负载型氧化铁吸附剂的制备及对五氯苯酚作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
五氯苯酚(Pentachlorophenol,简写PCP)作为杀虫剂、防腐剂而被广泛应用,鉴于其在水环境和土壤中分布的广泛性以及对人类和环境的持久性、高毒性危害,已成为全球性的环境污染物之一。目前对PCP的主要处理方法有:生物方法、芬顿试剂法、光化学、电化学、臭氧处理、超声波及金属催化氧化等处理方法。这些方法各有优缺点,国内外学者研究的也较多,然而对于矿物材料在含PCP废水中的应用研究较少。铁(氢)氧化物矿物在地表土壤和水体沉积物中分布广泛,比表面积巨大,表面氧化还原活性高,以及电子输运能力强,因此铁矿物与PCP的表面作用对PCP的地球化学循环、环境效应起着重要的控制作用。其中尤以赤铁矿(α=Fe_2O_3)对PCP作用最为显著。研究PCP与α-Fe_2O_3的相互作用机理,对深入了解PCP在土壤和水体沉积物中的迁移、转化、降解及残留规律具有理论及实际意义。
     本论文选择五氯苯酚为研究对象,采用两种方法制备和负载α-Fe_2O_3,研究了PCP与原位制备的α-Fe_2O_3上的界面作用,并对不同条件下对界面作用的影响以及五氯苯酚与α-Fe_2O_3之间的作用机制进行了研究。主要研究工作内容如下:
     1、利用高温氧化法(原位生成)直接制备、负载α-Fe_2O_3,采用陶瓷滤料负载制备α=Fe_2O_3。通过X射线衍射、拉曼光谱、扫描电子显微镜等手段进行分析表征。结果显示:高温氧化法制备的α=Fe_2O_3,不仅制备方法简单可行、α-Fe_2O_3性状稳定,而且在抗酸碱能力、抗机械摩擦能力实验中,损失重量小,有效的解决了吸附剂难以固定的问题。
     2、通过静态吸附实验,研究了PCP与α-Fe_2O_3二者之间的吸附动力学、吸附等温线及pH对吸附的影响。实验结果表明:铁板原位生成α-Fe_2O_3矿物对PCP的吸附在2.5h达到吸附和解吸动力学平衡,吸附动力学符合二级动力学;Freundlich吸附等温式可以较好的描述PCP在α-Fe_2O_3上的吸附行为;α=Fe_2O_3对PCP吸附的pH关系等温线是一峰型曲线,α-Fe_2O_3吸附容量峰值出现在pH=6.0处。
     3、通过α-Fe_2O_3吸附前后的红外光谱图分析其吸附机理,结果表明:两者的吸附发生在赤铁矿表面;pH值6.0时,两者之间作用以静电吸附为主,氢键作用为辅;pH值8.5时,两者之间主要以氢键作用产生吸附。
     4、研究了α-Fe_2O_3的重复利用。采用两种方法处理吸附PCP后的α-Fe_2O_3,结果表明:α-Fe_2O_3的重复利用效果较好,将吸附PCP后的原位生成负载α-Fe_2O_3经过600℃煅烧1 h后能够较好的获得再生,可以完全恢复α-Fe_2O_3原有吸附性能。并且重复利用四次后α-Fe_2O_3对PCP的吸附能力为首次吸附能力的98.9%。
Pentachlorophenol (PCP) because of its broad use as bactericide and antiseptic with high toxicity and hardly degradable by ordinary oxidants and most microorganisms in water and soil, is considered as a substance that should be removed from environment.At present, the main approaches to treatment PCP include: biological methods, Fenton reagent, photochemical, electrochemical, ozone treatment, ultrasonic and metal oxidation and so on. These methods all have advantages and disadvantages.The scholars at home and abroad studied a lot on them, but less studied on the the mineral material applied in the wastewater containing PCP . Hematite is a mineral widely occurred on earth surface with high surface area, large adsorptive capacity and high oxidation - reduction activity and can be used as an important adsorbent as well as catalyst for the removal of pollutant in environment. Therefore, study on the mechanism regarding the interaction between hematite and pentachlorophenol is of theoretical and practical importance for understanding the degradation, transfer and removal of pentachlorophenol in water and soil.
     In this thesis, prepared and load hemate by two methods,choosed PCP to be studied. Studied the interaction between PCP and hemate under different condition. Furthermore, the interaction mechanism of PCP and hemate were also investigated. The main research work as follows:
     1. Preparated and load the hemate by HTO(situ preparatio) and Ceramic mediums.And characterizated them by XRD, Laman spectrum, SEM and other means of analysis. The results showed that: the hemate preparated by HTO not only has easy preparation and stable character but also has lower lose weight in the anti-acid and alkali ability experiment shockproof test. So it can resolve the difficult problem of absorbent fixed effectively.
     2. The Static adsorption experiment used to study the adsorption kinetics、adsorption isotherm and the effect by pH between PCP and hematite adsorption.The results showed that: the adsorption and desorption dynamics reach balance at 2.5h,and the adsorption in line with stair kinetic adsorption dynamics; Freundlich adsorption isotherm can describe the adsorption of PCP on hematite better; The pH adsorption isotherm of pentachlorophenol onto hematite is a peak curve and the largest adsorption quantity occurred at about pH 6.0.
     3. The adsorption of pentachlorophenol on hematite was studied in this laboratory through adsorption experiments and FTIR analysis, the results showed that: the adsorption occurred on the surface of hematite; At pH 6.0, The main interaction between PCP and hematite was static electric interaction; At pH 8.5, the interaction was mainly through hydrogen bond.
     4. Study on the regeneration of hematite. Used two methods to deal with the hematite after absorbed, the results were that: the ability of hematite regeneration is well, the hematite after adsorption can be Can be fully restored adsorption capacity after burning 600℃for 1 h .The adsorption capacity is 98.9% of first time after rebirth four times.
引文
[1]吴大清,刁桂仪,袁鹏等.氧化铁矿物对五氯苯酚表面吸附实验及其反应模式[J].地球化 学,2005,34(3):297-303.
    
    [2]于天仁,陈志诚.土壤发生中的化学过程[M].北京:科学出版社,1990
    
    [3] Banwart S A. Reduction of Fe(III) minerals by natural organic matter in groundwater[J].Geochim Cosmochim Acta,1999, 63(19/20):2 919-28.
    
    [4] Sivan O, Erel Y, Mandler D,et al.The dynamic redox chemistry of iron in the epilimnion ofLake Kinneret (Sea of Galilee)[J].GeochemCosmochim Acta,1998,62(4):565-576.
    
    [5]孙光闻.重金属污染及治理研究进展[J].南方农业,2007,1(2):41-52.
    
    [6] Smock L A, Kuenzler E J. Seasonal changes in the forms and speciesof iron and manganese in a seasonally-inundated floodplain swamp[J].Water Res, 1983, 17(10): 1287-1294.
    
    [7] Bernd U N, Nowack G F, Rainer S. Heavy metal sorption on clay minerals affected by the siderophore Desferrioxamine B [J].Environ Sci Technol, 2000, 34(13):2749-2755.
    
    [8] Stumm W., Sulzburger B, Geochim. et Cosmochim. Acta, 56,3233(1992).
    
    [9] Benjamin M.M., Heyes K.F., Journal of WPCF,54(11):1472(1982).
    
    [10]徐莉英,邢光熹.铁氧化物和层状硅铝酸盐矿物在土壤吸持重金属离子中的作用[J].土壤 学报,1995,32(增刊):201-209.25.
    
    [11] Kooner Z S. Comparative study of adsorption behavior of copper, lead, and zinc ontogoetnite in aqueous system[J]. Environment Geol, 1993,21: 242-250.
    
    [12] Coston J A, Fuller C C, Davis J A. Pb2+and Zn2+adsorption by a natural aluminum andiron-bearing surface coating on an aquifer sand[J]. Geochemica Cosmochemica Acta,1995,59:3535-3547
    
    [13]R.J.Bowell.土壤中铁的氧化物和氢氧化物对砷的吸附,Applied Geoehemistry,1994,9 (3): 279-286.
    
    [14] ParasTrivedi and Lisa Axe. Ni and Zn sorption to amorphous versus crystalline iron oxides: macroscopic studies. Journal of colloidal and inteface science. 2001, 244: 221-229
    
    [15] Yiwei Deng, Malin Stjernstrom and Steven Banwart. Accumulation and remobilization of aqueous chromium(VI) at iron oxide surfaces: application of a thin-film continuous flow-through reactor. Journal of Contaminant Hydrology, 1996. 21:141-151
    
    [16] Darren P. Rodda, John D. Wells, and Bruce B. Johnson. Anomalous adsorption of copper( II) on goethite. Journal of colloid and interface science, 1996. 184:564-569
    
    [17] Parfitt R L, Russel J D, Famler D V.J.Chem.Soc.Faraday,1976, I (72):1082.
    
    [18] Liu C. and Huang P.M.. Pressure-jump relaxation studies on kinetic of lead sorption by iron oxides formed under the influence of citric acid. Geoderma, 2001. 102:1-25
    
    [19] M. Ding, B. H. W. S. De Jong, S. J. Roosendaal, and A. Vredenberg. XPS studies on theelectronic structure of bonding between solid and solutes: adsorption of Arsenate, chromate,phosphate, Pb2+, and Zn2+ ions on amorphous black ferric oxyhydroxide. Geochimica etCosmochimica Acta, 2000. 64(7): 1209-1219.
    
    [20] A. Garcia-Sanchez, AAlastuey, X. Querol. Heavy metal adsorption by different minerals:application to the remediation of polluted soils. The Science of the Environment, 1999. 242:179-188.
    
    [21] Jens Moller, Anna ledin, Peter Steen Mikkelsen. Removal of dissolved heavy metals frompre-settled storm water runoff by iron-oxide coated sand(IOCS).From:http://www.enpc.fr/cereve/HomePages/varrault/www-jes-2002/Moeller-Paper-2002.pdf.
    
    [22] Day GM, Hart B Y, McKelviel D et al, Adsorption of natural organic matter ontogoethite.Colloids and Surfaces, 1994, 89:1-13.
    
    [23]王丹丽,王恩德.针铁矿及腐殖质对水体重金属离子的吸附作用[J].安全与环境学报, 2001,1(4):1-4.
    
    [24]王江涛,赵卫红,张正斌等.海水中天然溶解有机物在针铁矿上的吸附[J].海洋与湖沼, 2000,31(3):309-312
    
    [25]梁树平,张秀丽,周平等.磁铁矿对膨润土吸附造纸黑液中有机物的影响[J].中国非金 属矿工业导刊,2004,1:41-44.
    
    [26]张桂银,董元彦,李学垣等.不同pH、电解质浓度条件下草酸对针铁矿吸附Cd(Ⅱ)的 影响及机制[J].植物营养与肥料学报2007,7(3):305-310.
    
    [27]汤灿.表面活性剂对金属氧化物吸附与光解疏水性有机物的影响.硕士学位论文,2005, 湖南农业大学.
    
    [28]David O.什么是持久性有机物染物?持久性有机污染物控制研讨会论文集.北京:国家环 保局,2001,9
    
    [29]马涛.α-Fe_2O_3的制备、负载及对五氯苯酚的作用研究.硕士学位论文,2006,武汉理工 大学.
    
    [30]范菩,夏豪刚.气相色谱/谱法测定水中五氯酚.环境监测管理与技术,2001,13(1):33-34.
    
    [31]高和气.高效液相色谱法测定饮用水中酚类化合物.重庆环境科学,2001,23(2):77-78.
    
    [32]强志良.紫外分光光度法测定河水中五氯酚含量.苏州医学院学报,1994,14(1):79-80.
    
    [33]王欣,方瑞斌,朱熔刚等.SPME联用GGECD测定饮水中氯酚.云南化工,2001,28(3): 23-25.
    
    [34]冯亚平.环境中五氯酚监测研究进展.四川环境,1992,11,(1):23-26.
    
    [35]韦进宝,罗瑞祯,唐智勇等.导数示波极谱法测定微量五氯酚.武汉大学学报(自然科学 版),1996,42(4):434-438.
    
    [36]谢玲玲.氯苯酚在水体颗粒物上的吸附和降解研究.硕士学位论文,2005,武汉大学.
    
    [37] SHANG Sufen (尚素芬 ), JIANG Shougui (蒋守规). The determina-tion ofthermodegradation and photodegradation of pentachlorophenol inwaters by highperformance liquid chromatography [J].Journal ofHebei University: Natural ScienceEdition(河北大学学报:自然科学版), 1991, 11(3): 63-66.
    
    [38] WANGLiansheng (王连生).Chemistry oforganicpollution(有机污染化学) [M]. Beijing:Higher Education Press, 2004: 686-694.
    
    [39] WONG A S, CROSBY D G Photodecomposition of pentachlorophenolin water [J].JAgricFood Chem,1981,29(1): 125-130.
    
    [40] XUYiming (许宜铭), L Huiqing (吕惠卿). Study progresson pho-tochemical degradation ofchlorophenols in water [ J].ShanghaiEnvironmental Science(上海环境科学), 2000, 19(7):313-316.
    
    [41] YU Zhiyong (郁志勇), WANG Wenhua (王文华), PENG An(彭安), et al. Similar propertiesof Fe2+and Fe3+during the photochemi-cal reaction of 4-chlorophenol [J].EnvironmentalScience(环境科学), 1998, 19(4): 76-78.
    
    [42] YU Zhiyong (郁志勇), WANG Wenhua (王文华), PENG An (彭安). The comparison aboutthe degree ofmineralization of chlorophenolsunder the shining of UV [J].EnvironmentalChemistry(环境化学),1998, 17(5): 490-493.
    
    [43] NICOLAL P, MICHAEL R H. Chemical and physical characterizationof a TiO2-coated fiberoptic cable reactor [J].Environ Sci Technol,1996, 30(9): 2806-2812.
    
    [44] LI Tian (李田), QIU Yanling (仇雁翎). Photocatalytic oxidation of benzene hexachloride andpentachlorophenol in aqueous solution [J].Environmental Science(环境科学), 1996, 17(1):24-26.
    
    [45] MILLS G, HOFFMAN M R. Photocatalytic degradation of pen-tachlorophenolonTiO2particles: identification and mechanism of reac-tion [J].Environ SciTechnol,1993,27(8): 1681-1689.
    
    [46] MILLS G, HOFFMAN M R. Photocatalytic degradation of pen-tachlorophenolonTiO2particles: identification and mechanism of reac-tion [J].Environ SciTechnol,1993,27(8): 1681-1689.
    
    [47]PetrierC, David B,Laguian S.Chemosphere, 1996, 32(9): 1709-1718.
    
    [48] Gondrexon N, Renaudin V, Pettier C, et al. Ultrasonic Sonochemistry, 1999, 5(4):125-131.
    
    [49]黄 艺,敖晓兰,赵 曦等.五氯酚生物降解机理与外生菌根真菌对五氯酚可降解性 [J].生态环境,2006,15(5):1080.
    
    [50]宋建华,宋冬林,陈 涛等.五氯酚(PCP)高效降解菌Psendomonassp.CS5的研究[J].应 用与环境生物学报,2000,6(6):586
    
    [51]刘 和,沈超峰,王 侃等.多食鞘氨醇杆菌共代谢降解五氯酚[J].中国环境科学, 2004,24(3):294
    
    [52] KIYOHARA H, HATTA T, OGAWA Y, et al. Isolation of pseu-domonas pickettii strains that degrade 2,4,6-trichlorophenol and their dechlorination of chlorophenols [J].Appl Environ Microbiol,1992,58(4): 1276-1283.
    
    [53]李梦耀,黎卫亮,钱会等.五氯苯酚的降解研究进展[J].安全与环境学报,2007,7 (2):32-35.
    
    [54] Oturan M A, Oturan N, Laitte C, etal.Journal of Electroanalytical Chemistry, 2001,507(1-2):96-102.
    
    [55] McKin AM, Diobtistina T J.Environmental Science & Technology, 1999, 33(11):1886-1891.
    
    [56] Marshall WD, KubatovaA, LagadecAJM, et al. Green Chemistry, 2002, 4(1):17-23
    
    [57] Shin E J, Keane M A. Catalusis Letters,1999, 58(2-3):141-145.
    
    [58] Gattrell M, MacDougall BJournal of the Electrochemical Society, 1999, 146(9):3335-3348.
    
    [59] Dabo P, cyr A, Laplante F, et al.Environmental Science&Technology, 2000,34(7): 1265-1265.
    
    [60]Lin C H, Tseng S K.Chemosphere, 1999, 39(13):2375-2359.
    
    [61] Kim J Y, Moon S H.Journal of the Air&Waste Management Association, 2000,50(4):555-562.
    
    [62] Sugimoto T, Sakata K, Muramatsu A.J Colloid InterfaceSci, 1993,159(2): 372
    
    [63] Kan Sh H, Zhang X T, Yu S, Li D M, Xiao L Zh, Zou GT, Li T J, Dong W, Lu Y Z.J ColloidInterface Sci,1997,191(2): 503
    
    [64] Dong W T, Wu S X, Chen D P, Jiang X W, Zhu C Sh.Chem Lett, 2000,29(5): 496
    
    [65]邱春喜,姜继森,赵振杰等.无机材料学报(QiuCh X,Jiang J S,Zhao Zh J,[66]Yang X L.JInorg Mater),2001,16(5):957
    
    [66]傅中,郝学士,吴正翠等.化学物理学报(Fu Zh,Hao X Sh,Wu Zh C,Zhang W M.Chin J Chem Phys),1999,12(2):219
    
    [67]李铁藩.金属高温氧化和热腐蚀.北京:化学工业出版社,2003
    
    [68]李光玉.钢铁表面黑色转化膜处理技术.吉林大学学报(工学版),2003,32(3),30-34.
    
    [69] Faria D L A de, Venancio Silva, Oliveira M T de.J. Raman Spectrosc,1997, 28: 873
    
    [70]邵曼君.环境扫描电镜原位研究纯Fe表面氧化过程[J].金属学报,2000,36(3):230-234
    
    [71]高乃云,徐迪民,范瑾初,等.氧化铁涂层,改性滤料除氟性能研究[J].中国给水排水, 2000,16(1):1-4.
    
    [72] SHANGLien-lo, HUNGTe-jeng, CHINHsing-lai.Characteristics and Adsorption Properties ofIron-coated Sand[J].Wat Sci Tech, 1997, 35 (7) :63-70.
    
    [73]吴建锋,刘云鹏,徐晓虹等.一种环保陶瓷滤球的制造方法: 中国 200310111209.7[P].2004-09-15.
    
    [74]张声,谢曙光,张晓健等.利用强化混凝去除水源水中天然有机物的研究进展[J].环境污 染治理技术与没备,2003,4(8):19-22
    
    [75]李方文,吴建锋,徐晓虹等.铁氧化合物对多孔陶瓷滤料表面改性的研究[J].湖南科技 大学学报(自然科学版),2008,23(1):117-120.
    
    [76]吴大清,刁桂仪,袁鹏等.五氯苯酚在矿物表面吸附[J].岩石矿物学杂志,2005,24 (6):556-562.
    
    [77]赵金辉,张克荣,李崇福等.酚类化合物在颗粒物上的吸附实验[J].中国公共卫生,2002, 18(6):709-711.
    
    [78]于红.分子自组装单层(SAMs)材料处理有机废水研究.硕士学位论文,2007,武汉理 工大学.
    
    [79]李铁,叶常明.酚类化合物在水体颗粒物上的吸附实验.环境化学,1997,16(3):227-232.
    
    [80]吴大清,刁桂仪,彭金莲等.高岭石等粘土矿物对五氯苯酚的吸附及其与矿物表面化 合态关系.地球化学,2003,32(5):501-505
    
    [81] Ruan,H.D.,Frost,R.L.,Kloprgge,J.T.,etal.Spectrochimica Acta Part A,2002, 58:967-981
    
    [82]方继敏,李山虎,龚文琪等.赤铁矿对五氯苯酚的吸附特性及机理研究[J].武汉理工大 学学报,2008,30(9):57-60
    
    [83]冯金诚.有机化合物结构分析与鉴定.北京:国防工业出版社,2003.16-50.
    
    [84]徐阳.流化床粉煤灰合成沸石处理含氟废水及沸石再生的研究.硕士学位论文,2008, 太原理工大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700