有机无机复合波导热光开关的优化设计与制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光开关及其阵列在光通信网络中具有重要的应用,如微光机电系统(MOEMS)光开关、液晶光开关等。与上述光开关相比,波导光开关由于没有机械移动部件,因而在可靠性方面具有明显优势和潜在应用价值。在波导光开关中,热光开关体积小、可扩性强、稳定性好,是光开关领域的研究热点之一。响应时间和功耗是热光开关的主要性能指标,研制响应速度快、功耗低的热光开关一直是人们追求的目标。
     近年来,为了加快响应时间并降低功耗,人们相继报道了Si/SiO2热光开关和全聚合物热光开关。硅材料具有大的导热系数,因此Si/SiO2热光开关响应速度快,但是其开关功耗一般较高。为了解决无机波导热光开关功耗大的缺点,虽然人们研究了各种类型的波导结构(如悬浮型波导结构),但是,器件的制作工艺相当复杂,而且实验效果不是十分理想。与无机材料热光开关相比,聚合物热光开关具有功耗低和制作工艺简单的优势,其缺点是响应时间较长,一般为ms量级。
     鉴于上述两类热光开关的优缺点,为了使器件兼具低的功耗和快的响应速度,人们研究了一类有机/无机混合结构的热光开关。本文利用聚合物材料SU-8和聚甲基丙烯酸甲酯(PMMA)分别作为芯层和上包层、无机材料SiO2作为下包层、Si材料作为衬底,制备了多种有机/无机混合结构热光开关。一方面,由于SU-8材料的热光系数较大(1.8×10-4K-1),这可降低器件的驱动功率;另一方面,由于PMMA(n3=1.4798@1550nm)与SU-8(n1=1.5742@1550nm)间的折射率差较大,上包层可以制作的较薄,这将加快电极产生的热量向芯层的传导速率,同时由于SiO2材料的导热系数较大,这也将加快芯层中热量的散失,这些都有利于缩短器件的上升和下降时间。本文的主要工作和创新点如下:
     1、从麦克斯韦方程出发,得到电磁场全矢量、半矢量、标量本征方程和边界条件,利用有限差分法推导出它们的有限差分形式,将此方法应用到矩形波导和脊形波导的模式分析中,并将三个有限差分法的计算结果做了对比;从横向亥姆赫兹方程出发得到三层平板波导光场强度分布的解析形式和模式有效折射率,并将其应用到有效折射率法中,推导出矩形和脊形波导的模式有效折射率;采用解析法和有限差分法对二维狭缝(slot)波导模式作了分析,采用半矢量有限差分法对三维狭缝波导作了分析;推导固体热传导方程的一般形式和稳态形式,并利用合适的差分网格推导出稳态热传导方程的有限差分形式。
     2、针对聚合物材料有热光系数大、导热系数小、制备工艺简单和成本低的特点,而无机材料具有热光系数相对较小、导热系数大、制备工艺相对复杂且成本相对较高的特点,提出了有机无机复合波导结构,制备了不同类型的马赫-曾德尔干涉仪(MZI)型热光开关:1)采用湿法腐蚀工艺,充分利用有机无机材料的优点,分别以聚合物材料SU-8和PMMA为波导的芯层和上包层,以无机材料SiO2为下包层,制备了1×1MZI热光开关。通过优化设计,确定波导上下包层厚度的理论最佳值,分别为3μm和2μm。利用数字计算方法给出了热光开关光场和热场的分布。对制备好的热光开关在1550nm下进行了测试,从不同波导尺寸热光开关的稳态特性测试可以看出,在波导横截面最佳尺寸为2.5μm×2.5μm时,开关的驱动功率仅为4mW,消光比高达29.6dB。从开关的动态特性测试可以看出,开关10-90%的上升时间73.5μs,90-10%的下降时间为96.5μs。2)与1×1MZI热光开关采用相同的湿法腐蚀工艺和同样的波导结构体系,制备了有机无机复合波导1×2多模干涉(MMI)MZI热光开关。通过测试得到此热光开关的开关功率是9.6mW,在交叉态的串扰是-23dB,上升和下降时间分别为264μs和444μs。3)为了利于波导之间的耦合,采用ICP刻蚀工艺制备了脊形波导1×2定向耦合器(DC)MZI热光开关。通过测试得到此器件的开关功率是10.7mW,在交叉态和直通态的串扰分别是-11.5dB和-23dB,器件1端口10%-90%上升时间是170μs,90%-10%下降时间是560μs,2端口10%-90%上升时间是200μs,90%-10%下降时间是560μs。4)同样利用了脊形波导的耦合,为了减少S型波导对3-dB耦合器耦合系数的影响,优化了其尺寸。通过ICP刻蚀工艺制备了2×2DC-MZI热光开关,测试得到器件的功耗为7.2mW,在交叉态和直通态的串扰分别是-22.8dB和-26.5dB。两个输出端口在ON状态下总的纤纤损耗分别为14.5dB和16.2dB。纤纤插入损耗包括两个单模光纤与波导的耦合损耗和器件上的传输损耗,通过截断法可测得波导的传输损耗约为2.0dB cm-1。
     3、研究了有机无机复合波导1×1MZI和2×2DC-MZI热光开关的容噪特性,提出容噪特性测试法。对于消光比高达32.6dB的1×1MZI热光开关,忽略了温度变化和开关引起的电压波动,假设通信系统可接受的最小消光比ERm in大于10dB时,器件所能允许的最大噪声幅值允许量是1.1V。对于在交叉态和直通态的串扰分别是-22.8dB和-26.5dB的2×2DC-MZI热光开关,当叠加了一个频率为2KHz、峰峰值为2.5V的方波噪声信号,开关最小的消光比大约为11.3dB,当叠加一个频率为5kHz、峰峰值为2.5V的方波噪声信号时,开关的最小消光比增加到24.1dB。通过进一步的测试发现,当噪声频率相同时,热光开关最小消光比随着噪声峰峰Vn oise的增大而减小;当噪声幅值相同时,热光开关最小消光比随着频率的增大而减小。但是当噪声频率足够大时,器件的最小消光比变化不大,证明器件达到了其噪声截止频率。
     4、提出了一种有机无机复合波导2×2全内反射热光开关。当从1端口输入时,开关在交叉态和直通态的串扰分别为-24dB和-26dB;当从2端口输入时,开关在交叉态和直通态的串扰分别为-25.7dB和-26.3dB;开关在大于26dB时的功耗约为100mW。通过优化波导结构尺寸,器件的功耗降低到59.7mW,在交叉态和直通态下的串扰分别为-27.6dB和-35dB。当拓扑的全内反射开关阵列是阻塞型的,需要2N11个2×2全内反射开关级联而成;当拓扑的全内反射开关阵列是榕树型无阻塞N×N开关阵列,需要N2个2×2全内反射开关级联。
     5、针对一般MZI热光开关光谱很窄的缺点,提出了一种宽光谱热光开关。此器件含有一个由相位发生器(PGC)和两个DC组成3-dB耦合器,它与传统3-dB耦合器不同,随着波长的漂移相位差会产生漂移,而这种漂移在一定范围内能补偿热光调制区因波长漂移产生的相位漂移。模拟结果显示,所设计的宽光谱热光开关的两个输出端口在110nm的波长范围内,消光比都大于30dB。而传统的MZI型热光开关的输出功率谱只有50-60nm,也就是说,本文设计的宽光谱热光开关的光谱比传统MZI型热光开关宽了近一倍。
Optical switch and array have important applications in optical communicationnetworks, such as Micro-opto-electro-mechanical Systems (MOEMS) switch, liquidcrystal optical switch, and so on. Compared with these optical switches, the opticalswitch using waveguide has obvious advantages and potential applications, because ithas no mechanical moving parts, so it is more reliable. Thermo-optical switch is oneof the hot areas of the waveguide switch, it has some advantages of small size,scalability, good stability. Response time and power consumption are keyperformance of thermo-optical switch, and developing a thermo-optical switch withfast response, low power consumption is very important.
     In recent years, in order to speed up response time and reduce powerconsumption, Si/SiO2thermo-optic switch and polymer thermo-optical switch havebeen reported. Silicon has a large thermal conductivity, therefore, Si/SiO2thermo-optical switch has faster response, but its switching power consumption isgenerally higher. Although in order to solve the shortcoming about large powerconsumption in inorganic waveguide optical switch, various of waveguide structuresof thermo-optical swiches have been studied, such as a suspended phase armwaveguide, the fabricating process is extremely complex, and the experimental resultsare not very satisfactory. Compared with inorganic materials thermo-optical switch,polymer thermo-optical switch has low power consumption and simple fabricatingprocess, but it has slower response time of milliseonds.
     In order to fabricate a switch with low power consumption and fast responsespeed, the advantages of both organic and inorganic have been used. In this paper, thepolymeric materials of SU-8and polymethyl methacrylate (PMMA) as the core andthe upper cladding layer of the waveguides, respectively, an inorganic material ofSiO2were used as the lower cladding layer of the waveguides on the Si substrate, we fabricated varieties of organic/inorganic hybrid thermo-optical switches. On the onehand, SU-8has larger thermal-optical coefficient of1.8×10-4K-1, which can reduce thedriving power of the device, on the other hand, the refractive index differencebetween PMMA (n3=1.4798@1550nm) and SU-8(n1=1.5742@1550nm) is bigenough. The upper cladding layer was fabricated as thin as2μm, which could speedup the heat conduction between electrode and the core, and because of the largethermal conductivity of SiO2, which would accelerate heat dissipation of the core, onthis way, it was conducive to shorten the rise and fall time of the device. The mainwork and innovation of this paper is as follows:
     1、The full vector, half-vector, scalar eigenvalue equations and their boundaryconditions were obtained from the Maxwell’s equations, and their derive their finitedifference equations were also ratiocinated by finite difference method. The opticalfield intensity distribution and the mode effective refractive index of three-slabwaveguide had been resolved from the horizontal Helmholtz equation. Utilizing theanalytical method of solving three-slab waveguide mode, the effective refractiveindex of the rectangular waveguide was obtained combining with effective indexmethod, in addition, all-vector, semi-vector and scalar finite difference method werealso analysised for comparing. The analytical method of ridge waveguide was same asrectangular waveguide. Using the analytical method and semi-vectorial finitedifference method, two-dimensional slot waveguide modes were analyzed, and usingsemi-vectorial finite difference method, three-dimensional slot waveguide wasanalyzed. Heat conduction equation in general form and steady form and their finitedifference form were ratiocinated.
     2、Polymer has some characteristices such as big thermo-optical coefficient, lowthermal conductivity, simple fabricating process and low cost, while the inorganicmaterial has a relatively small thermo-optical coefficient, big thermal conductivitycoefficient, relatively complex preparation process and high cost. So the organic-inorganic composite waveguide structure was proposed, and different types ofMach-Zehnder interferometer (MZI) thermo-optical switch was fabricated:1) Makinguse of the advantages of organic and inorganic materials,1×1MZI thermo-optical switch was fabricated by wet etching process. The core, upper cladding and undercaladding of the waveguide were SU-8, PMMA and SiO2, respectively. Thethickneses of upper and lower cladding were3μm and2μm by theoretical optimizing,respectively. Calculating with finite difference method, the light field and the heatdistribution of the optical switch was obtained. The driving power was only4mWand the extinction ratio was up to29.6dB at1550nm, the rise time and fall time were73.5μs and96.5μs, respectively.2)1×2organic-inorganic hybrid waveguidemultimode interferometer (MMI) MZI thermo-optical switch was proposed. Theswitch power is9.6mW, and the crosstalk is-23dB, the rise time and fall time were264μs and444μs, respectively.3)1×2organic-inorganic hybrid waveguidedirectional coupler (DC) MZI thermo-optical switch was proposed. The switch poweris10.7mW, and the crosstalks under bar state and cross state were-11.5dB and-23dB. The rise time and fall time of port1were170μs and560μs, and the rise time andfall time of port2were200μs and560μs.4)2×2organic-inorganic hybrid waveguideDC-MZI thermo-optical switch was proposed. The switch power is7.2mW, and thecrosstalks under bar state and cross state were-22.8dB and-26.5dB.
     3、 In order to study the capacity of noise tolerance characteristics oforganic-inorganic hybrid waveguide thermo-optical switch, a driving-noise-tolerantmethod was proposed on1×1MZI thermo-optical switch and2×2DC-MZIthermo-optical switch. When ignored the changes caused by temperature fluctuations,a1×1MZI device with a extinction ratio up to32.6dB was chooseed to study thedriving-noise-tolerant characteristic. Experimental results showed that when theacceptable minimum extinction ratio was bigger than10dB, the maximum allowablenoise amplitude was1.1V. For2×2DC-MZI thermo-optical switch, which crosstalkwere-22.8dB and-26.5dB on cross state and bar state, respectively. When a squarewave noise signal with a frequency of2KHz and a peak-peak value of2.5V wassuperimposed on driving signal, the smallest extinction ratio was about11.3dB.When a square wave noise signal with a frequency of5KHz and a peak-peak value of2.5V was superimposed on driving signal, the smallest extinction ratio was about24.1dB. The minimum extinction ratio increased with the increasing of peak-peak value of noise. When the noise amplitude was immovable, the minimum extinctionratio increased with the decreasing of frequency. However, when the frequency of thenoise is large enough, the change of the minimum extinction ratio almost did notchange, it was proved the device is insensitive to high frequency signals.
     4、An organic-inorganic hybrid total internal reflection2×2switch was porposed.When the signal input from input port1, the crosstalk were-24dB and-26dB oncross state and bar state, respectively. When the signal input from input port2, thecrosstalk were-25.7dB and-26.3dB on cross state and bar state, respectively. Thepower consumption of the switch was about100mW when the extinction ratio wasgreater than26dB. By optimizing the size of the device, the power consumption wasreduced to59.7mW, the crosstalk on cross state and bar state were-27.6dB and-35dB, respectively. When the total internal reflection switch matrix is blocking, itrequires2×(N-1)-1total internal reflection2×2switches. When the total internalreflection switch matrix is non-blocking, it requiresN2total internal reflection2×2switches.
     5、 As the general MZI switch usually has very narrow spectrum, Athermo-optical switch with broad spectrum was proposed. A3-dB coupler composedby phase-generating coupler (PGC) was used to replace general DC3-dB coupler,which phase difference was also changed with the wavelength drift, and thischaracteristic could compensate the drift of modulation region. Simulation resultsshowed that the two output ports of designed models had a wavelength range of110nm, in which the extinction ratio was greater than30dB.
引文
[1] Gao Yong, Liu Xiding, Li Guozheng, et al. Si1-xGex/Si asymmetric2×2electro-optical switch of total internal reflection type[J]. Applied physics letters,1995.67(23):3379-3380.
    [2] Lee Myung-Hyun, Yoo Hong Min, Park Suntak, et al. Fully packagedpolymeric four arrayed2×2digital optical switch[J]. Photonics Technology Letters,IEEE,2002.14(5):615-617.
    [3] Zhu W. M., Zhong T., Liu A. Q., et al. Micromachined optical well structurefor thermo-optic switching[J]. Applied Physics Letters,2007.91(26):261106-261106-3.
    [4] Shibata T., Okuno M., Goh T., et al. Silica-based waveguide-type16×16optical switch module incorporating driving circuits[J]. Photonics Technology Letters,IEEE,2003.15(9):1300-1302.
    [5] Okuno M. Highly integrated PLC-type optical switches for OADM and OXCsystems[C]. Optical Fiber Communications Conference,2003.
    [6] Liaw S. K., Ho K. P., Lin C. L., et al. Experimental investigation ofwavelength-tunable WADM and OXC devices using strain-tunable fiber Bragggratings[J]. Optics Communications,1999.169(1-6):75-80.
    [7] Lee C. C., Kao T. C., Chien H. C., et al. A novel supervisory scheme forOXC based on different time-dilay recognition[J]. Ieee Photonics Technology Letters,2005.17(12):2745-2747.
    [8] Lo Y. L., Chow H. C., and Chiang C. Y. Reconfigurable OADM and OXCdesigned by a new optical switch[J]. Optical Fiber Technology,2004.10(2):187-200.
    [9] Arbues P. G., Machuca C. M., and Tzanakaki A. Comparative study ofexisting OADM and OXC architectures and technologies from the failure behaviorperspective[J]. Journal of Optical Networking,2007.6(2):123-133.
    [10] Liu A. Q., Zhang X. M., Murukeshan V. M., et al. An optical crossconnect(OXC) using drawbridge micromirrors[J]. Sensors and Actuators A-Physical,2002.97-8:227-238.
    [11] Comellas J., Conesa J., and Junyent G. Design and performance analysis ofa simple OXC[J]. Photonic Network Communications,2003.5(1):81-88.
    [12] Zong L., Li Y. H., Zhang H. Y., et al. Low crosstalk structure for integratedOXC/OADM in WDM optical transport networks[J]. Optics Communications,2001.195(1-4):179-186.
    [13] Guan C. and Chan V. W. S. Topology design of OXC-switched WDMnetworks[J]. Ieee Journal on Selected Areas in Communications,2005.23(8):1670-1686.
    [14] Lu T. S., Guo H. C., Wang H. T., et al. Polymer-based S-shaped waveguideVOA for applications in the broadband DWDM network[J]. Microwave and OpticalTechnology Letters,2003.39(1):1-4.
    [15] Chen Long, Doerr Christopher R, and Chen Young-kai.Polarization-diversified DWDM receiver on silicon free of polarization-dependentwavelength shift[C]. in Optical Fiber Communication Conference.2012. OpticalSociety of America.
    [16] Zhang X. M., Liu A. Q., Murukeshan V. M., et al. Integrated micromachinedtunable lasers for all optical network (AON) applications[J]. Sensors and ActuatorsA-Physical,2002.97-8:54-60.
    [17] Cochran Kevin R, Fan Lawrence, and DeVoe Don L. Moving reflector typemicro optical switch for high-power transfer in a MEMS-based safety and armingsystem[J]. Journal of Micromechanics and Microengineering,2004.14(1):138.
    [18] Li Victor, Li Chun Yin, and Wai PKA. Alternative structures fortwo-dimensional MEMS optical switches[J]. Journal of Optical Networking,2004.3(10):742-757.
    [19] Koh Kah How, Qian You, and Lee Chengkuo. Design and characterizationof a3D MEMS VOA driven by hybrid electromagnetic and electrothermal actuationmechanisms[J]. Journal of Micromechanics and Microengineering,2012.22(10).
    [20] Faure Jean-Paul, Noirie Ludovic, and Ollier Eric. A8×8all opticalspace-switch based on a novel8×1MOEMS switching module[C]. Optical FibreCommunication Conference (OFC,2001).2001.
    [21] Chen Qinghua, Chen Yingjun, Wu Wengang, et al.1×8MEMS flexibleintegrated optical device for optical fiber-based networkingapplications[J].Microwave and Optical Technology Letters,2013.55(2):231-236.
    [22] Zhang Ailing, Chan Kam Tai, Demokan MS, et al. Integrated liquid crystaloptical switch based on total internal reflection[J]. Applied Physics Letters,2005.86(21):211108-211108-3.
    [23] Lin Yi-Hsin, Yang Jhih-Ming, Lin Yan-Rung, et al. A polarizer-free flexibleand reflective electrooptical switch using dye-doped liquid crystal gels[J]. Opticsexpress,2008.16(3):1777-1785.
    [24] Sluijter M, De Boer DKG, and Urbach HP. Simulations of aliquid-crystal-based electro-optical switch[J]. Optics letters,2009.34(1):94-96.
    [25] Liu YJ, Sun XW, Liu JH, et al. A polarization insensitive2×2optical switchfabricated by liquid crystal-polymer composite[J]. Applied Physics Letters,2005.86(4):1115.
    [26] Tanushi Yuichiro and Yokoyama Shin. High-speed and low-voltage ringresonator optical switches using electro-and magneto-optic materials[C].2nd IEEEInternational Conference on,2005.
    [27] Dmitriev Victor, Kawakatsu Marcelo N., and Portela Gianni. Compactoptical switch based on2D photonic crystal and magneto-optical cavity[J]. OpticsLetters,2013.38(7):1016-1018.
    [28] Pritchard J. W. and Mina M. Magneto-Optic Interferometric Switch WithResonator Configuration[J]. Magnetics Letters, IEEE,2013.4:6000104-6000104.
    [29] Pritchard J. W., Mina M., and Weber R. J. Magnetic Field Generator Designfor Magneto-Optic Switching Applications[J]. Magnetics Letters, IEEE,2013.49(7):4242-4244.
    [30] Shi Y. Q., Lin W. P., Olson D. J., et al. Electro-optic polymer modulatorswith0.8V half-wave voltage[J]. Applied Physics Letters,2000.77(1):1-3.
    [31] Shi Y. Q., Zhang C., Zhang H., et al. Low (sub-1-volt) halfwave voltagepolymeric electro-optic modulators achieved by controlling chromophore shape[J].Science,2000.288(5463):119-122.
    [32] Enami Y., DeRose C. T., Loychik C., et al. Low half-wave voltage and highelectro-optic effect in hybrid polymer/sol-gel waveguide modulators[J]. AppliedPhysics Letters,2006.89(14).
    [33] Zheng Chuan-Tao, Ma Chun-Sheng, Yan Xin, et al. Simulation andoptimization of a polymer directional coupler electro-optic switch with push-pullelectrodes[J]. Optics Communications,2008.281(14):3695-3702.
    [34] Enami Y., Mathine D., DeRose C. T., et al. Hybrid electro-opticpolymer/sol-gel waveguide directional coupler switches[J]. Applied Physics Letters,2009.94(21).
    [35] Wang Xibin, Sun Jian, Jin Lin, et al. Fabrication of SU-8based electro-opticswitch using all-wet etching technique[J]. Modern Physics Letters B,2013.27(04).
    [36] Wülbern Jan Hendrik, Prorok Stefan, Hampe Jan, et al.40GHzelectro-optic modulation in hybrid silicon–organic slotted photonic crystalwaveguides[J]. Optics letters,2010.35(16):2753-2755.
    [37] Mazza M., Thevenaz L., Robert P., et al. A novel SOI Schottkyelectro-optical modulator for GHz high-speed switching[C].12th InternationalConference on2003,2003.
    [38] Aghababaeian H. and Samiei M. H. V. Temperature insensitive compactelectro-optic photonic crystal switch[C].20105th International Symposium,2010.
    [39] Ab Rahman M. S., Shaktur K. M., and Mohammad R. Analytical andsimulation of new electro-optic3×3switch using Ti:LiNbO3as a wave guidemedium[C].2010International Conference,2010.
    [40] Oh M. C., Zhang H., Szep A., et al. Electro-optic polymer modulators for1.55mu m wavelength using phenyltetraene bridged chromophore in polycarbonate[J].Applied Physics Letters,2000.76(24):3525-3527.
    [41] Yin Rui, Teng Jinghua, and Chua Soojin. A1×2optical switch using onemultimode interference regio[J]. Optics Communications,2008.281(18):4616-4618.
    [42] Zhou Haifeng, Zhao Yong, Wang Wanjun, et al. Performance influence ofcarrier absorption to the Mach-Zehnder-interference based silicon optical switches[J].Optics Express,2009.17(9):7043-7051.
    [43] Sugama A., Akahoshi T., Sato K., et al. Integrated8x8Electro-opticHigh-speed Switch for Optical Burst Transport Networks[C]. Optical FiberCommunication and the National Fiber Optic Engineers Conference,2007.
    [44] Yi L. L., Hu W. S., Dong Y., et al. A polarization-independentsubnanosecond2×2multicast-capable optical switch using a Sagnac interferometer[J].Ieee Photonics Technology Letters,2008.20(5-8):539-541.
    [45] Cao Dung Truong, Duc Han Tran, Tuan Anh Tran, et al.3×3Multimodeinterference optical switches using electro-optic effects as phase Shifters[J]. OpticsCommunications,2013.292:78-83.
    [46] Jain K., Mehra R., and Dixit H. K. Optimization of2×2Mach-ZehnderInterferometer Electro-Optic Switch[C]. in Computer and CommunicationTechnology (ICCCT),2012Third International Conference on.2012.
    [47] Almeida V. R., Xu Q. F., Barrios C. A., et al. Guiding and confining light invoid nanostructure[J]. Optics Letters,2004.29(11):1209-1211.
    [48] Xu Q. F., Almeida V. R., Panepucci R. R., et al. Experimental demonstrationof guiding and confining light in nanometer-size low-refractive-index material[J].Optics Letters,2004.29(14):1626-1628.
    [49] Feng N. N., Sun R., Kimerling L. C., et al. Lossless strip-to-slot waveguidetransformer[J]. Optics Letters,2007.32(10):1250-1252.
    [50] Xiao J. B., Liu X., and Sun X. H. Design of an ultracompact MMIwavelength demultiplexer in slot waveguide structures[J]. Optics Express,2007.15(13):8300-8308.
    [51] Katigbak A., Strother J. F., and Lin J. Compact silicon slot waveguidepolarization splitter[J]. Optical Engineering,2009.48(8).
    [52] Komatsu M., Saitoh K., and Koshiba M. Design of miniaturized silicon wireand slot waveguide polarization splitter based on a resonant tunneling[J]. OpticsExpress,2009.17(21):19225-19234.
    [53] Barrios C. A., Gylfason K. B., Sanchez B., et al. Slot-waveguidebiochemical sensor[J]. Optics Letters,2007.32(21):3080-3082.
    [54] Gould M., Baehr-Jones T., Ding R., et al. Silicon-polymer hybrid slotwaveguide ring-resonator modulator[J]. Optics Express,2011.19(5):3952-3961.
    [55] Xiao Simiao, Wang Fan, Wang Xiang, et al. Electro-optic polymer assistedoptical switch based on silicon slot structure[J]. Optics Communications,2009.282(13):2506-2510.
    [56] Lee Chin C and Su Tzu J.2×2single-mode zero-gap directional-couplerthermo-optic waveguide switch on glass[J]. Applied optics,1994.33(30):7016-7022.
    [57] Keil N, Yao HH, Zawadzki C, et al. Rearrangeable nonblocking polymerwaveguide thermo-optic4×4switching matrix with low power consumption at1.55μm[J]. Electronics letters,1995.31(5):403-404.
    [58] Lu X. J., An D. C., Sun L., et al. Polarization-insensitive thermo-opticswitch based on multimode polymeric waveguides with an ultralarge opticalbandwidth[J]. Applied Physics Letters,2000.76(16):2155-2157.
    [59] Tapalian H. C., Laine J. P., and Lane P. A. Thermooptical switches usingcoated microsphere resonators[J]. Photonics Technology Letters, IEEE,2002.14(8):1118-1120.
    [60] Aalto T., Kapulainen M., Yliniemi S., et al. Fast thermo-optical switch basedon SOI waveguides[J]. Integrated Optics: Devices, Materials, and Technologies Vii,2003.4987:149-159.
    [61] Jang Chiou-Hung and Chen R. T. Polymer-based1×6thermoopticswitch incorporating an elliptic TIR waveguide mirror[J]. Lightwave Technology,Journal of,2003.21(4):1053-1058.
    [62] Tao Chu, Yamada H., Ishida Satomi, et al. Thermooptic switch based onphotonic-crystal line-defect waveguides[J]. Photonics Technology Letters, IEEE,2005.17(10):2083-2085.
    [63] Koerkamp MHM Klein, Donckers Marc C, Hams Benno HM, et al. Designand fabrication of a pigtailed thermo-optic1×2switch[C]. in Proc. IPR.1994.
    [64] Espinola R. L., Tsai M. C., Yardley James T., et al. Fast and low-powerthermooptic switch on thin silicon-on-insulator[J]. Photonics Technology Letters,IEEE,2003.15(10):1366-1368.
    [65] Geis M. W., Spector S. J., Williamson R. C., et al. Submicrosecondsubmilliwatt silicon-on-insulator thermooptic switch[J]. Photonics Technology Letters,IEEE,2004.16(11):2514-2516.
    [66] Harjanne M., Kapulainen M., Aalto T., et al. Sub-mu s switching time insilicon-on-insulator Mach-Zehnder thermooptic switch[J]. Ieee Photonics TechnologyLetters,2004.16(9):2039-2041.
    [67] Gu Lanlan, Jiang Wei, Chen Xiaonan, et al. Thermooptically tuned photoniccrystal waveguide silicon-on-insulator Mach-Zehnder interferometers[J]. IeeePhotonics Technology Letters,2007.19(5-8):342-344.
    [68] Song Junfeng, Fang Q., Tao S. H., et al. Fast and low power Michelsoninterferometer thermo-optical switch on SOI[J]. Optics Express,2008.16(20):15304-15311.
    [69] Chuang Ricky W., Hsu Mao-Teng, and Liao Zhen-Liang. IntegratedSiO2/SiON/SiO2Thermo-Optical Switch Based on the Multimode InterferenceEffect[J]. Japanese Journal of Applied Physics,2010.49(4).
    [70] Okamoto K, Okuno M, Himeno A, et al.16-channel optical add/dropmultiplexer consisting of arrayed-waveguide gratings and double-gate switches[J].Electronics Letters,1996.32(16):1471-1472.
    [71] Watanabe T., Goh T., Okuno M., et al. Silica-based PLC1×128thermo-opticswitch[C].27th European Conference,2001.
    [72] Kasahara R., Yanagisawa Masahiro, Goh T., et al. New structure ofsilica-based planar lightwave circuits for low-power thermooptic switch and itsapplication to8×8optical matrix switch[J]. Lightwave Technology, Journal of,2002.20(6):993-1000.
    [73] Li Y. P., Yang D., Sun F., et al. Thermo-optical switch matrix based onsilicon-on-insulator waveguides[J]. Chinese Physics Letters,2005.22(3):621-623.
    [74] Yanping Li, Jinzhong Yu, and Shaowu Chen. Rearrangeable nonblockingSOI waveguide thermooptic4×4switch matrix with low insertion loss and fastresponse[J]. Photonics Technology Letters, IEEE,2005.17(8):1641-1643.
    [75] Wang Wanjun, Zhou Haifeng, Yang Jianyi, et al. Highly integrated3×3silicon thermo-optical switch using a single combined phase shifter for opticalinterconnects[J]. Optics Letters,2012.37(12):2307-2309.
    [76] Lu Xuejun, Dechang An, Sun Lin, et al. Polarization-insensitivethermo-optic switch based on multimode polymeric waveguides with an ultralargeoptical bandwidth[J]. Applied Physics Letters,2000.76(16):2155-2157.
    [77] Wang F., Yang J. Y., Chen L. M., et al. Optical switch based on multimodeinterference coupler[J]. Ieee Photonics Technology Letters,2006.18(1-4):421-423.
    [78] Al-Hetar Abdulaziz M., Supa'at Abu Sahmah M., Mohammad A. B., et al.Crosstalk improvement of a thermo-optic polymer waveguide MZI-MMI switch[J].Optics Communications,2008.281(23):5764-5767.
    [79] Al-Hetar Abdulaziz Mohammed, Mohammad Abu Bakar, Supa'at AbuSahmah M., et al. MMI-MZI Polymer Thermo-Optic Switch With a High RefractiveIndex Contrast[J]. Journal of Lightwave Technology,2011.29(2):171-178.
    [80] Al-hetar Abdulaziz M., Mohammad Abu Bakar, Supa'at Abu Sahmah M., etal. Fabrication and characterization of polymer thermo-optic switch based on mmicoupler[J]. Optics Communications,2011.284(5):1181-1185.
    [81] Xie Nan, Hashimoto Takafumi, and Utaka Katsuyuki. Very Low-Power,Polarization-Independent, and High-Speed Polymer Thermooptic Switch[J]. IeeePhotonics Technology Letters,2009.21(24):1861-1863.
    [82] Gao Lei, Sun Jie, Sun Xiaoqiang, et al. Low switching power2×2thermo-optic switch using direct ultraviolet photolithography process[J]. OpticsCommunications,2009.282(20):4091-4094.
    [83] Ki-Hong Kim, Kwon Min-Suk, Sang-Yung Shin, et al. Vertical digitalthermooptic switch in polymer[J]. Photonics Technology Letters, IEEE,2004.16(3):783-785.
    [84] Kai Xin Chen, Kin Seng Chiang, and Hau Ping Chan. Broadband MultiportDynamic Optical Power Distributor Based on Thermooptic Polymer WaveguideVertical Couplers[J]. Photonics Technology Letters, IEEE,2008.20(4):273-275.
    [85] Keil N., Yao HH, Zawadzki C., et al. Hybrid polymer/silica thermo-opticvertical coupler switches[J]. Applied Physics B: Lasers and Optics,2001.73(5):469-473.
    [86] Yu H., Jiang X. Q., Yang J. Y., et al.2×3Thermo-optical switch utilizingtotal internal reflection[J]. Applied Physics Letters,2006.88(1).
    [87] Wang Xiaolong, Howley Brie, Chen M. Y., et al. Polarization-independentall-wave polymer-based TIR thermooptic switch[J]. Lightwave Technology, Journalof,2006.24(3):1558-1565.
    [88] Wang Xiaolong, Howley Brie, Chen M. Y., et al. Crosstalk-minimizedpolymeric2×2thermooptic switch[J]. Photonics Technology Letters, IEEE,2006.18(1):16-18.
    [89] Wang Xiaolong, Howley Brie, Chen Maggie Y., et al.4×4nonblockingpolymeric thermo-optic switch matrix using the total internal reflection effect[J]. IeeeJournal of Selected Topics in Quantum Electronics,2006.12(5):997-1000.
    [90] Han Young-Tak, Shin Jang-Uk, Park Sang-Ho, et al. Polymer1×2Thermo-Optic Digital Optical Switch Based on the Total-Internal-Reflection Effect[J].Etri Journal,2011.33(2):275-278.
    [91] Han Young-Tak, Shin Jang-Uk, Park Sang-Ho, et al.2×2PolymerThermo-Optic Digital Optical Switch Using Total-Internal-Reflection in Bend-FreeWaveguides[J]. Ieee Photonics Technology Letters,2012.24(19):1757-1760.
    [92] Jang-Uk Shin, Young-Tak Han, Sang-Ho Park, et al. M×N optical matrixswitch using polymer thermo-optic total-internal-reflection switches[C]. inOpto-Electronics and Communications Conference (OECC),201217th.2012.
    [93] Lin Xiaohui, Ling Tao, Subbaraman Harish, et al. Printable thermo-opticpolymer switches utilizing imprinting and ink-jet printing[J]. Optics Express,2013.21(2):2110-2117.
    [94] Sakuma K., Fujita D., Ishikawa S., et al. Low insertion-loss and highisolation polymeric Y-branching thermo-optic switch with partitioned heater[C]. inOptical Fiber Communication Conference and Exhibit,2001. OFC2001.2001.
    [95] Shu K. C., Lai Y., and Huang D. W. Compact S-shape1×2thermo-opticpolymer waveguide switch with wide bandwidth[C]. CLEO2002,2002.
    [96] Han Young-Tak, Shin Jang-Uk, Park Sang-Ho, et al. Fabrication of10-Channel Polymer Thermo-Optic Digital Optical Switch Array[J]. Ieee PhotonicsTechnology Letters,2009.21(20):1556-1558.
    [97]马春生.光波导模式理论[M].长春:吉林大学出版社,2006.
    [98]李林,金先级.数值计算方法MATLAB语言版[M].广州:中山大学出版社,2006.
    [99] Zheng Chuan-Tao, Ma Chun-Sheng, Yan Xin, et al. Design and analysis of apolymer Mach-Zehnder interferometer electro-optic switch over a wide spectrum of110nm[J]. Optical Engineering,2009.48(5).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700