低渗透压对大鼠三叉神经节神经元ATP-激活电流的抑制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验应用全细胞膜片钳技术,在大鼠三叉神经节神经元上探讨低渗透压对ATP-激活电流的调制作用。结果显示:(1)大部分受检细胞(80.90%)对外加ATP敏感,产生一具有浓度依赖性的内向电流,且该电流可以被P2X受体拮抗剂PPADS所阻断。(2)预加低渗溶液(220 mOsm,260 mOsm,300 mOsm),对IATP产生抑制作用,该抑制作用呈可逆性,渗透压依赖性和非电压依赖性。(3)在低渗透压(260mOsm)环境下,ATP-激活电流的浓度反应曲线明显下移;阈值和最大反应浓度不变,EC50为1.19×10-4M,与单独加ATP时的1.33×10-4M基本一致;而最大反应浓度时的ATP电流幅值减小了25.26±2.41%(n=6)。(4)低渗透压对IATP的抑制作用可被TRPV4(transient receptor potential vanilloid 4)受体激动剂4ɑ-PDD(4ɑ-phorbol 12,13-didecanoate)增强,并可被TRPV4受体非特异性阻断剂钌红(ruthemium red, RR)阻断。(5)在细胞外液中加入forskolin或8-Br-cAMP预孵育,可以部分翻转低渗对ATP-激活电流的抑制作用,而H89预孵育则不影响低渗对IATP的影响。以上结果表明,低渗透压作用于TRPV4受体,可能通过直接抑制cAMP的生成而抑制P2X受体介导的电流,从而发挥对ATP激活电流的抑制作用。
This experiment aimed to investigate the modulation of hypotonicity on ATP-activated currents (IATP) in primary sensory neurons. Whole cell-patch clamp recording was performed on cultured SD rat trigeminal ganglion (TG) neurons. (1) The majority of neurons examined (80.90%) were sensitive to ATP (10-5~10-3M), ATP activated an inward currents in a concentration-dependent manner, and IATP were blocked by PPADS(pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid, an antagonist of the P2X receptor. (2)When Hypotonicity(220 mOsm, 260 mOsm, 300 mOsm)was preapplied extracellularly, it reduced ATP-activated currents (IATP) significantly. This inhibitory effect was reversible, osmosis-dependent, and voltage-independent. (3) The concentration-response curves for ATP with and without preapplication of hypotonicity showed that preapplication of hypotonicity shifted the curve downward; maximal amplitude of IATP with hypotonicity decreased by 25.26±2.41%, while the threshold value remained unchanged; the EC50 value of the two curves were very close(1.19×10-4M vs 1.33×10-4M). (4) This inhibitory effect was increased by 4ɑ-PDD, a selective TRPV4 receptor agonist, and was reversed by ruthenium red (RR), a nonselective TRPV4 receptor antagonist, suggesting that the inhibition is mediated via TRPV4 receptor. (5) Preapplication of forskolin or 8-Br-cAMP partly reversed the inhibition of IATP by hypotonicity, whereas preapplication of H89 had not effect on it. These results suggested that hypotonicity inhibited ATP-actived currents via TRPV4 receptor, which was mediated partly by reducing cAMP concentration directly rather than by PKA and downstream process.
引文
1. Nicole Alessandri-Haber, Jenny J. Yeh, Hypotonicity induceds TRPV4-mediated nociception in rat. Neuron, 2003(39):497-511
    2. Gunthorpe MJ, Benham CD, RandallA et al The diversity in the vanilloid (TRPV) receptor family of ion channels. Trends Pharmaco. Sci, 2002(23):183-191
    3. Rainer Strotmann, Christian Harteneck,OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity, Nature Cell Biol, 2000, 2(10): 695-702
    4. Montell C, Rubin GM. Molecular characterization of the Drosophilatrp locus:a putative integral membrane protein required for phototransduction. Neuron, 1989(2):1313-1323
    5. Ali Deniz Gu¨ler, Hyosang Lee, Tohko Iida, Heat-evoked activation of the ion channel, TRPV4, The Journal of Neuroscience, 2002, 22(15):6408–6414
    6. Nicole A, Olayinka A. D, et al, Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the Rat. J Neuroscience, 2004, 24(18):4444–4452
    7. Caterina, M. J., Rosen, T. A. et al. A capsaicin receptor homologue with a high threshold for noxious heat. Nature, 1999, (398):436–441.
    8. Okada, T. et al. Molecular cloning and functional characterization of a novel receptor-activated TRP Ca2+ channel from mouse brain. J. Biol. Chem., 1998, (273):10279–10287.
    9. Feng Xu, Eisaku Satoh., Protein kinasa C-mediated Ca2+ entry in HEK293 cells transiently expressing human TRPV4, British J. of Pharmac, 2003(104) :413-421
    10. Watanabe H, Davis JB, et al, Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J Biol Chem, 2002, (277): 13569–13577.
    11. Xiaochong G, Ling W, et al. Temperature-modulated Diversity of TRPV4 Channel Gating. J Biological chemistry, 2003, (278): 27129–27137.
    12. Yanlin Jia, Xin Wang, et al. Functional TRPV4 channels are expressed in humanairway smooth muscle cells, Am J Physiol Lung Cell Mol Physiol., 2004, (287): 272–278.
    13. Srihasam Lakshmi, Preeti G. et al, Co-activation of P2Y2 receptor and TRPV channel by ATP: implications for ATP induced pain, Cellular and Molecular Neurobiology,2005, 25(5):819-832
    14. Chizh, B. A., Illes, P. P2X receptors and nociception. Pharmacol. Rev. 2001 (53):553–568
    15. M.J. Wang., S.H. Xiong., Z.W. Li.. Neurokinin B potentiates ATP-activated currents in rat DRG neuron. Brain Res. 2001(923):157-162
    16. Dunn, P.P., Zhong, Y., Brunstock, G., et al, P2X receptors in peripheral neurons. Progress in Neurobiology. 2001(65) :107-134
    17. H.Z., Z.W.LI, substance P potentiates ATP-activated currents in rat primary sensory neurons, Brain Res.1996(739):163-168
    18. Cook, S.M., et al, Desensitization, recovery and Ca2+-dependent modulation of ATP-gated P2X receptors in nociceptors. Neuropharmacology 1997,(36):1303- 1308
    19. Kennedy C, Assis TS, et al. Crossing the pain barrier: P2 receptors as targets for novel analgesics. J Physiol, 2003(553):683-694
    20. B.P. Bean. ATP-activated channels in rat and bullfrog sensory neurons: concentration dependence and kinetics. J. Neurosci. 1990(10):1-10
    21. Minke B, Wu C, Pak WL. Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature, 1975(258): 84-87
    22. Baruch Minke, Boaz Cook, TRP Channel Proteins and Signal Transduction, Physiol Rev, 2002(10):429-472
    23. Guler A, Lee H,Iida T,et al. Heat evoke activation of the ion channel,TRPV4.J Neurosci,2002(22):6408-6414
    24. Colbert, H. A., Smith, T. L.et al. Osm-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation and olfactory adaptation in Caenorhabditis elegans. J. Neurosci, 1997, (17): 8259– 8269.
    25. Nilius B, Droogmans G, et al. TRP channels in endothelium: solving the calcium entry puzzle? Endothelium, 2003, (10): 5–15.
    26. Walker, RG, Willingham, AT. et al. A Drosophila mechanosensory transduction channel.Science, 2000, (287):2229–2234.
    27. Watanabe H, Vriens J, et al, Modulation of TRPV4 gating by intra- and extracellular Ca2+. Cell Calcium, 2003, (33): 489–495.
    28. Szallasi A, Szabo T, et al, Regulation of a TRP channel by tyrosine phosphorylation: Src family kinase-dependent phosphorylation of TRPV4 on Y253 mediates its response to hypotonic stress. J Biol Chem, 2003, (278):11520–11527.
    1. Ali D, Hyosang L, et al. Heat-Evoked Activation of the Ion Channel, TRPV4 . J Neuroscie, 2002, (22): 6408–6414.
    2. Altamirano, J., Brodwick, M. S. et al. Regulatory volume decrease and intracellularCa2+ in murine neuroblastoma cells studied with fluorescent probes. J. Gen. Physiol, 1998,( 112):145–160.
    3. Baruch Minke, Boaz Cook, et al. TRP Channel Proteins and Signal Transduction, Physiol Rev, 2002, (10):429-472.
    4. Boulay, G. et al. Cloning and expression of a novel mammalian homologue of Drosophila transient receptor potential (TRP) involved in calcium entry secondary to activation of receptors coupled the Gq class of G protein. J. Biol. Chem, 1997, (272):29672–29680.
    5. Caterina, M. et al.The capsaicin receptor: a heat-activated ion channel in the pain pathway, 1997, (389): 816–824
    6. Caterina, M. J., Rosen, T. A. et al. A capsaicin receptor homologuewith a high threshold for noxious heat. Nature, 1999, (398):436–441.
    7. Christensen, O. et al, Mediation of cell volume regulation by Ca2+ influx through stretch- activated channels. Nature, 1987, (330):66–68.
    8. Colbert, H. A., Smith, T. L.et al. Osm-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation and olfactory adaptation inCaenorhabditis elegans. J. Neurosci, 1997, (17):8259–8269.
    9. Feng X, Eisaku S, et al. Protein kinase C-mediated Ca2t transiently expressing human TRPV4. J Pharmacology, 2003, (140):413–421.
    10. Guler A, Lee H, et al. Heat evokes activation of the ion channel, TRPV4. J Neurosci, 2002 (22):6408-6414.
    11. Gunthorpe M. J, Benham C.D, et al The diversity in the vanilloid (TRPV) receptor family of ion channels. Trends Pharmaco. Sci, 2002, (23):183-191.
    12. Harteneck, C., Obukhov, A. G., et al. The Drosophila cation channel trpl expressed in insect Sf9 cells is stimulated by agonists of G-protein-coupled receptors. FEBS Lett, 1995, (358): 297–300.
    13. Harteneck, C., Plant, T. D, et al. From worm to man: three subfamilies of TRP channels.Trends Neurosc, 2000, (23):159–166
    14. Hiroyuki. W, John BD, et al. Activation of TRPV4 Channels (Hvrl-2/m TRP12) by Phorbol Derivatives, J Biological Chemistry, 2002, (277): 13569–13577.
    15. Hoenderop, J. G. et al. The epithelial calcium channel, ECaC, is activated by hyperpolarization andregulated by cytosolic calcium. Biochem. Biophys. Res. Commun, 1999, (261):488–492.
    16. Hofmann, T. et al. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature, 1999, (397):259–263.
    17. Kotera, T., Brown, P. D. et al Calcium-dependent chloride current activated by hyposmotic stress in ratlacrimal acinar cells. J. Membr. Biol. 1993, (134): 67–74.
    18. Lang, F. et al. Functional significance of cell volume regulatory mechanisms. Physiol. Rev, 1998, (78):247–306.
    19. MacLeod, R. J., Lembessis, P. et al Differences in Ca2+-mediation of hypotonic and Na+-nutrient regulatory volume decrease in suspensions of jejunal enterocytes. J. Membr. Biol, 1992 ,(130): 23–31.
    20. Minke B, Wu C, et al Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature, 1975, (258): 84-87.
    21. Mizuno A, Matsumoto N, et al, Impaired osmoticsensation in mice lacking TRPV4. Am J Physiol Cell Physiol, 2003, (285):96–101.
    22. Montell C, Birnbaumer L, et al, A unified nomenclature for the superfamily of TRP cation channels. Mol Cell, 2002, (9): 229–231.
    23. Montell C, Birnbaumer L, et al, The TRP channels, a remarkable functional family. Cell, 2002, (108): 595–598.
    24. Montell C, Rubin G. M. et al, Molecular characterization of the Drosophilatrp locus: a putative integral membrane protein required for phototransduction. Neuron, 1989, (2):1313-1323.
    25. Montell C. et al. Physiology, phylogeny, and functions of the TRP superfamily of cation channels. Science’s STKE, 2001, (90):1126-2001.
    26. Mutai H, Heller S. et al Vertebrate and invertebrate TRPV-like mechanoreceptor. Cell Calcium, 2003, (33): 471–478.
    27. Nicole A, Jenny J. Y, et al. Hypotonicity Induces TRPV4-Mediated Nociception in Rat. J Neuron, 2003,(39): 497–511.
    28. Nicole A, Olayinka A. D, et al, Transient Receptor Potential Vanilloid 4 Is Essential in Chemotherapy-Induced Neuropathic Pain in the Rat. J Neuroscience, 2004, 24(18):4444–4452.
    29. Niemeyer BA, Bergs C et al, Competitive regulation of CaT-like-mediated Ca2+ entry by protein kinase C and calmodulin. Proc Natl Acad Sci USA, 2001,(98): 3600–3605.
    30. Nilius B, Droogmans G, et al, TRP channels in endothelium: solving the calcium entry puzzle? Endothelium, 2003, (10): 5–15.
    31. Nilius B, Prenen J et al, Fast and slow inactivation kinetics of the Ca2+ channels ECaC1 and ECaC2 (TRPV5 and TRPV6). Role of the intracellular loop located between transmembrane segments 2 and 3. J Biol Chem, 2002 (277): 30852– 30858.
    32. Nilius B, Prenen J, et al, Differential activation of the volume-sensitive cationchannel TRP12 (OTRPC4) and volume-regulated anion currents in HEK-293 cells. Pflu¨gers Arch, 2001, (443): 227–233.
    33. Nilius, B., Eggermont, J., et al, Volume-activated Cl– channels. Gen. Pharmacol., 1996, (27): 1131–1140.
    34. Okada, T. et al. Molecular cloning and functional characterization of a novel receptor-activated TRP Ca2+ channel from mouse brain. J. Biol. Chem., 1998, (273):10279–10287.
    35. Okada, T. et al. Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. J. Biol. Chem., 1999, (274):27359–27370.
    36. Peng JB , Hediger MA. et al, A family of calcium-permeable channels in the kidney: distinct roles in renal calcium handling. Curr Opin Nephrol Hypertens, 2002 ,( 11): 555–561.
    37. Peng JB, Chen XZ, et al, Human calcium transport protein CaT1. Biochem Biophys Res Commun, 2000, (278): 326–332.
    38. Peng, JB. et al. Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J. Biol. Chem., 1999, (274): 22739–22746.
    39. Philipp, S. et al. A mammalian capacitative calcium entry channel homologous to Drosophila TRP and TRPL. J EMBO, 1996 ,(15): 6166–6171.
    40. Philipp, S. et al. A novel capacitative calcium entry channel expressed in excitable cells. J. EMBO, 1998 ,(17):4274–4282.
    41. Phillips, A. M., Bull, A. et al. Identification of a Drosophila gene encoding a calmodulinbinding protein with homology to the trp phototransduction gene. Neur on, 1992 ,(8):631–642.
    42. Rainer S, Christian H, et al. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nature cell biology, 2000, (2): 695-702.
    43. Rothstein, A., Mack, E. et al, Volume-activated calcium uptake: its role in cell volume regulation of Madin–Darby canine kidney cells. Am. J. Physiol., 1992,(262):339–347.
    44. Schaefer, M. et al. Receptor-mediated regulation of the nonselective cation channels TRPC4 TRPC5. J. Biol. Chem., 2000, (275):17517–17526.
    45. Smith GD, Gunthorpe J, et al, TRPV3 is a temperaturesensitive vanilloid receptor- like protein. Nature, 2002, (418): 186–190.
    46. Strotmann R, Schultz G, et al, Ca2+-dependent potentiation of the nonselective cation channel TRPV4 is mediated by a carboxy terminal calmodulin binding site. J Biol Chem, 2003, ( 278): 26541–26549.
    47. Suzuki M, Mizuno A, et al, Impaired pressure sensation with mice lacking TRPV4. J Biol Chem, 2003,(270): 22664–22668.
    48. Suzuki, M., Sato, J. et al, Cloning of a stretch-inhibitable nonselective cation channel. J. Biol. Chem., 1999, (274): 6330–6335.
    49. Szallasi A., Blumberg PM. et al, Vanilloid (capsaicin) receptors and mechanisms. Pharmacol Rev, 1999,(51): 159–212.
    50. Szallasi A, Szabo T, et al, Regulation of a TRP channel by tyrosine phosphorylation: Src family kinase-dependent phosphorylation of TRPV4 on Y253 mediates its response to hypotonic stress. J Biol Chem, 2003, (278):11520–11527.
    51. Thastrup, O., Cullen, P. J., et al Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum ATPase. Proc. Natl Acad. Sci., 1990, (87) :2466–2470.
    52. Tominaga, M. et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron, 1998, (21):531–543.
    53. Urbach, V., Leguen, I., et al. Mechanosensitive calcium entry and mobilization in renal A6 cells. J. Membr. Biol., 1999, (168):29–37.
    54. Venkataramana K. S, Ali D. Gr, et al Transient receptor potential vanilloid 4 regulates aquaporin-5 abundance under hypotonic conditions. PNAS, 2006, (103):4747–4752
    55. Vennekens, R. et al. Permeation and gating properties of the novel epithelial Ca2+channel. J. Biol.Chem., 2000, (275):3963–3969.
    56. Voets, T. et al. Regulation of a swelling-activated chloride current in bovine endothelium by proteintyrosine phosphorylation and G proteins. J. Physiol., 1998, (506):341–352.
    57. Voets, T., Droogmans, G., et al, Reduced intracellular ionic strengthas the initial trigger for activation of endothelial volume-regulated anion channels. Proc. Natl Acad.Sci. , 1999, (96): 5298–5303.
    58. Walker, RG., Willingham, AT. et al. A Drosophila mechanosensory transduction channel.Science, 2000, (287):2229–2234.
    59. Watanabe H, Davis JB, et al, Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J Biol Chem, 2002, (277): 13569–13577.
    60. Watanabe H, Vriens J, et al, Heat-evoked activation of TRPV4 channels in an HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem, 2002, (277): 47044–47051.
    61. Watanabe H, Vriens J, et al, Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature, 2003, (424): 434–438.
    62. Watanabe H, Vriens J, et al, Modulation of TRPV4 gating by intra- and extracellular Ca2+. Cell Calcium, 2003, (33): 489–495.
    63. Wes, P. D. et al. TRPC1, a human homolog of a Drosophila store-operated channel. Proc. Natl Acad.Sci. , 1995, (92): 9652–9656.
    64. Wissenbach, U., Schroth, G., et al, Structure and mRNA expression of a bovine trp homologue related to mammalian trp2. FEBS Lett. , 1998, (429):61–66.
    65. Wong, S. M., DeBell, M. C. et al, Cell swelling increases intracellular free Ca2+ in cultured toad bladder cells. Am. J. Physiol., 1990, (258): 292–296.
    66. Wu, X., Yang, H., et al, Regulatory volume decrease by SV40-transformed rabbit corneal epithelial cells requires ryanodine-sensitive Ca2+-induced Ca2+ release. J.Membr. Biol., 1997, (158): 127–136.
    67. Xiaochong G, Ling W, et al. Temperature-modulated Diversity of TRPV4 Channel Gating. J Biological chemistry, 2003, (278): 27129–27137.
    68. Yanlin Jia, Xin Wang, et al Functional TRPV4 channels are expressed in human airway smooth muscle cells, Am J Physiol Lung Cell Mol Physiol., 2004, (287): 272–278.
    69. Zhu, X. et al. trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell, 1996, (85), 661–671.
    70. Zhu, X., Chu, P. B., Peyton, M. Molecular cloning of a widely expressed human homologue for the Drosophila trp gene, FEBS Lett. , 1995, (373):193–198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700