心超检查。术后第六周处死大鼠,取出心脏,用左心室非梗塞区心肌组织制备心肌匀浆液,采用吸收光度法测定非梗塞区心肌组织中O2-浓度和NADPH氧化酶活性,采用RT-PCR法测定心室肌组织中NADPH氧化酶亚单位gp91phoxmRNA的表达水平,并观察心室肌组织中O2-浓度与NADPH氧化酶活性和gp91phoxmRNA表达水平的相关性。
     结果:1.假手术组大鼠心室肌组织中O2-浓度为(50300±3416)RLU/mg蛋白,心梗组O2-浓度为(83200±7582)RLU/mg蛋白,与假手术组相比有显著统计学差异(P<0.01)。心梗药物干预组O2-浓度为(53300±5517)RLU/mg蛋白,与心梗组相比具有统计学差异(P<0.05),但与假手术组相比无统计学差异(P=0.45)。假手术药物干预组O2-浓度为(47100±2126)RLU/mg蛋白,与假手术组相比无统计学差异(P=0.41)。
     2.假手术组大鼠心室肌组织中NADPH氧化酶活性为(3.38±0.35)RLU/mg蛋白,心梗组NADPH氧化酶活性为(4.77±0.46)RLU/mg蛋白,与假手术组相比有显著统计学差异(P<0.01)。心梗药物干预组NADPH氧化酶活性为(3.62±0.32)RLU/mg蛋白,与心梗组相比具有统计学差异(P<0.05),但与假手术组相比无统计学差异(P=0.27)。假手术药物干预组NADPH氧化酶活性为(3.19±0.32)RLU/mg蛋白,与假手术组相比无统计学差异(P=0.37)。
     3.假手术组大鼠心室肌组织中NADPH氧化酶亚单位gp91phoxmRNA表达水平为(0.46±0.07),心梗组gp91phoxmRNA的表达水平为(0.69±0.06),与假手术组相比有显著统计学差异(P<0.01)。心梗药物干预组gp91phoxmRNA的表达水平为(0.49±0.06),与心梗组相比具有统计学差异(P<0.05),与假手术组相比无统计学差异(P=0.54)。假手术药物干预组gp91phoxmRNA表达水平为(0.44±0.03),与假手术组相比无统计学差异(P=0.64)。
     4.心室肌组织中O2-浓度与NADPH氧化酶活性有显著相关性(R=0.73,P<0.01),与NADPH氧化酶亚单位gp91phoxmRNA表达水平有显著相关性(R=0.80,P<0.01)。
     结论:1.心梗组大鼠心室肌组织中O2-浓度、NADPH氧化酶活性和gp91phoxmRNA表达水平明显增高,NADPH氧化酶活性和gp91phoxmRNA表达水平与O2-浓度升高水平呈显著相关,表明心梗后NADPH氧化酶系统被激活。
     2.夹竹桃麻素通过显著抑制NADPH氧化酶活性和gp91phoxmRNA表达减少O2-生成,提示夹竹桃麻素作为NADPPH氧化酶抑制剂可显著减轻心梗后心肌组织氧化应激水平。
Objective: To explore the changes of NADPH oxidase in the rat ventricular tissue after myocardial infarction, and the intervention study on the NADPH oxidase with apocynin.
     Methods: Using male SD rats, MI group was made by ligation of anterior descending coronary artery, the sham group underwent the same procedure without coronary artery ligation, the animals with MI or sham group were assigned randomly to intragastrically receive apocynin (15 mg/kg/day) or saline respectively on the second day after operation for 5 weeks. Echocardiogram were used before the operation and on the 6th week after the operation respectively. On the 6th week after the operation, the rats were killed and the hearts were removed. The concentration of O2- and the activity of NADPH oxidase were measured by the method of absorption photometry, and the expression level of gp91phox mRNA was detected with RT-PCR, and the correlations between the concentration of O2- and the activity of the NADPH oxidase, and the expression level of the gp91phox mRNA were respectively calculated.
     Results:1. The concentration of O2- in the MI group[(83200±7582)RLU/mg protein] increased significantly compared to the sham group [(50300±3416)RLU/mg protein](P<0.01). The concentration of O2- in the MI+apocynin group[(53300±5517)RLU/mg protein] decreased significantly compared to the MI group(P<0.05). There were no significant differences between the MI+apocynin group, the sham+apocynin group and the sham group (P=0.45, 0.41).
     2. The activity of NADPH oxidase in the MI group [(4.77±0.46)RLU/mg protein] increased significantly compared to the sham group[(3.38±0.35)RLU/mg protein](P<0.01). The activity of the NADPH oxidase in the MI+apocynin group[(3.62±0.32)RLU/mg protein] decreased significantly compared to the MI group(P<0.05). There were no significant differences between the MI+apocynin group, the sham+apocynin group and the sham group(P= 0.27, 0.37).
     3. The expression level of gp91phox mRNA in the MI group [0.69±0.06]increased significantly compared to the sham group[0.46±0.07](P<0.01). The expression level of gp91phox mRNA in the MI+apocynin group[0.49±0.06] decreased significantly compared to the MI group(P<0.05). There were no significant differences between the MI+apocynin group, the sham+apocynin group and the sham group(P=0.54, 0.64).
     4. The concentration of O2- positively correlated to the activity of the NADPH oxidase(R=0.73,P<0.01), and the expression level of the gp91phox mRNA(R=0.80,P<0.01).
     Conclusions: 1. The concentration of O2-, the activity of the NADPH oxidase and the expression level of gp91phox mRNA in the MI group increase significantly. There are positive correlations between the concentration of O2- and the activity of NADPH oxidase, and between the concentration of O2- and the expression level of gp91phox mRNA. These indicate that the NADPH oxidase system is actived after myocardial infarction.
     2. The apocynin decreases the production of O2- by inhibiting the activity of NADPH oxidase and the expression level of gp91phox mRNA. This suggests that apocynin as a NADPH oxidase inhibitor could significantly attenuate the level of oxidase stress after myocardial infarction.
引文
[1] Shintaro kinugawa, Hiroyuki Tsutsui, Shunji Hayashidani, et al.Treatment with di- methylthiourea prevents left ventricular remodeling and failure after experimental myocardial infarction in mice :role of oxidative stress[J]. Circ Res, 2000; 87: 392 -398.
    [2] P A J Krijnen, C Meischl, C E Hack, et al.Increased Nox2 expression in human cardiomyocytes after acute myocardial infarction[J]. J Clin Pathol , 2003; 56:194-199.
    [3] Hua Cai, David Harrison. Endothelial dysfunction in cardiovascular diseases: The role of oxidant stress[J]. Circ Res, 2000; 87: 840-844.
    [4] Garrett Gross, Judy Kersten, David Warltie. Mechanisms of postischemic contractile dysfunction[J]. Ann Thorac Surg, 1999; 68: 1898-1904.
    [5]国荣,周娟,邓秀玲,等.心肌成纤维细胞在血管紧张素II作用中活性氧水平及p22phox的表达[J].南方医科大学学报, 2009; 29(2): 202-204.
    [6] Young Mee Park, Mi Young Park, Yeon Lim Suh, et al. NADPH oxidase inhibitor prevents blood pressure elevation and cardiovascular hypertrophy in aldosterone- infused rats[J]. Biochemical and Biophysical Research Communications, 2004; 313: 812–817.
    [7] Yee Looi, David Grieve, Anjana Siva, et al. Involvement of Nox2 NADPH oxidase in adverse cardiac remodeling after myocardial infarction[J]. Hypertension, 2008; 51:319-325.
    [8] Fuzhong Qin, Megan Simeone, Ravish Patel. Inhibition of NADPH oxidase reduces myocardial oxidative stress and apoptosis and improves cardiac function in heart failure after myocardial infarction[J]. Free Radical Biology & Medicine, 2007; 3: 271-281.
    [9] Christophe Heymes, Jennifer K Bendall, Philippe Ratajczak, et al. Increased myo- cardial NADPH oxidase activity in human heart failure[J]. J Am Coll Cardiol, 2003;41(12): 2164-2171.
    [10] M.A.Cotter, N.E.Cameron. Effect of the NADPH oxidase inhibitor, apocynin, on peripheral nerve perfusion and function in diabetic rats[J]. Life Sciences, 2003; 73: 1813–1824.
    [11] Mohamed Shabrawey, Modesto Rojas, Tammy Sanders,et al. Role of NADPH oxidase in retinal vascular in?ammation[J]. Invest Ophthalmol Vis Sci, 2008; 49(7): 3239–3244.
    [12] Niels Engberding, Stephan Spiekermann, Arnd Schaefer, et al. Allopurinol atten-uates left ventricular remodeling and dysfunction after experimental myocardial infarction: A New Action for an Old Drug?[J]. Circulation, 2004; 110: 2175-2179.
    [13] Pingguo Liu, Songqing He, Yanhong Zhang, et al. Protective effects of apocynin and allopurinol on ischemia/reperfusion-induced liver injury in mice[J]. World J Gastroenterol , 2008; 14(18): 2832-2837.
    [14] Marc Isabelle, Aurélia Vergeade, Fabienne Moritz, et al. NADPH oxidase inhibition prevents cocaine-induced up-regulation of xanthine oxidoreductase and cardiac dysfunction[J]. Journal of Molecular and Cellular Cardiology, 2007; 42: 326–332.
    [15] Faridis Serrano, Nutan S Kolluri, Frans B Wientjes, et al.NADPH oxidase immu- noreactivity in the mouse brain[J]. Brain Research, 2003; 988: 193–198.
    [16] Bernard Lassègue, Dan Sorescu, Katalin Sz?cs, et al. Novel gp91phox homologues in vascular smooth muscle cells: nox1 mediates angiotensin II–induced superoxide formation and redox-sensitive signaling pathways[J]. Circ Res, 2001; 88: 888-894.
    [17] Gorlach A, Brandes RP, Nguyen K, et al. A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generat- ion in the arterial wall[J]. Circ Res, 2000; 87: 26–32.
    [18] Ulvi Bayraktutan, Nick Draper, Derek Lang, et al.Expression of a functional neutrophil type NADPH oxidase in cultured rat coronary microvascular endothelial cells[J]. Cardiovascular Res, 1998; 38: 256-262.
    [19] Borregaard N, Heiple JM, Simons ER, et al. Subcellular localization of theb-cytochrome component of the human neutrophil microbicidal oxidase :translocation during activation[J]. J Cell Biol, 1983; 97: 52-61.
    [20] Huang J, Hitt ND, Kleinberg ME. Stoichiometry of p22phox and gp91phox in phagocyte cytochrome b558[J]. Biochemistry, 1995; 34(51): 16753-16757.
    [21]赵志宏,鲍晓峰,单江,等.大鼠心肌梗死后心肌NADPH氧化酶亚单位p22phox的表达[J].中国病理生理杂志,2005; 21(11):2106-2110.
    [22] Surekha R H, Srikanth B B M V, Jharna P, et al. Oxidative stress and total antioxidant status in myocardial infarction[J]. Singapore Med J, 2007; 48 (2):137-142.
    [23] Toshiki Fukui, Minoru Yoshiyama, Akihisa Hanatani, et al. Expression of p22phox and gp91phox, essential components of NADPH oxidase, increases after myocardial infarction[J]. Biochemical and Biophysical Research Communications, 2001; 281: 1200–1206.
    [24] Chiara Nediani, Elisabetta Borchi, Carla Giordano, et al. NADPH oxidase dependent redox signaling in human heart failure:Relationship between the left and right ventricle[J]. Journal of Molecular and Cellular Cardiology, 2007; 42:826-834.
    [25] Jeen Woo Park, Bernard M Babior. The Translocation of respiratory burst oxidase components from cytosol to plasma membrane is regu-lated by guanine nucleotides and diacylglycerol[J]. The Journal of Biological Chemistry, 1992; 267(28):19901- 19906.
    [26] Erik A Bey, Bo Xu, Ashish Bhattacharjee, et al. Protein kinase Cδis required for p47phox phosphorylation and translocation in activated human monocytes[J]. The Journal of Immunology, 2004; 173:5730-5738.
    [27] Maziar Zafarl, Masuko Ushiofukai, Candace Minieri, et al. Arachidonic acid metabolites mediate AngiotensinⅡinduced NADH/NADPH oxidase activity and hypertrophy in vascular smooth muscle cells[J]. Antiox&Redox Signal, 1999; 1(2): 167-179.
    [28]李国华,魏欣冰,张岫美,等. NADPH氧化酶介导的氧化还原信号转导在高同型半胱氨酸血症中的作用及分子机制[J].细胞生物学杂志, 2009; 31(5):602?607.
    [29] Xiaoxian Zhao, Erik Bey, Frans Wientjes, et al. Cytosolic phospholipase A2 (cPLA2) regulation of human monocyte NADPH oxidase activity[J]. The Journal of Biological Chemistry, 2002; 277(28):25385–25392.
    [30] Jamie R. Privratsky, Loren E. Wold, James R. Sowers,et al.AT1 blockade prevents glucose-induced cardiac dysfunction in ventricular myocytes:Role of the AT1 receptor and NADPH oxidase[J]. Hypertension, 2003; 42:206-212.
    [31] Sander Hougee, Anita Hartog, Annemarie Sanders, et al.Oral administration of the NADPH oxidase inhibitor apocynin partially restores diminished cartilage proteoglycan synthesis and reduces inflammation in mice[J]. European Journal of Pharmacology, 2006; 531:264–269.
    [32] Jeffrey Doddo, David Pearse. Effect of the NADPH oxidase inhibitor apocynin on ischemia-reperfusion lung injury[J]. Am J Physiol Heart Circ Physiol, 2000; 279:303- 312.
    [33] Marilia P Kanegae, Antonio Condino-Neto, Luis Alberto Pedroza, et al. Diapocynin versus apocynin as pretranscriptional inhibitors of NADPH oxidase and cytokine production by peripheral blood mononuclear cells[J]. Biochemical and Biophysical Research Communications, 2010; 393: 551- 554.
    [34] Carlene Hamilton, Julia Brosnan, Sammy Albenna, et al. NADPH oxidase inhibition improves endothelial function in rat and human blood vessels[J]. Hypertension, 2002; 40:755-762.
    [35] Sabine Heumüller, Sven Wind, Eduardo Barbosasicard, et al. Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant[J]. Hypertension, 2008; 51: 211-217.
    [36] Mauricio Morapale, Michel We?wei, Jingjing Yu, et al. Inhibition of human vascular NADPH oxidase by apocynin derived oligophenols[J]. Bioorganic & Medicinal Chemistry, 2009; 17:5146-5152.
    [37] R.B.R.Muijsers, E. vanden Worm, G. Folkerts, et al.Apocynin inhibits peroxynitrite formation by murine macrophages[J]. British Journal of Pharmacology, 2000; 130(4):932-936.
    [38] Silvia S Barbieri, Viviana Cavalca, Sonia Eligini, et al.Apocynin prevents cycloo- xygenase-2 expression in human monocytes through NADPH oxidase and glutathi- one redox-dependent mechanisms[J]. Free Radical Biology &Medicine, 2004; 37 (2):156-165.
    [39] M A Cotter, N E Cameron. Effect of the NAD(P)H oxidase inhibitor, apocynin, on peripheral nerve perfusion and function in diabetic rats[J]. Life Sciences, 2003; 73: 1813–1824.
    [40] Martin Vejrazka, Radan Micek, Stanislav Stipek, et al.Apocynin inhibits NADPH oxidase in phagocytes but stimulates ROS production in nonphagocytic cells[J]. Biochimica et Biophysica Acta, 2005; 1722:143-147.
    [1] Kanfmann JA, Bickford PC, Taglialatela G. Free redical -dependent change in constitutive nuclear factor kappaβin the aged hippocampus[J]. Neuroreport, 2003; 13(15):1917-1928.
    [2] Yung-Shun Juan, Tasmina Hydery, Anita Mannikarottu, et al. Coenzyme Q10 protect against ischemia/reperfusion induced biochemical and functional changes in rabbit urinary bladder[J]. Mol Cell Biochem, 2008; 311:73–80.
    [3] Robinson JM, Badwey JT. The NADPH oxidase complex of phagocytic leukocytes: a biochemical and cytochemical view [J]. Histochemistry, 1995; 103:163-180.
    [4] Wentworth PJ, McDunn JE, Wentworth AD, et al. Evidence for antibody -catalyzed ozone formation in bacterial killing and in?ammation[J]. Science, 2002; 298:2195- 2199.
    [5] Anisimov VN, Zavarzmn NY. Melatonin increase both life span and tumor incidence in female CBA mice[J]. J Cemontol A Biol Sol Med Sci, 2001; 56(7):311-323.
    [6] James E. Jordan, Zhiqing Zhao, Jakob Vinten Johansen. The role of neutrophils in myocardial ischemia–reperfusion injury[J]. Cardiovascular Research, 1999; 43:860- 878.
    [7] Garrett Gross, Judy Kersten, David Warltie. Mechanisms of postischemic contractile dysfunction[J]. Ann Surg Thorac, 1999; 68:1898 -1904.
    [8] Finkel T. Signal transduction by reactive oxygen species in nonphagocytic cells[J]. Leukoc Biol, 1999; 65:337-340.
    [9] Michelle C Sykes, Amy L Mowbray, Hanjoong Jo. Reversible glutathiolation of caspase-3 by glutaredoxin as a novel redox signaling mechanism in tumor necrosis factor-αinduced cell death[J]. Circ Res, 2007; 100:152-154.
    [10] Duanfang Liao, Zhenggen Jin, Arnold Baas, et al. Purification and identification of secreted oxidative stress-induced factors from vascular smooth mscle cells[J]. Biological chemistry, 2000; 275(1):189-196.
    [11] Tamara M.Paravicini, Lerna M.Gulluyan, Gregory J Dustingetal, et al. Increased NADPH oxidase activity, gp91phox expression, and endothelium-dependent vasorelaxation during neointima formation in rabbits[J]. Circ Res, 2002; 91:54-61.
    [12] Babior BM. The respiratory burst oxidase[J]. Curr Opin Hematol, 1995; 2(1):55-60.
    [13] Lambeth JD, Cheng G,Arnold RS, et a1. Novel homologs of gp91phox [J]. Trends Biochem Sci, 2000;25(10):459-461.
    [14] Cross A R, Erickson R W, Curnutte J T. Simultaneous presence of p47phox and ?avocytochrome b-245 are required for the activation of NADPH oxidase by anionic amphiphiles: evidence for an intermediate state of oxidase activation [J]. Biol Chem, 1999, 274:15519-15525.
    [15] Doussiere J, Gaillard J, Vignais P V. Electron transfer across the O2- generating ?avocytochrome b of neutrophils: evidence for a transition from a low-spin state to a high-spin state of the heme iron component [J]. Bio chemistry,1999; 35:13400–13410.
    [16] Isogai Y, Iizuka T, Shiro Y. The mechanism of electron donation to molecular oxygen by phagocytic cytochrome b558 [J]. Biol Chem, 1995; 270:7853-7857.
    [17] Huang J, Hitt N D, Kleinberg M E. Stoichiometry of p22phox and gp91phox in phagocyte cytochrome b588 [J]. Biochemistry, 1995; 34:16753 -16757.
    [18] Leto T L, Adams A G, de Mendez I. Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline-rich targets[J]. Proc Natl Acad Sci, 1994; 91:10650–10654.
    [19] Gorzalczany Y, Sigal N, Itan M,et al. Targeting of Rac1 to the phagocyte membrane is sufficient for the induction of NADPH oxidase assembly[J]. Biol Chem, 2000; 275:40073–40081.
    [20] Welch HC, Coadwell WJ, Ellson CD, et al.P-Rex1,a PtdIns (3,4, 5)P3- and Gαγ-regulated guanine-nucleotide exchange factor for Rac[J]. Cell, 2002;108:809-821.
    [21] Price M O, Atkinson S J, Knaus U G, et al. Rac activation induces NADPH oxidase activity in transgenic COSphox cells,and the level of superoxide production is exchange factor-dependent [J]. Biol Chem, 2002; 277:19220-19228.
    [22] Kanai F, Liu H, Field S J, et al.The PX domains of p47phox and p40phox bind to lipid products of PI(3)K [J]. Nat Cell Biol, 2001; 3:675 -678.
    [23] Zhan Y, He D, Newburger P E, et al.p47phox PX domain of NADPH oxidase targets cell membrane via moesin-mediated association with the actin cytoskeleton[J]. Cell Biochem, 2004; 92:795-809.
    [24] Nauseef W M. Assembly of the phagocyte NADPH oxidase[J]. Histochem Cell Biol, 2004; 122:277–291.
    [25] Fontayne A, Dang P M, Gougerot-Pocidalo M A, et al.Phosphorylation of p47phox sites by PKCα,βⅡ,γ,δ:effect on binding to p22phox and on NADPH oxidase activation[J]. Biochemistry, 2002; 41:7743-7750.
    [26] Dewas C, Fay M, Gougerot-Pocidalo M A, et al.The mitogen -activated protein kinase extracellular signal-regulated kinase 1/2 pathway is involved in formyl-methionyl– leucyl–phenylala nine-induced p47phox phosphorylation in human Neutrophils [J]. Immunol, 2000; 165:5238-5244.
    [27] Knaus U G, Morris S, Dong H J, et al. Regulation of human leukocyte p21-activated kinases through G protein-coupled receptors[J]. Science, 1995; 269:221-223.
    [28] Park H S, Lee S M, Lee J H, et al. Phosphorylation of the leu- cocyte NADPH oxidase subunit p47phox by casein kinase 2: conformation-dependent phosphory- lation and modulation of oxidase activity[J]. Biochem, 2001; 358:783-790.
    [29] Hoyal C R, Gutierrez A, Young B M, et al. Modulation of p47phox activity by site-specific phosphorylation:Akt-dependent activation of the NADPH oxidase[J]. Proc Natl Acad Sci, 2003; 100:5130–5135.
    [30] Nauseef WM, Volpp BD, McCormick S, et al. Assembly of the neutrophil respiratory burst oxidase: protein kinase C promotes cytoskeletal and membrane association of cytosolic oxidase components[J]. Biol Chem, 1991; 266:5911-5917.
    [31] Koga H, Terasawa H, Nunoi H, et al. Tetratricopeptide repeat (TPR) motifs of p67phox participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase [J]. Biol Chem, 1999; 274:25051–25060.
    [32] Freeman J L, Lambeth J D. NADPH oxidase activity is independent of p47phox in vitro [J]. Biol Chem, 1996; 271:22578- 22582.
    [33] Gorzalczany Y, Alloul N, Sigal N, etal. A prenylated p67phox-Rac1 chimera elicits NADPH-dependent superoxide production by phagocyte membranes in the absence of an activator and of p47phox:conversion of a pagan NADPH oxidase to monotheism [J]. Biol Chem, 2002; 277:18605-18610.
    [34] Diebold B A, Bokoch G M. Molecular basis for Rac2 regulation of phagocyte NADPH oxidase[J]. Nat Immunol, 2001; 2:211-215.
    [35] Dang P M, Babior B M, Smith R M. NADPH dehydrogenase activity of p67phox,a cytosolic subunit of the leukocyte NADPH oxidase[J]. Biochemistry, 1999; 38: 5746-5753.
    [36] Kuribayashi F, Nunoi H, Wakamatsu Tsunawaki, et al.The adaptor protein p40phox as a positive regulator of the superoxide-producing phagocyte oxidase[J]. EMBO, 2002; 21:6312- 6320.
    [37] Fuchs A, Dagher MC, Vignais PV. Mapping the domains of interaction of p40phox with both p47phox and p67phox of the neutrophil oxidase complex using the two-hybrid system [J]. Biol Chem, 1995; 270:5695-5697.
    [38] Han CH, Freeman JL, Lee T, et al. Regulation of the neutrophil respiratory burst oxidase:identification of an ac- tivation domain in p67phox[J]. Biol Chem, 1998, 273: 16663-16668.
    [39] Han CH,Lee MH. Activation domain in p67phox regulates the steady state reduction of FAD in gp91phox [J]. Vet Sci, 2000; 1:27-31.
    [40] Grizot S, Grandvaux N, Fieschi F, et al. Small angle neutron scattering and gel filtration analyses of neutrophil NADPH oxidase cytosolic factors highlight the role of the C-terminal end of p47phox in the association with p40phox[J]. Biochemis- try, 2001; 40:3127-3133.
    [41] Ellson CD,Gobert-Gosse S, Anderson K E, et al. PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40phox[J]. Nat CellBiol, 2001;3:679–682.
    [42] Kuribayashi F, Nunoi H, Wakamatsu K, et al.The adaptor protein p40phox as a positive regulator of the super- oxide-producing phagocyte oxidase[J]. EMBO, 2002; 21: 6312-6320.
    [43] Lopes LR, Dagher MC, Gutierrez A, et al. Phosphorylated p40phox as a negative regulator of NADPH oxidase[J]. Biochemistry, 2004; 43:3723- 3730.
    [44] Duranteau J, Chandel NS, Kulisz A, et al.Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes[J]. Biol Chem, 1998; 273: 11619-11624.
    [45] Alison Cave, David Grieve, Sofian Johar, et al. NADPH oxidase-derived reactive oxygen species in cardiac pathophysiology[J]. Phil Trans R Soc, 2005;360:2327-2334.
    [46] Michael Hill, Pawan Singal. Antioxidant and oxidative stress changes during heart failure subsequent to myocardial infarction in rats[J]. Am J Pathol, 1996;148:291-300.
    [47] Shintaro kinugawa, Hiroyuki Tsutsui, Shunji Hayashidani, et al. Treatment with dimethylthiourea prevents left ventricular remodeling and failure after experimental myocardial infarction in mice:role of oxidative stress[J]. Circ Res, 2000; 87:392-398.
    [48] Tetsuya Shiomi, Hiroyuki Tsutsui, Hidenori Matsusaka, et al. Over expression of glutathione peroxidase prevents left ventricular remodeling and failure after myocardial infarction in mice[J]. Circulation, 2004; 109: 544-549.
    [49] Johann Bauersachs, Paolo Galuppo, Daniela Fraccarollo, et al. Improvement of left ventricular remodeling and function by hydro- xymethylglutaryl coenzyme A reductase inhibition with Cerivastatin in rats with heart failure after myocardial infarction[J]. Circulation, 2001; 104: 982-985.
    [50] Toshiki Fukui, Minoru Yoshiyama, Akihisa Hanatani, et al. Expression of p22phox and gp91phox, essential components of NADPH oxidase, increases after myocardial infarction[J]. Biochemical and Biophysical Research Communications, 2001; 281: 1200-1206.
    [51] P Krijnen, C Meischl, C Hack, et al. Increased Nox2 expression in human cardiomyocytes after acute myocardial infa- rction[J]. J Clin Pathol, 2003;56:194-199.
    [52] Yee Looi, David Grieve, Anjana Siva, et al. Involvement of Nox2 NADPH oxidase in adverse cardiac remodeling after myocardial infarction[J]. Hypertension, 2008; 51: 319-325.
    [53] Michaela Hoffmeyer, Steven Jones, Christopher Ross, et al.Myocardial ischemia/ reperfusion injury in NADPH oxidase -deficient mice[J]. Circ Res, 2000;87: 812-817.
    [54] Stefan Frantz, Ralf P Brandes, Kai Hu, etal. Left ventricular remodeling after myocardial infarction in mice with targeted deletion of the NADPH oxidase subunit gp91phox[J]. Basic Res Cardiol, 2006; 101(2):127-132.
    [55] Jonathan A Byrne, David J Grieve, Jennifer K Bendall, et al. Contrasting roles of NADPH oxidase isoforms in pressure-overload versus AngiotensinⅡ-induced cardiac hypertrophy[J]. Circ Res, 2003; 93:802-805.
    [56] J Belch, A Bridges ,N Scott, et al. Oxygen free radicals and congestive heart failure[J]. Br Heart, 1991; 65:245-248.
    [57] Arvinder Dhalla, Michal Hill, Pawan Singal, et al. Role of oxidative stress in transition of hypertrophy to heart failure[J]. J Am Coil Cardiol, 1996; 28:506-514.
    [58] Alexander Sirker, Min Zhang, Colin Murdoch, et al. Involvement of NADPH oxidases in cardiac remodelling and heart failure[J]. Am J Nephrol, 2007; 27:649-660.
    [59] Jianmei Li, Nick P Gall, David J Grieve, et al. Activation of NADPH oxidase during progression of cardiac hypertrophy to failure[J]. Hypertension, 2002; 40:477-484.
    [60] Yao Sun, Jiakun Zhang, Li Lu, et al.Aldosterone-induced inflammation in the rat heart role of oxidative stress[J]. Am J Pathol, 2002; 161:1773-1781.
    [61] David Grieve, Jonathan Byrne, Anjana Siva, et al. Involvement of the NADPH oxidase isoform NOX2 in cardiac contractile dysfunction occurring in response to pressure-overload[J]. J Am Coll Cardiol, 2006; 47:817-826.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700